1
|
Nguyen AT, McSorley SJ. Fighting the enemy within: Systemic immune defense against mucosal Salmonella infection. Immunol Lett 2024; 270:106930. [PMID: 39343314 DOI: 10.1016/j.imlet.2024.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Salmonella infection remains a persistent global health threat, as different serovars induce a range of clinical disease, depending upon bacterial virulence and host susceptibility. While some Salmonella serovars induce gastroenteritis in healthy individuals, others can cause more serious systemic enteric fever or invasive nontyphoidal Salmonellosis. The rise of antibiotic resistance, coupled with the absence of effective vaccines for most serovars, perpetuates the spread of Salmonella in endemic regions. A detailed mechanistic understanding of immunity to Salmonella infections has been aided by the availability of mouse models that have served as a valuable tool for understanding host-pathogen interactions under controlled laboratory conditions. These mouse studies have delineated the processes by which early inflammation is triggered after infection, how adaptive immunity is initiated in lymphoid tissues, and the contribution of lymphocyte memory responses to resistance. While recent progress has been made in vaccine development for some causes of enteric fever, deeper understanding of Salmonella-specific immune memory might allow the formation of new vaccines for all serovars. This review will provide a summary of our understanding of vaccination and protective immunity to Salmonella with a focus on recent developments in T cell memory formation.
Collapse
Affiliation(s)
- Alana T Nguyen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Yu H, Xu Y, Imani S, Zhao Z, Ullah S, Wang Q. Navigating ESKAPE Pathogens: Considerations and Caveats for Animal Infection Models Development. ACS Infect Dis 2024; 10:2336-2355. [PMID: 38866389 PMCID: PMC11249778 DOI: 10.1021/acsinfecdis.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.
Collapse
Affiliation(s)
- Haojie Yu
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
- Stomatology
Hospital, School of Stomatology, Zhejiang University School of Medicine,
Zhejiang Provincial Clinical Research Center for Oral Diseases, Key
Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yongchang Xu
- Key
Laboratory of Aging and Cancer Biology of Zhejiang Province, School
of Basic Medical Sciences, Hangzhou Normal
University, Hangzhou 311121, China
| | - Saber Imani
- Shulan
International Medical College, Zhejiang
Shuren University, Hangzhou 310015, Zhejiang China
| | - Zhuo Zhao
- Department
of Computer Science and Engineering, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Saif Ullah
- Department
of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Qingjing Wang
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| |
Collapse
|
3
|
Depew CE, McSorley SJ. The role of tissue resident memory CD4 T cells in Salmonella infection: Implications for future vaccines. Vaccine 2023; 41:6426-6433. [PMID: 37739887 DOI: 10.1016/j.vaccine.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
Salmonella infections cause a wide range of intestinal and systemic disease that affects global human health. While some vaccines are available, they do not mitigate the impact of Salmonella on endemic areas. Research using Salmonella mouse models has revealed the important role of CD4 T cells and antibody in the development of protective immunity against Salmonella infection. Recent work points to a critical role for hepatic tissue-resident memory lymphocytes in naturally acquired immunity to systemic infection. Thus, understanding the genesis and function of this Salmonella-specific population is an important objective and is the primary focus of this review. Greater understanding of how these memory lymphocytes contribute to bacterial elimination could suggest new approaches to vaccination against an important human pathogen.
Collapse
Affiliation(s)
- Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Wang N, Scott TA, Kupz A, Shreenivas MM, Peres NG, Hocking DM, Yang C, Jebeli L, Beattie L, Groom JR, Pierce TP, Wakim LM, Bedoui S, Strugnell RA. Vaccine-induced inflammation and inflammatory monocytes promote CD4+ T cell-dependent immunity against murine salmonellosis. PLoS Pathog 2023; 19:e1011666. [PMID: 37733817 PMCID: PMC10547166 DOI: 10.1371/journal.ppat.1011666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.
Collapse
Affiliation(s)
- Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy A. Scott
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andreas Kupz
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Newton G. Peres
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna M. Hocking
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chenying Yang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas P. Pierce
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Sabag-Daigle A, Boulanger EF, Thirugnanasambantham P, Law JD, Bogard AJ, Behrman EJ, Gopalan V, Ahmer BMM. Identification of Small-Molecule Inhibitors of the Salmonella FraB Deglycase Using a Live-Cell Assay. Microbiol Spectr 2023; 11:e0460622. [PMID: 36809033 PMCID: PMC10100877 DOI: 10.1128/spectrum.04606-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Nontyphoidal salmonellosis is one of the most significant foodborne diseases in the United States and globally. There are no vaccines available for human use to prevent this disease, and only broad-spectrum antibiotics are available to treat complicated cases of the disease. However, antibiotic resistance is on the rise and new therapeutics are needed. We previously identified the Salmonella fraB gene, that mutation of causes attenuation of fitness in the murine gastrointestinal tract. The FraB gene product is encoded in an operon responsible for the uptake and utilization of fructose-asparagine (F-Asn), an Amadori product found in several human foods. Mutations in fraB cause an accumulation of the FraB substrate, 6-phosphofructose-aspartate (6-P-F-Asp), which is toxic to Salmonella. The F-Asn catabolic pathway is found only in the nontyphoidal Salmonella serovars, a few Citrobacter and Klebsiella isolates, and a few species of Clostridium; it is not found in humans. Thus, targeting FraB with novel antimicrobials is expected to be Salmonella specific, leaving the normal microbiota largely intact and having no effect on the host. We performed high-throughput screening (HTS) to identify small-molecule inhibitors of FraB using growth-based assays comparing a wild-type Salmonella and a Δfra island mutant control. We screened 224,009 compounds in duplicate. After hit triage and validation, we found three compounds that inhibit Salmonella in an fra-dependent manner, with 50% inhibitory concentration (IC50) values ranging from 89 to 150 μM. Testing these compounds with recombinant FraB and synthetic 6-P-F-Asp confirmed that they are uncompetitive inhibitors of FraB with Ki' (inhibitor constant) values ranging from 26 to 116 μM. IMPORTANCE Nontyphoidal salmonellosis is a serious threat in the United States and globally. We have recently identified an enzyme, FraB, that when mutated renders Salmonella growth defective in vitro and unfit in mouse models of gastroenteritis. FraB is quite rare in bacteria and is not found in humans or other animals. Here, we have identified small-molecule inhibitors of FraB that inhibit the growth of Salmonella. These could provide the foundation for a therapeutic to reduce the duration and severity of Salmonella infections.
Collapse
Affiliation(s)
- Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Erin F. Boulanger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | | | - Jamison D. Law
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Alex J. Bogard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Edward J. Behrman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Ji HJ, Jang AY, Song JY, Ahn KB, Han SH, Bang SJ, Jung HK, Hur J, Seo HS. Development of Live Attenuated Salmonella Typhimurium Vaccine Strain Using Radiation Mutation Enhancement Technology (R-MET). Front Immunol 2022; 13:931052. [PMID: 35898510 PMCID: PMC9310569 DOI: 10.3389/fimmu.2022.931052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a leading cause of food-borne diseases in humans worldwide, resulting in severe morbidity and mortality. They are carried asymptomatically in the intestine or gallbladder of livestock, and are transmitted predominantly from animals to humans via the fecal-oral route. Thus, the best preventive strategy is to preemptively prevent transmission to humans by vaccinating livestock. Live attenuated vaccines have been mostly favored because they elicit both cellular and humoral immunity and provide long-term protective immunity. However, developing these vaccines is a laborious and time-consuming process. Therefore, most live attenuated vaccines have been mainly used for phenotypic screening using the auxotrophic replica plate method, and new types of vaccines have not been sufficiently explored. In this study, we used Radiation-Mutation Enhancement Technology (R-MET) to introduce a wide variety of mutations and attenuate the virulence of Salmonella spp. to develop live vaccine strains. The Salmonella Typhimurium, ST454 strain (ST WT) was irradiated with Cobalt60 gamma-irradiator at 1.5 kGy for 1 h to maximize the mutation rate, and attenuated daughter colonies were screened using in vitro macrophage replication capacity and in vivo mouse infection assays. Among 30 candidates, ATOMSal-L6, with 9,961-fold lower virulence than the parent strain (ST454) in the mouse LD50 model, was chosen. This vaccine candidate was mutated at 71 sites, and in particular, lost one bacteriophage. As a vaccine, ATOMSal-L6 induced a Salmonella-specific IgG response to provide effective protective immunity upon intramuscular vaccination of mice. Furthermore, when mice and sows were orally immunized with ATOMSal-L6, we found a strong protective immune response, including multifunctional cellular immunity. These results indicate that ATOMSal-L6 is the first live vaccine candidate to be developed using R-MET, to the best of our knowledge. R-MET can be used as a fast and effective live vaccine development technology that can be used to develop vaccine strains against emerging or serotype-shifting pathogens.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - A-Yeung Jang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - Seok Jin Bang
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| |
Collapse
|
7
|
Mehta J, Rolta R, Salaria D, Awofisayo O, Fadare OA, Sharma PP, Rathi B, Chopra A, Kaushik N, Choi EH, Kaushik NK. Phytocompounds from Himalayan Medicinal Plants as Potential Drugs to Treat Multidrug-Resistant Salmonella typhimurium: An In Silico Approach. Biomedicines 2021; 9:1402. [PMID: 34680519 PMCID: PMC8533345 DOI: 10.3390/biomedicines9101402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Medicinal plants can be used as natural therapeutics to treat diseases in humans. Enteric bacteria possess efflux pumps to remove bile salts from cells to avoid potential membrane damage. Resistance to bile and antibiotics is associated with the survival of Salmonella enterica subspecies enterica serovar Typhimurium (S. typhimurium) within a host. The present study aimed to investigate the binding affinity of major phytocompounds derived from 35 medicinal plants of the North Western Himalayas with the RamR protein (PDB ID 6IE9) of S. typhimurium. Proteins and ligands were prepared using AutoDock software 1.5.6. Molecular docking was performed using AutoDock Vina and MD simulation was performed at 100 ns. Drug likeness and toxicity predictions of hit phytocompounds were evaluated using molinspiration and ProTox II online servers. Moreover, docking, drug likeness, and toxicity results revealed that among all the selected phytocompounds, beta-sitosterol exhibited the most efficacious binding affinity with RamR protein (PDB ID 6IE9) and was nontoxic in nature. MD simulation data revealed that beta-sitosterol in complex with 6IE9 can be used as an antimicrobial. Furthermore, beta-sitosterol is stable in the binding pocket of the target protein; hence, it can be further explored as a drug to inhibit resistance-nodulation-division efflux pumps.
Collapse
Affiliation(s)
- Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh 173212, India; (J.M.); (R.R.); (D.S.)
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh 173212, India; (J.M.); (R.R.); (D.S.)
| | - Deeksha Salaria
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh 173212, India; (J.M.); (R.R.); (D.S.)
| | - Oladoja Awofisayo
- Department of Pharmaceutical and Medical Chemistry, University of Uyo, Uyo 520003, Nigeria;
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Department of Chemistry, Obafemi Awolowo University, Osun 220282, Nigeria;
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, Delhi 110007, India; (P.P.S.); (B.R.)
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, Delhi 110007, India; (P.P.S.); (B.R.)
- Laboratory of Computational Modelling of Drugs, South Ural State University, 454080 Chelyabinsk, Russia
| | - Adity Chopra
- Department of Immunology, University of Oslo, 0315 Oslo, Norway;
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, Suwon University, Hwaseong-si 18323, Korea;
| | - Eun Ha Choi
- Plasma Bioscience Research Center & Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center & Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| |
Collapse
|
8
|
Erazo AB, Wang N, Standke L, Semeniuk AD, Fülle L, Cengiz SC, Thiem M, Weighardt H, Strugnell RA, Förster I. CCL17-expressing dendritic cells in the intestine are preferentially infected by Salmonella but CCL17 plays a redundant role in systemic dissemination. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:891-904. [PMID: 33945673 PMCID: PMC8342217 DOI: 10.1002/iid3.445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Introduction Salmonella spp. are a recognized and global cause of serious health issues from gastroenteritis to invasive disease. The mouse model of human typhoid fever, which uses Salmonella enterica serovar Typhimurium (STM) in susceptible mouse strains, has revealed that the bacteria gain access to extraintestinal tissues from the gastrointestinal tract to cause severe systemic disease. Previous analysis of the immune responses against Salmonella spp. revealed the crucial role played by dendritic cells (DCs) in carrying STM from the intestinal mucosa to the mesenteric lymph nodes (mLNs), a key site for antigen presentation and T cell activation. In this study, we investigated the influence of chemokine CCL17 on the dissemination of STM. Methods WT, CCL17/EGFP reporter, or CCL17‐deficient mice were infected orally with STM (SL1344) or mCherry‐expressing STM for 1–3 days. Colocalization of STM with CCL17‐expressing DCs in Peyer's patches (PP) and mLN was analyzed by fluorescence microscopy. In addition, DCs and myeloid cell populations from naïve and Salmonella‐infected mice were analyzed by flow cytometry. Bacterial load was determined in PP, mLN, spleen, and liver 1 and 3 days after infection. Results Histological analysis revealed that CCL17‐expressing cells are located in close proximity to STM in the dome area of PP. We show that, in mLN, STM were preferentially located within CCL17+ rather than CCL17− DCs, besides other mononuclear phagocytes, and identified the CD103+ CD11b− DC subset as the main STM‐carrying DC population in the intestine. STM infection triggered upregulation of CCL17 expression in specific intestinal DC subsets in a tissue‐specific manner. The dissemination of STM from the gut to the mLN, however, was only moderately influenced by the presence of CCL17. Conclusion CCL17‐expressing DCs were preferentially infected by Salmonella in the intestine in comparison to other DC. Nevertheless, the production of CCL17 was not essential for the early dissemination of Salmonella from the gut to systemic organs.
Collapse
Affiliation(s)
- Anna B Erazo
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lena Standke
- Department for Innate Immunity and Metaflammation, Institute of Innate Immunity, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Adrian D Semeniuk
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lorenz Fülle
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sevgi C Cengiz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Manja Thiem
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Richard A Strugnell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Ssemakalu CC, Ulaszewska M, Elias S, Spencer AJ. Solar inactivated Salmonella Typhimurium induces an immune response in BALB/c mice. Heliyon 2021; 7:e05903. [PMID: 33553721 PMCID: PMC7855330 DOI: 10.1016/j.heliyon.2021.e05903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonella is contracted through the consumption of untreated water and contaminated food. The contraction and spread of water-related Salmonella in resource-poor communities can be reduced by using solar disinfection (SODIS) to treat the water before its consumption. SODIS is a water sanitizing technique that relies on natural sunshine. It is a cost-effective, inexpensive, environmentally, and user-friendly means of treating microbiologically contaminated water. This water disinfection method has saved many lives in communities vulnerable to water-related infections worldwide. At present, the success of SODIS has mainly been attributed to permanent inactivation of water pathogens ability to grow. However, little to no information exists as to whether immune responses to the solar inactivated pathogens are induced in SODIS water consumers. This study assessed the potential for solar inactivated S. Typhimurium to induce an immune response in mice. Results show that solar inactivated S. Typhimurium can induce bactericidal antibodies against S. Typhimurium. Furthermore, an increase in the secretion of interferon-gamma (IFN-γ) was observed in mice given the solar inactivated S. Typhimurium. These findings suggest that solar inactivated S. Typhimurium induces a humoral and cellular immune response. However, the level of protection afforded by these responses requires further investigation.
Collapse
Affiliation(s)
- Cornelius C Ssemakalu
- Cell Biology Research Unit, Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1911, South Africa
| | - Marta Ulaszewska
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Sean Elias
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Alexandra J Spencer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
10
|
Mohamed G, Aboelhassan S, Zaki MES, Wahba Y. Iron Deficiency Anemia and Serum Hepcidin Level in Children with Typhoid Fever: A Case–Control Study. J PEDIAT INF DIS-GER 2020; 15:288-292. [DOI: 10.1055/s-0040-1715856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Objective Typhoid fever is a common systemic bacterial infection in children with a complex interplay between serum hepcidin and iron. We investigated the relationship between iron deficiency anemia (IDA) and serum hepcidin level in children with acute typhoid fever.
Methods We conducted a preliminary case–control study in Mansoura University Children's Hospital, Egypt from April 2017 to May 2019 including 30 children aged 5 to 15 years with confirmed acute typhoid fever. We recruited 15 healthy nonanemic children, of comparable ages and sex as controls from the same hospital while attending for nonfebrile complaints. Typhoid fever cases were subdivided according to IDA existence into 16 cases with IDA and 14 non-IDA cases. We excluded all children having diseases which may affect serum iron and hepcidin levels, for example, liver, blood, gastrointestinal, and kidney diseases, and patients receiving drugs interfering with iron metabolism. All participants were subjected to complete blood count, serum ferritin, iron, hepcidin levels, and total iron-binding capacity (TIBC).
Results In non-IDA typhoid fever group, serum iron level was significantly low, while serum hepcidin level was significantly high when compared with controls (p < 0.001 and p = 0.02, respectively). In IDA typhoid fever group, no statistically significant difference existed as regards serum hepcidin level when compared with controls (p = 0.53). No significant correlations were detected between serum hepcidin levels and hemoglobin, serum iron, ferritin, and TIBC values in each group.
Conclusion Preexisting iron status could affect serum hepcidin level in patients with acute typhoid fever. Coexistence of IDA might oppose the up-regulatory effect of acute typhoid fever on serum hepcidin level.
Collapse
Affiliation(s)
- Ghada Mohamed
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Samir Aboelhassan
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maysaa El Sayed Zaki
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yahya Wahba
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
The multifunctional enzyme S-adenosylhomocysteine/methylthioadenosine nucleosidase is a key metabolic enzyme in the virulence of Salmonella enterica var Typhimurium. Biochem J 2020; 476:3435-3453. [PMID: 31675053 DOI: 10.1042/bcj20190297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
Key physiological differences between bacterial and mammalian metabolism provide opportunities for the development of novel antimicrobials. We examined the role of the multifunctional enzyme S-adenosylhomocysteine/Methylthioadenosine (SAH/MTA) nucleosidase (Pfs) in the virulence of S. enterica var Typhimurium (S. Typhimurium) in mice, using a defined Pfs deletion mutant (i.e. Δpfs). Pfs was essential for growth of S. Typhimurium in M9 minimal medium, in tissue cultured cells, and in mice. Studies to resolve which of the three known functions of Pfs were key to murine virulence suggested that downstream production of autoinducer-2, spermidine and methylthioribose were non-essential for Salmonella virulence in a highly sensitive murine model. Mass spectrometry revealed the accumulation of SAH in S. Typhimurium Δpfs and complementation of the Pfs mutant with the specific SAH hydrolase from Legionella pneumophila reduced SAH levels, fully restored growth ex vivo and the virulence of S. Typhimurium Δpfs for mice. The data suggest that Pfs may be a legitimate target for antimicrobial development, and that the key role of Pfs in bacterial virulence may be in reducing the toxic accumulation of SAH which, in turn, suppresses an undefined methyltransferase.
Collapse
|
12
|
Zhi Y, Lin SM, Ahn KB, Ji HJ, Guo HC, Ryu S, Seo HS, Lim S. ptsI gene in the phosphotransfer system is a potential target for developing a live attenuated Salmonella vaccine. Int J Mol Med 2020; 45:1327-1340. [PMID: 32323733 PMCID: PMC7138283 DOI: 10.3892/ijmm.2020.4505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/07/2020] [Indexed: 11/15/2022] Open
Abstract
Salmonella enterica serovar Typhimurium causes invasive non-typhoidal Salmonella diseases in animals and humans, resulting in a high mortality rate and huge economic losses globally. As the prevalence of antibiotic-resistant Salmonella has been increasing, vaccination is thought to be the most effective and economical strategy to manage salmonellosis. The present study aimed to investigate whether dysfunction in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), which is critical for carbon uptake and survival in macrophages, may be adequate to generate Salmonella-attenuated vaccine strains. A Salmonella strain (KST0555) was generated by deleting the ptsI gene from the PTS and it was revealed that this auxotrophic mutant was unable to efficiently utilize predominant carbon sources during infection (glucose and glycerol), reduced its invasion and replication capacity in macrophages, and significantly (P=0.0065) lowered its virulence in the setting of a mouse colitis model, along with a substantially decreased intestinal colonization and invasiveness compared with its parent strain. The reverse transcription-quantitative PCR results demonstrated that the virulence genes in Salmonella pathogenicity island-1 (SPI-1) and -2 (SPI-2) and the motility of KST0555 were all downregulated compared with its parent strain. Finally, it was revealed that when mice were immunized orally with live KST0555, Salmonella-specific humoral and cellular immune responses were effectively elicited, providing protection against Salmonella infection. Thus, the present promising data provides a strong rationale for the advancement of KST0555 as a live Salmonella vaccine candidate and ptsI as a potential target for developing a live attenuated bacterial vaccine strain.
Collapse
Affiliation(s)
- Yong Zhi
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Shun Mei Lin
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Ki Bum Ahn
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Hyun Jung Ji
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730049, P.R. China
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Seong Seo
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Sangyong Lim
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| |
Collapse
|
13
|
Sengupta A, Wu J, Seffernick JT, Sabag-Daigle A, Thomsen N, Chen TH, Capua AD, Bell CE, Ahmer BMM, Lindert S, Wysocki VH, Gopalan V. Integrated Use of Biochemical, Native Mass Spectrometry, Computational, and Genome-Editing Methods to Elucidate the Mechanism of a Salmonella deglycase. J Mol Biol 2019; 431:4497-4513. [PMID: 31493410 DOI: 10.1016/j.jmb.2019.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/18/2023]
Abstract
Salmonellais a foodborne pathogen that causes annually millions of cases of salmonellosis globally, yet Salmonella-specific antibacterials are not available. During inflammation, Salmonella utilizes the Amadori compound fructose-asparagine (F-Asn) as a nutrient through the successive action of three enzymes, including the terminal FraB deglycase. Salmonella mutants lacking FraB are highly attenuated in mouse models of inflammation due to the toxic build-up of the substrate 6-phosphofructose-aspartate (6-P-F-Asp). This toxicity makes Salmonella FraB an appealing drug target, but there is currently little experimental information about its catalytic mechanism. Therefore, we sought to test our postulated mechanism for the FraB-catalyzed deglycation of 6-P-F-Asp (via an enaminol intermediate) to glucose-6-phosphate and aspartate. A FraB homodimer model generated by RosettaCM was used to build substrate-docked structures that, coupled with sequence alignment of FraB homologs, helped map a putative active site. Five candidate active-site residues-including three expected to participate in substrate binding-were mutated individually and characterized. Native mass spectrometry and ion mobility were used to assess collision cross sections and confirm that the quaternary structure of the mutants mirrored the wild type, and that there are two active sites/homodimer. Our biochemical studies revealed that FraB Glu214Ala, Glu214Asp, and His230Ala were inactive in vitro, consistent with deprotonated-Glu214 and protonated-His230 serving as a general base and a general acid, respectively. Glu214Ala or His230Ala introduced into the Salmonella chromosome by CRISPR/Cas9-mediated genome editing abolished growth on F-Asn. Results from our computational and experimental approaches shed light on the catalytic mechanism of Salmonella FraB and of phosphosugar deglycases in general.
Collapse
Affiliation(s)
- Anindita Sengupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jikang Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Thomsen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Tien-Hao Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Angela Di Capua
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Charles E Bell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
15
|
Anderson CJ, Kendall MM. Salmonella enterica Serovar Typhimurium Strategies for Host Adaptation. Front Microbiol 2017; 8:1983. [PMID: 29075247 PMCID: PMC5643478 DOI: 10.3389/fmicb.2017.01983] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial pathogens must sense and respond to newly encountered host environments to regulate the expression of critical virulence factors that allow for niche adaptation and successful colonization. Among bacterial pathogens, non-typhoidal serovars of Salmonella enterica, such as serovar Typhimurium (S. Tm), are a primary cause of foodborne illnesses that lead to hospitalizations and deaths worldwide. S. Tm causes acute inflammatory diarrhea that can progress to invasive systemic disease in susceptible patients. The gastrointestinal tract and intramacrophage environments are two critically important niches during S. Tm infection, and each presents unique challenges to limit S. Tm growth. The intestinal tract is home to billions of commensal microbes, termed the microbiota, which limits the amount of available nutrients for invading pathogens such as S. Tm. Therefore, S. Tm encodes strategies to manipulate the commensal population and side-step this nutritional competition. During subsequent stages of disease, S. Tm resists host immune cell mechanisms of killing. Host cells use antimicrobial peptides, acidification of vacuoles, and nutrient limitation to kill phagocytosed microbes, and yet S. Tm is able to subvert these defense systems. In this review, we discuss recently described molecular mechanisms that S. Tm uses to outcompete the resident microbiota within the gastrointestinal tract. S. Tm directly eliminates close competitors via bacterial cell-to-cell contact as well as by stimulating a host immune response to eliminate specific members of the microbiota. Additionally, S. Tm tightly regulates the expression of key virulence factors that enable S. Tm to withstand host immune defenses within macrophages. Additionally, we highlight the chemical and physical signals that S. Tm senses as cues to adapt to each of these environments. These strategies ultimately allow S. Tm to successfully adapt to these two disparate host environments. It is critical to better understand bacterial adaptation strategies because disruption of these pathways and mechanisms, especially those shared by multiple pathogens, may provide novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Christopher J Anderson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| |
Collapse
|
16
|
Lin Z, Tang P, Jiao Y, Kang X, Li Q, Xu X, Sun J, Pan Z, Jiao X. Immunogenicity and protective efficacy of a Salmonella Enteritidis sptP mutant as a live attenuated vaccine candidate. BMC Vet Res 2017. [PMID: 28646853 PMCID: PMC5483252 DOI: 10.1186/s12917-017-1115-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Salmonella enterica serovar Enteritidis (S. Enteritidis) is a highly adaptive pathogen in both humans and animals. As a Salmonella Type III secretion system (T3SS) effector, Salmonella protein tyrosine phosphatase (SptP) is critical for virulence in this genus. To investigate the feasibility of using C50336ΔsptP as a live attenuated oral vaccine in mice, we generated the sptP gene deletion mutant C50336ΔsptP in S. Enteritidis strain C50336 by λ-Red mediated recombination and evaluated the protective ability of the S. Enteritidis sptP mutant strain C50336ΔsptP against mice salmonellosis. Results We found that C50336ΔsptP was a highly immunogenic, effective, and safe vaccine in mice. Compared to wild-type C50336, C50336ΔsptP showed reduced virulence as confirmed by the 50% lethal dose (LD50) in orally infected mice. C50336ΔsptP also showed decreased bacterial colonization both in vivo and in vitro. Immunization with C50336ΔsptP had no significant effect on body weight and did not result in obvious clinical symptoms relative to control animals treated with phosphate-buffered saline (PBS), but induced humoral and cellular immune responses at 12 and 26 days post inoculation. Immunization with 1 × 108 colony-forming units (CFU) C50336ΔsptP per mouse provided 100% protection against subsequent challenge with the wild-type C50336 strain, and immunized mice showed mild and temporary clinical symptoms as compared to those of control group. Conclusions These results demonstrate that C50336ΔsptP can be a live attenuated oral vaccine for salmonellosis.
Collapse
Affiliation(s)
- Zhijie Lin
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Peipei Tang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Yang Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Xiulong Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China.,Center for Comparative Medicine, Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225001, China.,Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, 60612, USA
| | - Jun Sun
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China.,Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
17
|
Singh V, Finke-Isami J, Hopper-Chidlaw AC, Schwerk P, Thompson A, Tedin K. Salmonella Co-opts Host Cell Chaperone-mediated Autophagy for Intracellular Growth. J Biol Chem 2017; 292:1847-1864. [PMID: 27932462 PMCID: PMC5290957 DOI: 10.1074/jbc.m116.759456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica are invasive intracellular pathogens that replicate within a membrane-bound compartment inside infected host cells known as the Salmonella-containing vacuole. How Salmonella obtains nutrients for growth within this intracellular niche despite the apparent isolation is currently not known. Recent studies have indicated the importance of glucose and related carbon sources for tissue colonization and intracellular proliferation within host cells during Salmonella infections, although none have been found to be essential. We found that wild-type Salmonella are capable of replicating within infected host cells in the absence of both exogenous sugars and/or amino acids. Furthermore, mutants defective in glucose uptake or dependent upon peptides for growth also showed no significant loss in intracellular replication, suggesting host-derived peptides can supply both carbon units and amino acids. Here, we show that intracellular Salmonella recruit the host proteins LAMP-2A and Hsc73, key components of the host protein turnover pathway known as chaperone-mediated autophagy involved in transport of cytosolic proteins to the lysosome for degradation. Host-derived peptides are shown to provide a significant contribution toward the intracellular growth of Salmonella The results reveal a means whereby intracellular Salmonella gain access to the host cell cytosol from within its membrane-bound compartment to acquire nutrients. Furthermore, this study provides an explanation as to how Salmonella evades activation of autophagy mechanisms as part of the innate immune response.
Collapse
Affiliation(s)
- Vikash Singh
- From the Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| | - Johannes Finke-Isami
- From the Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| | | | - Peter Schwerk
- From the Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| | - Arthur Thompson
- the Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - Karsten Tedin
- From the Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany.
| |
Collapse
|
18
|
Erova TE, Kirtley ML, Fitts EC, Ponnusamy D, Baze WB, Andersson JA, Cong Y, Tiner BL, Sha J, Chopra AK. Protective Immunity Elicited by Oral Immunization of Mice with Salmonella enterica Serovar Typhimurium Braun Lipoprotein (Lpp) and Acetyltransferase (MsbB) Mutants. Front Cell Infect Microbiol 2016; 6:148. [PMID: 27891321 PMCID: PMC5103298 DOI: 10.3389/fcimb.2016.00148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
We evaluated the extent of attenuation and immunogenicity of the ΔlppAB and ΔlppAB ΔmsbB mutants of Salmonella enterica serovar Typhimurium when delivered to mice by the oral route. These mutants were deleted either for the Braun lipoprotein genes (lppA and lppB) or in combination with the msbB gene, which encodes an acetyltransferase required for lipid A modification of lipopolysaccharide. Both the mutants were attenuated (100% animal survival) and triggered robust innate and adaptive immune responses. Comparable levels of IgG and its isotypes were produced in mice infected with wild-type (WT) S. typhimurium or its aforementioned mutant strains. The ΔlppAB ΔmsbB mutant-immunized animals resulted in the production of higher levels of fecal IgA and serum cytokines during later stages of vaccination (adaptive response). A significant production of interleukin-6 from T-cells was also noted in the ΔlppAB ΔmsbB mutant-immunized mice when compared to that of the ΔlppAB mutant. On the other hand, IL-17A production was significantly more in the serum of ΔlppAB mutant-immunized mice (innate response) with a stronger splenic T-cell proliferative and tumor-necrosis factor-α production. Based on 2-dimensional gel analysis, alterations in the levels of several proteins were observed in both the mutant strains when compared to that in WT S. typhimurium and could be associated with the higher immunogenicity of the mutants. Finally, both ΔlppAB and ΔlppAB ΔmsbB mutants provided complete protection to immunized mice against a lethal oral challenge dose of WT S. typhimurium. Thus, these mutants may serve as excellent vaccine candidates and also provide a platform for delivering heterologous antigens.
Collapse
Affiliation(s)
- Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Wallace B Baze
- Department of Veterinary Sciences, University of Texas M. D. Anderson Cancer Center Bastrop, TX, USA
| | - Jourdan A Andersson
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA; Sealy Center for Vaccine Development and World Health Organisation Collaborating Center for Vaccine Research, University of Texas Medical BranchGalveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA
| | - Bethany L Tiner
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA; Sealy Center for Vaccine Development and World Health Organisation Collaborating Center for Vaccine Research, University of Texas Medical BranchGalveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
19
|
Animal Models for Salmonellosis: Applications in Vaccine Research. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:746-56. [PMID: 27413068 DOI: 10.1128/cvi.00258-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development.
Collapse
|
20
|
Sabag-Daigle A, Blunk HM, Sengupta A, Wu J, Bogard AJ, Ali MM, Stahl C, Wysocki VH, Gopalan V, Behrman EJ, Ahmer BMM. A metabolic intermediate of the fructose-asparagine utilization pathway inhibits growth of a Salmonella fraB mutant. Sci Rep 2016; 6:28117. [PMID: 27403719 PMCID: PMC4941530 DOI: 10.1038/srep28117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/27/2016] [Indexed: 11/09/2022] Open
Abstract
Insertions in the Salmonella enterica fra locus, which encodes the fructose-asparagine (F-Asn) utilization pathway, are highly attenuated in mouse models of inflammation (>1000-fold competitive index). Here, we report that F-Asn is bacteriostatic to a fraB mutant (IC50 19 μM), but not to the wild-type or a fra island deletion mutant. We hypothesized that the presence of FraD kinase and absence of FraB deglycase causes build-up of a toxic metabolite: 6-phosphofructose-aspartate (6-P-F-Asp). We used biochemical assays to assess FraB and FraD activities, and mass spectrometry to confirm that the fraB mutant accumulates 6-P-F-Asp. These results, together with our finding that mutants lacking fraD or the fra island are not attenuated in mice, suggest that the extreme attenuation of a fraB mutant stems from 6-P-F-Asp toxicity. Salmonella FraB is therefore an excellent drug target, a prospect strengthened by the absence of the fra locus in most of the gut microbiota.
Collapse
Affiliation(s)
- Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Henry M Blunk
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Anindita Sengupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jikang Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Alexander J Bogard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Mohamed M Ali
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Christopher Stahl
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward J Behrman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection. Infect Immun 2016; 84:2131-2140. [PMID: 27185789 DOI: 10.1128/iai.00250-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023] Open
Abstract
Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen.
Collapse
|
22
|
Abstract
Diarrheal diseases remain a leading cause of global childhood mortality and morbidity. Several recent epidemiological studies highlight the rate of diarrheal diseases in different parts of the world and draw attention to the impact on childhood growth and survival. Despite the well-documented global burden of diarrheal diseases, currently there are no combination diarrheal vaccines, only licensed vaccines for rotavirus and cholera, and Salmonella typhi-based vaccines for typhoid fever. The recognition of the impact of diarrheal episodes on infant growth, as seen in resource-poor countries, has spurred action from governmental and non-governmental agencies to accelerate research toward affordable and effective vaccines against diarrheal diseases. Both travelers and children in endemic countries will benefit from a combination diarrheal vaccine, but it can be argued that the greater proportion of any positive impact will be on the public health status of the latter. The history of combination pediatric vaccines indicate that monovalent or single disease vaccines are typically licensed first prior to formulation in a combination vaccine, and that the combinations themselves undergo periodic revision in response to need for improvement in safety or potential for wider coverage of important pediatric pathogens. Nevertheless combination pediatric vaccines have proven to be an effective tool in limiting or eradicating communicable childhood diseases worldwide. The landscape of diarrheal vaccine candidates indicates that there now several in active development that offer options for potential testing of combinations to combat those bacterial and viral pathogens responsible for the heaviest disease burden—rotavirus, ETEC, Shigella, Campylobacter, V. cholera and Salmonella.
Collapse
Affiliation(s)
- Malabi M Venkatesan
- a Bacterial Diseases Branch; Walter Reed Army Institute of Research ; Silver Spring , MD , USA
| | | |
Collapse
|
23
|
Srikumar S, Kröger C, Hébrard M, Colgan A, Owen SV, Sivasankaran SK, Cameron ADS, Hokamp K, Hinton JCD. RNA-seq Brings New Insights to the Intra-Macrophage Transcriptome of Salmonella Typhimurium. PLoS Pathog 2015; 11:e1005262. [PMID: 26561851 PMCID: PMC4643027 DOI: 10.1371/journal.ppat.1005262] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/17/2015] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is arguably the world’s best-understood bacterial pathogen. However, crucial details about the genetic programs used by the bacterium to survive and replicate in macrophages have remained obscure because of the challenge of studying gene expression of intracellular pathogens during infection. Here, we report the use of deep sequencing (RNA-seq) to reveal the transcriptional architecture and gene activity of Salmonella during infection of murine macrophages, providing new insights into the strategies used by the pathogen to survive in a bactericidal immune cell. We characterized 3583 transcriptional start sites that are active within macrophages, and highlight 11 of these as candidates for the delivery of heterologous antigens from Salmonella vaccine strains. A majority (88%) of the 280 S. Typhimurium sRNAs were expressed inside macrophages, and SPI13 and SPI2 were the most highly expressed pathogenicity islands. We identified 31 S. Typhimurium genes that were strongly up-regulated inside macrophages but expressed at very low levels during in vitro growth. The SalComMac online resource allows the visualisation of every transcript expressed during bacterial replication within mammalian cells. This primary transcriptome of intra-macrophage S.-Typhimurium describes the transcriptional start sites and the transcripts responsible for virulence traits, and catalogues the sRNAs that may play a role in the regulation of gene expression during infection. The burden of Salmonellosis remains unacceptably high throughout the world and control measures have had limited success. Because Salmonella bacteria can be transmitted from the wider environment to animals and humans, the bacteria encounter diverse environments that include food, water, plant surfaces and the extracellular and intracellular phases of infection of eukaryotic hosts. An intricate transcriptional network has evolved to respond to a variety of environmental signals and control the “right time/ right place” expression of virulence genes. To understand how transcription is rewired during intracellular infection, we determined the primary transcriptome of Salmonella enterica serovar Typhimurium within murine macrophages. We report the coding genes, sRNAs and transcriptional start sites that are expressed within macrophages at 8 hours after infection, and use these to infer gene function. We identified gene promoters that are specifically expressed within macrophages and could drive the intracellular delivery of antigens by S. Typhimurium vaccine strains. These data contribute to our understanding of the mechanisms used by Salmonella to regulate virulence gene expression whilst replicating inside mammalian cells.
Collapse
Affiliation(s)
- Shabarinath Srikumar
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Magali Hébrard
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Aoife Colgan
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Siân V. Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sathesh K. Sivasankaran
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | | | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | - Jay C. D. Hinton
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Cummings PL, Kuo T, Javanbakht M, Shafir S, Wang M, Sorvillo F. Salmonellosis Hospitalizations in the United States: Associated Chronic Conditions, Costs, and Hospital Outcomes, 2011, Trends 2000-2011. Foodborne Pathog Dis 2015; 13:40-8. [PMID: 26545047 DOI: 10.1089/fpd.2015.1969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hospitalized salmonellosis patients with concurrent chronic conditions may be at increased risk for adverse outcomes, increasing the costs associated with hospitalization. Identifying important modifiable risk factors for this predominantly foodborne illness may assist hospitals, physicians, and public health authorities to improve management of these patients. The objectives of this study were to (1) quantify the burden of salmonellosis hospitalizations in the United States, (2) describe hospitalization characteristics among salmonellosis patients with concurrent chronic conditions, and (3) examine the relationships between salmonellosis and comorbidities by four hospital-related outcomes. A retrospective analysis of salmonellosis discharges was conducted using the Agency for Healthcare Research and Quality's Nationwide Inpatient Sample for 2011. A supplemental trend analysis was performed for the period 2000-2011. Hospitalization characteristics were examined using multivariable regression modeling, with a focus on four outcome measures: in-hospital death, total amount billed by hospitals for services, length of stay, and disease severity. In 2011, there were 11,032 total salmonellosis diagnoses; 7496 were listed as the primary diagnosis, with 86 deaths (case-fatality rate = 1.2%). Multivariable regression analyses revealed a greater number of chronic conditions (≥4) among salmonellosis patients was associated with higher mean total amount billed by hospitals for services, longer length of stay, and greater disease severity (p ≤ 0.05). From 2000 to 2011, hospital discharges for salmonellosis increased by 27.2%, and the mean total amount billed by hospitals increased nearly threefold: $9,777 (2000) to $29,690 (2011). Observed increases in hospitalizations indicate the burden of salmonellosis remains substantial in the United States. The positive association between increased number of chronic conditions and the four hospital-related outcomes affirms the need for continual healthcare and public health investments to prevent and control this disease in vulnerable groups.
Collapse
Affiliation(s)
- Patricia L Cummings
- 1 Department of Epidemiology, University of California , Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California
| | - Tony Kuo
- 1 Department of Epidemiology, University of California , Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California.,2 Department of Family Medicine, David Geffen School of Medicine at UCLA , Los Angeles, California.,3 Division of Chronic Disease and Injury Prevention, Los Angeles County Department of Public Health , Los Angeles, California
| | - Marjan Javanbakht
- 1 Department of Epidemiology, University of California , Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California
| | - Shira Shafir
- 1 Department of Epidemiology, University of California , Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California
| | - May Wang
- 4 Department of Community Health Sciences, University of California , Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California
| | - Frank Sorvillo
- 1 Department of Epidemiology, University of California , Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California
| |
Collapse
|
25
|
Darton TC, Blohmke CJ, Giannoulatou E, Waddington CS, Jones C, Sturges P, Webster C, Drakesmith H, Pollard AJ, Armitage AE. Rapidly Escalating Hepcidin and Associated Serum Iron Starvation Are Features of the Acute Response to Typhoid Infection in Humans. PLoS Negl Trop Dis 2015; 9:e0004029. [PMID: 26394303 PMCID: PMC4578949 DOI: 10.1371/journal.pntd.0004029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022] Open
Abstract
Background Iron is a key pathogenic determinant of many infectious diseases. Hepcidin, the hormone responsible for governing systemic iron homeostasis, is widely hypothesized to represent a key component of nutritional immunity through regulating the accessibility of iron to invading microorganisms during infection. However, the deployment of hepcidin in human bacterial infections remains poorly characterized. Typhoid fever is a globally significant, human-restricted bacterial infection, but understanding of its pathogenesis, especially during the critical early phases, likewise is poorly understood. Here, we investigate alterations in hepcidin and iron/inflammatory indices following experimental human typhoid challenge. Methodology/Principal Findings Fifty study participants were challenged with Salmonella enterica serovar Typhi and monitored for evidence of typhoid fever. Serum hepcidin, ferritin, serum iron parameters, C-reactive protein (CRP), and plasma IL-6 and TNF-alpha concentrations were measured during the 14 days following challenge. We found that hepcidin concentrations were markedly higher during acute typhoid infection than at baseline. Hepcidin elevations mirrored the kinetics of fever, and were accompanied by profound hypoferremia, increased CRP and ferritin, despite only modest elevations in IL-6 and TNF-alpha in some individuals. During inflammation, the extent of hepcidin upregulation associated with the degree of hypoferremia. Conclusions/Significance We demonstrate that strong hepcidin upregulation and hypoferremia, coincident with fever and systemic inflammation, are hallmarks of the early innate response to acute typhoid infection. We hypothesize that hepcidin-mediated iron redistribution into macrophages may contribute to S. Typhi pathogenesis by increasing iron availability for macrophage-tropic bacteria, and that targeting macrophage iron retention may represent a strategy for limiting infections with macrophage-tropic pathogens such as S. Typhi. An adequate supply of iron is essential for both human hosts and their infecting pathogens. Hepcidin is the human hormone that controls the quantity and distribution of iron throughout the body. During infections, hepcidin activity may redistribute iron away from serum and into macrophages, potentially affecting pathogen replication, depending on the niche of the invading microbe. However, the involvement of hepcidin in human bacterial infections remains poorly investigated. Similarly, the pathogenesis of typhoid fever, caused by infection with Salmonella Typhi is also poorly understood. We therefore investigated the behaviour of hepcidin and other iron/inflammation-related parameters during the course of typhoid fever in human volunteers challenged experimentally with Salmonella Typhi. Hepcidin concentrations rose rapidly during acute typhoid infection, in parallel with fever. Hepcidin induction was accompanied by a rapid decline in serum iron concentrations, likely reflecting iron sequestration in macrophages (a preferred replication site of Salmonella Typhi). The extent of hepcidin upregulation associated with the extent of serum iron starvation. We hypothesize that hepcidin activity during acute typhoid infection in humans may elevate iron levels in the niche used by the pathogen for replication. Targeting macrophage iron retention should be evaluated as a potential strategy for limiting typhoid fever.
Collapse
Affiliation(s)
- Thomas C. Darton
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, and National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, and National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Claire S. Waddington
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, and National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, and National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Pamela Sturges
- Department of Biochemistry, Birmingham Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
| | - Craig Webster
- Department of Biochemistry, Birmingham Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
| | - Hal Drakesmith
- BRC Blood Theme, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, and National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew E. Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Bumann D. Identification of Protective Antigens for Vaccination against Systemic Salmonellosis. Front Immunol 2014; 5:381. [PMID: 25157252 PMCID: PMC4127814 DOI: 10.3389/fimmu.2014.00381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50–200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel , Basel , Switzerland
| |
Collapse
|