1
|
Espinoza ME, Swing AM, Elghraoui A, Modlin SJ, Valafar F. Interred mechanisms of resistance and host immune evasion revealed through network-connectivity analysis of M. tuberculosis complex graph pangenome. mSystems 2025; 10:e0049924. [PMID: 40261029 PMCID: PMC12013269 DOI: 10.1128/msystems.00499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/16/2024] [Indexed: 04/24/2025] Open
Abstract
Mycobacterium tuberculosis complex successfully adapts to environmental pressures through mechanisms of rapid adaptation which remain poorly understood despite knowledge gained through decades of research. In this study, we used 110 reference-quality, complete de novo assembled, long-read sequenced clinical genomes to study patterns of structural adaptation through a graph-based pangenome analysis, elucidating rarely studied mechanisms that enable enhanced clinical phenotypes offering a novel perspective to the species' adaptation. Across isolates, we identified a pangenome of 4,325 genes (3,767 core and 558 accessory), revealing 290 novel genes, and a substantially more complete account of difficult-to-sequence esx/pe/pgrs/ppe genes. Seventy-four percent of core genes were deemed non-essential in vitro, 38% of which support the pathogen's survival in vivo, suggesting a need to broaden current perspectives on essentiality. Through information-theoretic analysis, we reveal the ppe genes that contribute most to the species' diversity-several with known consequences for antigenic variation and immune evasion. Construction of a graph pangenome revealed topological variations that implicate genes known to modulate host immunity (Rv0071-73, Rv2817c, cas2), defense against phages/viruses (cas2, csm6, and Rv2817c-2821c), and others associated with host tissue colonization. Here, the prominent trehalose transport pathway stands out for its involvement in caseous granuloma catabolism and the development of post-primary disease. We show paralogous duplications of genes implicated in bedaquiline (mmpL5 in all L1 isolates) and ethambutol (embC-A) resistance, with a paralogous duplication of its regulator (embR) in 96 isolates. We provide hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can escape detection by molecular diagnostics.IMPORTANCEM. tuberculosis complex (MTBC) has killed over a billion people in the past 200 years alone and continues to kill nearly 1.5 million annually. The pathogen has a versatile ability to diversify under immune and drug pressure and survive, even becoming antibiotic persistent or resistant in the face of harsh chemotherapy. For proper diagnosis and design of an appropriate treatment regimen, a full understanding of this diversification and its clinical consequences is desperately needed. A mechanism of diversification that is rarely studied systematically is MTBC's ability to structurally change its genome. In this article, we have de novo assembled 110 clinical genomes (the largest de novo assembled set to date) and performed a pangenomic analysis. Our pangenome provides structural variation-based hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can compromise molecular diagnostics and lead to further emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Monica E. Espinoza
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| | - Ashley M. Swing
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
- San Diego State University/University of California, San Diego | Joint Doctoral Program in Public Health (Global Health), San Diego, California, USA
| | - Afif Elghraoui
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, California, USA
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California, USA
| | - Samuel J. Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| |
Collapse
|
2
|
Kaur N, Potnis N, De La Fuente L. Pseudogenes and host specialization in the emergent bacterial plant pathogen Xylella fastidiosa. Appl Environ Microbiol 2025:e0207024. [PMID: 40207969 DOI: 10.1128/aem.02070-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Pseudogenes are regarded as "junk" DNA, representing vestigial functions no longer needed for fitness. Accordingly, a higher number of pseudogenes in a bacterial human pathogen was previously hypothesized to be a hallmark of host specialists. In this study, we tested this hypothesis on the emergent bacterial plant pathogen Xylella fastidiosa (Xf) to link pseudogene makeup and host specificity. Xf is an ideal subject for these studies by being a xylem-limited pathogen that underwent extensive genome reduction. Using natural host range data of 151 strains and Pseudofinder analysis on Xf whole genome sequences, we observed that Xf subsp. sandyi had the highest pseudogene content, followed by subsp. morus, while subsp. pauca, fastidiosa, and multiplex had the lowest. The first two subspecies are known to have a limited host range compared to the others, aligning with the hypothesis of a greater number of pseudogenes corresponding to narrower host range. Weed isolates are presumably host specialists because they had the highest pseudogene content. Using a thorough pseudogene map across genomes and empirical pathogenicity data on blueberries, we screened for genes potentially involved in blueberry specialization. Targets were identified by selecting sequences pseudogenized (i) in strains infecting hosts different from blueberry and (ii) only in blueberry asymptomatic strains. Six sequences were identified with a potential role in blueberry infection, including one that was common between the two criteria. Here, we generated hypotheses on host range and specificity of Xf strains that need to be tested experimentally to help understand this devastating plant pathogen.IMPORTANCEXylella fastidiosa is a highly destructive plant pathogen that infects hundreds of landscape and agriculturally important plant species mainly in Europe and the Americas. Nevertheless, the host range of specific genotypes and underlying mechanisms of host specificity remain unclear. These are important aspects to determine the potential risk of infection in specific areas depending on the genetic makeup of the pathogen population and hosts present. This study offers valuable insights into the role of pseudogenization in the genomes of different X. fastidiosa strains, linking it to host specialization. Despite the limited information available for the host range of different strains of this pathogen, this research proposes a relationship between the abundance of pseudogenes and host specificity. These findings are essential for predicting potential host shifts by this pathogen, aiding in the development of strategies to prevent its spread. Additionally, the identification of candidate genes putatively important for symptom development in blueberries offers targets for prevention and control efforts.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
3
|
Yang Y, Wang P, Qaidi SE, Hardwidge PR, Huang J, Zhu G. Loss to gain: pseudogenes in microorganisms, focusing on eubacteria, and their biological significance. Appl Microbiol Biotechnol 2024; 108:328. [PMID: 38717672 PMCID: PMC11078800 DOI: 10.1007/s00253-023-12971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 05/12/2024]
Abstract
Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Jinlin Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- College of Bioscience and Biotechnology, Yangzhou University, 12 East Wenhui Road Yangzhou, Jiangsu, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Cooley NP, Wright ES. Many purported pseudogenes in bacterial genomes are bona fide genes. BMC Genomics 2024; 25:365. [PMID: 38622536 PMCID: PMC11017572 DOI: 10.1186/s12864-024-10137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/17/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Microbial genomes are largely comprised of protein coding sequences, yet some genomes contain many pseudogenes caused by frameshifts or internal stop codons. These pseudogenes are believed to result from gene degradation during evolution but could also be technical artifacts of genome sequencing or assembly. RESULTS Using a combination of observational and experimental data, we show that many putative pseudogenes are attributable to errors that are incorporated into genomes during assembly. Within 126,564 publicly available genomes, we observed that nearly identical genomes often substantially differed in pseudogene counts. Causal inference implicated assembler, sequencing platform, and coverage as likely causative factors. Reassembly of genomes from raw reads confirmed that each variable affects the number of putative pseudogenes in an assembly. Furthermore, simulated sequencing reads corroborated our observations that the quality and quantity of raw data can significantly impact the number of pseudogenes in an assembler dependent fashion. The number of unexpected pseudogenes due to internal stops was highly correlated (R2 = 0.96) with average nucleotide identity to the ground truth genome, implying relative pseudogene counts can be used as a proxy for overall assembly correctness. Applying our method to assemblies in RefSeq resulted in rejection of 3.6% of assemblies due to significantly elevated pseudogene counts. Reassembly from real reads obtained from high coverage genomes showed considerable variability in spurious pseudogenes beyond that observed with simulated reads, reinforcing the finding that high coverage is necessary to mitigate assembly errors. CONCLUSIONS Collectively, these results demonstrate that many pseudogenes in microbial genome assemblies are actually genes. Our results suggest that high read coverage is required for correct assembly and indicate an inflated number of pseudogenes due to internal stops is indicative of poor overall assembly quality.
Collapse
Affiliation(s)
- Nicholas P Cooley
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erik S Wright
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Steiner LX, Wiese J, Rahn T, Borchert E, Slaby BM, Hentschel U. Maribacter halichondriae sp. nov., isolated from the marine sponge Halichondria panicea, displays features of a sponge-associated life style. Antonie Van Leeuwenhoek 2024; 117:56. [PMID: 38489089 PMCID: PMC10942906 DOI: 10.1007/s10482-024-01950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
A new member of the family Flavobacteriaceae (termed Hal144T) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144T 16S rRNA gene sequence revealed similarities from 94.3 to 96.6% to the nearest type strains of the genus Maribacter. The phylogenetic tree of the 16S rRNA gene sequences depicted a cluster of strain Hal144T with its closest relatives Maribacter aestuarii GY20T (96.6%) and Maribacter thermophilus HT7-2T (96.3%). Genome phylogeny showed that Maribacter halichondriae Hal144T branched from a cluster consisting of Maribacter arenosus, Maribacter luteus, and Maribacter polysiphoniae. Genome comparisons of strain Maribacter halichondriae Hal144T with Maribacter sp. type strains exhibited average nucleotide identities in the range of 75-76% and digital DNA-DNA hybridisation values in the range of 13.1-13.4%. Compared to the next related type strains, strain Hal144T revealed unique genomic features such as phosphoenolpyruvate-dependent phosphotransferase system pathway, serine-glyoxylate cycle, lipid A 3-O-deacylase, 3-hexulose-6-phosphate synthase, enrichment of pseudogenes and of genes involved in cell wall and envelope biogenesis, indicating an adaptation to the host. Strain Hal144T was determined to be Gram-negative, mesophilic, strictly aerobic, flexirubin positive, resistant to aminoglycoside antibiotics, and able to utilize N-acetyl-β-D-glucosamine. Optimal growth occurred at 25-30 °C, within a salinity range of 2-6% sea salt, and a pH range between 5 and 8. The major fatty acids identified were C17:0 3-OH, iso-C15:0, and iso-C15:1 G. The DNA G + C content of strain Hal144T was 41.4 mol%. Based on the polyphasic approach, strain Hal144T represents a novel species of the genus Maribacter, and we propose the name Maribacter halichondriae sp. nov. The type strain is Hal144T (= DSM 114563T = LMG 32744T).
Collapse
Affiliation(s)
- Leon X Steiner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany.
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Beate M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
- Christian-Albrechts-University (CAU) of Kiel, Kiel, Germany
| |
Collapse
|
6
|
Finn DR. A metagenomic alpha-diversity index for microbial functional biodiversity. FEMS Microbiol Ecol 2024; 100:fiae019. [PMID: 38337180 PMCID: PMC10939414 DOI: 10.1093/femsec/fiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
Alpha-diversity indices are an essential tool for describing and comparing biodiversity. Microbial ecologists apply indices originally intended for, or adopted by, macroecology to address questions relating to taxonomy (conserved marker) and function (metagenome-based data). In this Perspective piece, I begin by discussing the nature and mathematical quirks important for interpreting routinely employed alpha-diversity indices. Secondly, I propose a metagenomic alpha-diversity index (MD) that measures the (dis)similarity of protein-encoding genes within a community. MD has defined limits, whereby a community comprised mostly of similar, poorly diverse protein-encoding genes pulls the index to the lower limit, while a community rich in divergent homologs and unique genes drives it toward the upper limit. With data acquired from an in silico and three in situ metagenome studies, I derive MD and typical alpha-diversity indices applied to taxonomic (ribosomal rRNA) and functional (all protein-encoding) genes, and discuss their relationships with each other. Not all alpha-diversity indices detect biological trends, and taxonomic does not necessarily follow functional biodiversity. Throughout, I explain that protein Richness and MD provide complementary and easily interpreted information, while probability-based indices do not. Finally, considerations regarding the unique nature of microbial metagenomic data and its relevance for describing functional biodiversity are discussed.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany
- Institut für Geoökologie, Technische Universität Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
7
|
Kyei-Baffour ES, Owusu-Boateng K, Isawumi A, Mosi L. Pseudogenomic insights into the evolution of Mycobacterium ulcerans. BMC Genomics 2024; 25:87. [PMID: 38253991 PMCID: PMC10802024 DOI: 10.1186/s12864-024-10001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Buruli ulcer (BU) disease, caused by Mycobacterium ulcerans (MU), and characterized by necrotic ulcers is still a health problem in Africa and Australia. The genome of the bacterium has several pseudogenes due to recent evolutionary events and environmental pressures. Pseudogenes are genetic elements regarded as nonessential in bacteria, however, they are less studied due to limited available tools to provide understanding of their evolution and roles in MU pathogenicity. RESULTS This study developed a bioinformatic pipeline to profile the pseudogenomes of sequenced MU clinical isolates from different countries. One hundred and seventy-two MU genomes analyzed revealed that pseudogenomes of African strains corresponded to the two African lineages 1 and 2. Pseudogenomes were lineage and location specific and African lineage 1 was further divided into A and B. Lineage 2 had less relaxation in positive selection than lineage 1 which may signify different evolutionary points. Based on the Gil-Latorre model, African MU strains may be in the latter stages of evolutionary adaption and are adapting to an environment rich in metabolic resources with a lower temperature and decreased UV radiation. The environment fosters oxidative metabolism and MU may be less reliant on some secondary metabolites. In-house pseudogenomes from Ghana and Cote d'Ivoire were different from other African strains, however, they were identified as African strains. CONCLUSION Our bioinformatic pipeline provides pseudogenomic insights to complement other whole genome analyses, providing a better view of the evolution of the genome of MU and suggest an adaptation model which is important in understanding transmission. MU pseudogene profiles vary based on lineage and country, and an apparent reduction in insertion sequences used for the detection of MU which may adversely affect the sensitivity of diagnosis.
Collapse
Affiliation(s)
- Edwin Sakyi Kyei-Baffour
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Kwabena Owusu-Boateng
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Microbial Sciences, University of Surrey, Surrey, UK
| | - Abiola Isawumi
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Lydia Mosi
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
| |
Collapse
|
8
|
Vale FF, Roberts RJ, Kobayashi I, Camargo MC, Rabkin CS. Gene content, phage cycle regulation model and prophage inactivation disclosed by prophage genomics in the Helicobacter pylori Genome Project. Gut Microbes 2024; 16:2379440. [PMID: 39132840 PMCID: PMC11321410 DOI: 10.1080/19490976.2024.2379440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Prophages can have major clinical implications through their ability to change pathogenic bacterial traits. There is limited understanding of the prophage role in ecological, evolutionary, adaptive processes and pathogenicity of Helicobacter pylori, a widespread bacterium causally associated with gastric cancer. Inferring the exact prophage genomic location and completeness requires complete genomes. The international Helicobacter pylori Genome Project (HpGP) dataset comprises 1011 H. pylori complete clinical genomes enriched with epigenetic data. We thoroughly evaluated the H. pylori prophage genomic content in the HpGP dataset. We investigated population evolutionary dynamics through phylogenetic and pangenome analyses. Additionally, we identified genome rearrangements and assessed the impact of prophage presence on bacterial gene disruption and methylome. We found that 29.5% (298) of the HpGP genomes contain prophages, of which only 32.2% (96) were complete, minimizing the burden of prophage carriage. The prevalence of H. pylori prophage sequences was variable by geography and ancestry, but not by disease status of the human host. Prophage insertion occasionally results in gene disruption that can change the global bacterial epigenome. Gene function prediction allowed the development of the first model for lysogenic-lytic cycle regulation in H. pylori. We have disclosed new prophage inactivation mechanisms that appear to occur by genome rearrangement, merger with other mobile elements, and pseudogene accumulation. Our analysis provides a comprehensive framework for H. pylori prophage biological and genomics, offering insights into lysogeny regulation and bacterial adaptation to prophages.
Collapse
Affiliation(s)
- Filipa F. Vale
- BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ichizo Kobayashi
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - M. Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles S. Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
9
|
Dimonaco NJ, Clare A, Kenobi K, Aubrey W, Creevey CJ. StORF-Reporter: finding genes between genes. Nucleic Acids Res 2023; 51:11504-11517. [PMID: 37897345 PMCID: PMC10682499 DOI: 10.1093/nar/gkad814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/30/2023] Open
Abstract
Large regions of prokaryotic genomes are currently without any annotation, in part due to well-established limitations of annotation tools. For example, it is routine for genes using alternative start codons to be misreported or completely omitted. Therefore, we present StORF-Reporter, a tool that takes an annotated genome and returns regions that may contain missing CDS genes from unannotated regions. StORF-Reporter consists of two parts. The first begins with the extraction of unannotated regions from an annotated genome. Next, Stop-ORFs (StORFs) are identified in these unannotated regions. StORFs are open reading frames that are delimited by stop codons and thus can capture those genes most often missing in genome annotations. We show this methodology recovers genes missing from canonical genome annotations. We inspect the results of the genomes of model organisms, the pangenome of Escherichia coli, and a set of 5109 prokaryotic genomes of 247 genera from the Ensembl Bacteria database. StORF-Reporter extended the core, soft-core and accessory gene collections, identified novel gene families and extended families into additional genera. The high levels of sequence conservation observed between genera suggest that many of these StORFs are likely to be functional genes that should now be considered for inclusion in canonical annotations.
Collapse
Affiliation(s)
- Nicholas J Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3PD, Wales, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, Wales, UK
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- School of Biological Sciences, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| | - Amanda Clare
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, Wales, UK
| | - Kim Kenobi
- Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ, Wales, UK
| | - Wayne Aubrey
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, Wales, UK
| | - Christopher J Creevey
- School of Biological Sciences, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| |
Collapse
|
10
|
Cohen N, Veksler-Lublinsky I. A large-scale phylogeny-guided analysis of pseudogenes in Pseudomonas aeruginosa bacterium. Microbiol Spectr 2023; 11:e0170423. [PMID: 37750703 PMCID: PMC10580986 DOI: 10.1128/spectrum.01704-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Pseudogenes, once considered "junk DNA" based on the incorrect assumption that the absence of full coding potential means a complete lack of functionality, have recently become a subject of significant interest in the scientific community. Concurrently, it is widely assumed that bacterial genomes are compact and have a high density of coding genes with little room for non-coding genes, including pseudogenes. A key aspect of genome annotation is the correct identification of genes and the distinction between coding genes and pseudogenes, as it directly impacts functional and comparative genomics studies. In this study, we analyzed the genomic data of 4,699 strains of the bacterium Pseudomonas aeruginosa (P. aeruginosa) as they exhibit high variability in the number of annotated pseudogenes. In particular, we looked for correlations between the number of pseudogenes and other genomic and meta-features of the strains. We identified clusters of orthologous genes and pseudogenes and compared cluster size distributions and length homogeneity within clusters. We then mapped and examined orthology relationships between genes and pseudogenes. Additionally, we generated a phylogenetic tree of the strains and found that phylogenetically related strains are more homogeneous in the number of pseudogenes and share a significant amount of pseudogenes. Finally, we delved into clusters of orthologous genes and pseudogenes and quantified their phylogenetic neighborhood, classifying pseudogenes into evolutionary preserved pseudogenes, mis-annotated pseudogenes, or pseudogenes formed by failed horizontal transfer events. This in-depth study provides important insights that can be incorporated into pseudogene annotation pipelines in the future. IMPORTANCE Accurate annotation of genes and pseudogenes is vital for comparative genomics analysis. Recent studies have shown that bacterial pseudogenes have an important role in regulatory processes and can provide insight into the evolutionary history of homologous genes or the genome as a whole. Due to pseudogenes' nature as non-functional genes, there is no commonly accepted definition of a pseudogene, which poses difficulties in verifying the annotation through experimental methods and resolving discrepancies among different annotation techniques. Our study introduces an in-depth analysis of annotated genes and pseudogenes and insights that can be incorporated into improved pseudogene annotation pipelines in the future.
Collapse
Affiliation(s)
- Nimrod Cohen
- Department of Software and Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
11
|
Gulay A, Fournier G, Smets BF, Girguis PR. Proterozoic Acquisition of Archaeal Genes for Extracellular Electron Transfer: A Metabolic Adaptation of Aerobic Ammonia-Oxidizing Bacteria to Oxygen Limitation. Mol Biol Evol 2023; 40:msad161. [PMID: 37440531 PMCID: PMC10415592 DOI: 10.1093/molbev/msad161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Many aerobic microbes can utilize alternative electron acceptors under oxygen-limited conditions. In some cases, this is mediated by extracellular electron transfer (or EET), wherein electrons are transferred to extracellular oxidants such as iron oxide and manganese oxide minerals. Here, we show that an ammonia-oxidizer previously known to be strictly aerobic, Nitrosomonas communis, may have been able to utilize a poised electrode to maintain metabolic activity in anoxic conditions. The presence and activity of multiheme cytochromes in N. communis further suggest a capacity for EET. Molecular clock analysis shows that the ancestors of β-proteobacterial ammonia oxidizers appeared after Earth's atmospheric oxygenation when the oxygen levels were >10-4pO2 (present atmospheric level [PAL]), consistent with aerobic origins. Equally important, phylogenetic reconciliations of gene and species trees show that the multiheme c-type EET proteins in Nitrosomonas and Nitrosospira lineages were likely acquired by gene transfer from γ-proteobacteria when the oxygen levels were between 0.1 and 1 pO2 (PAL). These results suggest that β-proteobacterial EET evolved during the Proterozoic when oxygen limitation was widespread, but oxidized minerals were abundant.
Collapse
Affiliation(s)
- Arda Gulay
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Greg Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
12
|
Biochemical and Genomic Characterization of Two New Strains of Lacticaseibacillus paracasei Isolated from the Traditional Corn-Based Beverage of South Africa, Mahewu, and Their Comparison with Strains Isolated from Kefir Grains. Foods 2023; 12:foods12010223. [PMID: 36613437 PMCID: PMC9818903 DOI: 10.3390/foods12010223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) is a nomadic lactic acid bacterium (LAB) that inhabits a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Many of the isolated L. paracasei strains have been used as single-strain probiotics or as part of a symbiotic consortium within formulations. The present study contributes to the exploration of different strains of L. paracasei derived from non-conventional isolation sources-the South African traditional fermented drink mahewu (strains MA2 and MA3) and kefir grains (strains KF1 and ABK). The performed microbiological, biochemical and genomic comparative analyses of the studied strains demonstrated correlation between properties of the strains and their isolation source, which suggests the presence of at least partial strain adaptation to the isolation environments. Additionally, for the studied strains, antagonistic activities against common pathogens and against each other were observed, and the ability to release bioactive peptides with antioxidant and angiotensin I-converting enzyme inhibitory (ACE-I) properties during milk fermentation was investigated. The obtained results may be useful for a deeper understanding of the nomadic lifestyle of L. paracasei and for the development of new starter cultures and probiotic preparations based on this LAB in the future.
Collapse
|
13
|
Zhang G, Dong H, Feng Y, Jiang H, Wu T, Sun J, Wang X, Liu M, Peng X, Zhang Y, Zhang X, Zhu L, Ding J, Shen X. The Pseudogene BMEA_B0173 Deficiency in Brucella melitensis Contributes to M-epitope Formation and Potentiates Virulence in a Mice Infection Model. Curr Microbiol 2022; 79:378. [DOI: 10.1007/s00284-022-03078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
14
|
Maddock D, Kile H, Denman S, Arnold D, Brady C. Description of three novel species of Scandinavium: Scandinavium hiltneri sp. nov., Scandinavium manionii sp. nov. and Scandinavium tedordense sp. nov., isolated from the oak rhizosphere and bleeding cankers of broadleaf hosts. Front Microbiol 2022; 13:1011653. [PMID: 36304948 PMCID: PMC9592992 DOI: 10.3389/fmicb.2022.1011653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
While investigating the bacterial populations of environmental samples taken from a mix of healthy and Acute Oak Decline afflicted Quercus robur (pedunculate or English oak) rhizosphere soil samples and swabs of bleeding lesions on Tilia spp. (lime) and Quercus rubra (red oak) trees, several strains belonging to the order Enterobacterales were isolated using selective media and enrichment broth. Seven strains from the Q. robur rhizosphere, three strains from Tilia spp. and one from Q. rubra were investigated, with their taxonomic status determined via a polyphasic taxonomic approach. Initially stains were identified as potential members of the recently described genus Scandinavium, based on the partial sequencing of three housekeeping genes. Further analysis of phenotypic traits, including fatty acid profiles, coupled with 16S rRNA gene and phylogenomic analysis of whole genome sequences were applied to a subset of the strains. Phylogenetic and phylogenomic analysis repeatedly placed the isolates in a monophyletic clade within Scandinavium, with four distinct clusters observed, one of which corresponded to Scandinavium goeteborgense, the type species of the genus. The remaining three clusters could be phenotypically and genotypically differentiated from each other and S. goeteborgense. As such, we describe three novel species of the genus, for which we propose the names Scandinavium hiltneri sp. nov. (type strain H11S7T = LMG 32612T = CCUG 76179T), Scandinavium manionii sp. nov. (type strain H17S15T = LMG 32613T = CCUG 76183T) and Scandinavium tedordense sp. nov. (type strain TWS1aT = LMG 32614T = CCUG 76188T). Additionally, the descriptions of the genus Scandinavium and the type species, S. goeteborgense, are emended.
Collapse
Affiliation(s)
- Daniel Maddock
- Centre for Research in Bioscience, School of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Helene Kile
- Centre for Research in Bioscience, School of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Sandra Denman
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Farnham, United Kingdom
| | - Dawn Arnold
- Office of the Deputy Vice-Chancellor, Harper Adams University, Newport, United Kingdom
| | - Carrie Brady
- Centre for Research in Bioscience, School of Applied Sciences, University of the West of England, Bristol, United Kingdom
- *Correspondence: Carrie Brady,
| |
Collapse
|
15
|
Soler-Camargo NC, Silva-Pereira TT, Zimpel CK, Camacho MF, Zelanis A, Aono AH, Patané JS, Dos Santos AP, Guimarães AMS. The rate and role of pseudogenes of the Mycobacterium tuberculosis complex. Microb Genom 2022; 8. [PMID: 36250787 DOI: 10.1099/mgen.0.000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole-genome sequence analyses have significantly contributed to the understanding of virulence and evolution of the Mycobacterium tuberculosis complex (MTBC), the causative pathogens of tuberculosis. Most MTBC evolutionary studies are focused on single nucleotide polymorphisms and deletions, but rare studies have evaluated gene content, whereas none has comprehensively evaluated pseudogenes. Accordingly, we describe an extensive study focused on quantifying and predicting possible functions of MTBC and Mycobacterium canettii pseudogenes. Using NCBI's PGAP-detected pseudogenes, we analysed 25 837 pseudogenes from 158 MTBC and M. canetii strains and combined transcriptomics and proteomics of M. tuberculosis H37Rv to gain insights about pseudogenes' expression. Our results indicate significant variability concerning rate and conservancy of in silico predicted pseudogenes among different ecotypes and lineages of tuberculous mycobacteria and pseudogenization of important virulence factors and genes of the metabolism and antimicrobial resistance/tolerance. We show that in silico predicted pseudogenes contribute considerably to MTBC genetic diversity at the population level. Moreover, the transcription machinery of M. tuberculosis can fully transcribe most pseudogenes, indicating intact promoters and recent pseudogene evolutionary emergence. Proteomics of M. tuberculosis and close evaluation of mutational lesions driving pseudogenization suggest that few in silico predicted pseudogenes are likely capable of neofunctionalization, nonsense mutation reversal, or phase variation, contradicting the classical definition of pseudogenes. Such findings indicate that genome annotation should be accompanied by proteomics and protein function assays to improve its accuracy. While indels and insertion sequences are the main drivers of the observed mutational lesions in these species, population bottlenecks and genetic drift are likely the evolutionary processes acting on pseudogenes' emergence over time. Our findings unveil a new perspective on MTBC's evolution and genetic diversity.
Collapse
Affiliation(s)
- Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Maurício F Camacho
- Functional Proteomics Laboratory, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Alexandre H Aono
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil.,Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | | | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University
| |
Collapse
|
16
|
Yang T, Gao F. High-quality pan-genome of Escherichia coli generated by excluding confounding and highly similar strains reveals an association between unique gene clusters and genomic islands. Brief Bioinform 2022; 23:6638794. [PMID: 35809555 DOI: 10.1093/bib/bbac283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023] Open
Abstract
The pan-genome analysis of bacteria provides detailed insight into the diversity and evolution of a bacterial population. However, the genomes involved in the pan-genome analysis should be checked carefully, as the inclusion of confounding strains would have unfavorable effects on the identification of core genes, and the highly similar strains could bias the results of the pan-genome state (open versus closed). In this study, we found that the inclusion of highly similar strains also affects the results of unique genes in pan-genome analysis, which leads to a significant underestimation of the number of unique genes in the pan-genome. Therefore, these strains should be excluded from pan-genome analysis at the early stage of data processing. Currently, tens of thousands of genomes have been sequenced for Escherichia coli, which provides an unprecedented opportunity as well as a challenge for pan-genome analysis of this classical model organism. Using the proposed strategies, a high-quality E. coli pan-genome was obtained, and the unique genes was extracted and analyzed, revealing an association between the unique gene clusters and genomic islands from a pan-genome perspective, which may facilitate the identification of genomic islands.
Collapse
Affiliation(s)
- Tong Yang
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
17
|
Syberg-Olsen MJ, Garber AI, Keeling PJ, McCutcheon JP, Husnik F. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol Biol Evol 2022; 39:6633826. [PMID: 35801562 PMCID: PMC9336565 DOI: 10.1093/molbev/msac153] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Prokaryotic genomes are usually densely packed with intact and functional genes. However, in certain contexts, such as after recent ecological shifts or extreme population bottlenecks, broken and nonfunctional gene fragments can quickly accumulate and form a substantial fraction of the genome. Identification of these broken genes, called pseudogenes, is a critical step for understanding the evolutionary forces acting upon, and the functional potential encoded within, prokaryotic genomes. Here, we present Pseudofinder, an open-source software dedicated to pseudogene identification and analysis in bacterial and archaeal genomes. We demonstrate that Pseudofinder’s multi-pronged, reference-based approach can detect a wide variety of pseudogenes, including those that are highly degraded and typically missed by gene-calling pipelines, as well newly formed pseudogenes containing only one or a few inactivating mutations. Additionally, Pseudofinder can detect genes that lack inactivating substitutions but experiencing relaxed selection. Implementation of Pseudofinder in annotation pipelines will allow more precise estimations of the functional potential of sequenced microbes, while also generating new hypotheses related to the evolutionary dynamics of bacterial and archaeal genomes.
Collapse
Affiliation(s)
| | - Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland, USA
| | - Filip Husnik
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
18
|
Feng Y, Wang Z, Chien KY, Chen HL, Liang YH, Hua X, Chiu CH. "Pseudo-pseudogenes" in bacterial genomes: Proteogenomics reveals a wide but low protein expression of pseudogenes in Salmonella enterica. Nucleic Acids Res 2022; 50:5158-5170. [PMID: 35489061 PMCID: PMC9122581 DOI: 10.1093/nar/gkac302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudogenes (genes disrupted by frameshift or in-frame stop codons) are ubiquitously present in the bacterial genome and considered as nonfunctional fossil. Here, we used RNA-seq and mass-spectrometry technologies to measure the transcriptomes and proteomes of Salmonella enterica serovars Paratyphi A and Typhi. All pseudogenes’ mRNA sequences remained disrupted, and were present at comparable levels to their intact homologs. At the protein level, however, 101 out of 161 pseudogenes suggested successful translation, with their low expression regardless of growth conditions, genetic background and pseudogenization causes. The majority of frameshifting detected was compensatory for -1 frameshift mutations. Readthrough of in-frame stop codons primarily involved UAG; and cytosine was the most frequent base adjacent to the codon. Using a fluorescence reporter system, fifteen pseudogenes were confirmed to express successfully in vivo in Escherichia coli. Expression of the intact copy of the fifteen pseudogenes in S. Typhi affected bacterial pathogenesis as revealed in human macrophage and epithelial cell infection models. The above findings suggest the need to revisit the nonstandard translation mechanism as well as the biological role of pseudogenes in the bacterial genome.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zeyu Wang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Republic of China
| |
Collapse
|
19
|
McHugh MP, Parcell BJ, Pettigrew KA, Toner G, Khatamzas E, El Sakka N, Karcher AM, Walker J, Weir R, Meunier D, Hopkins KL, Woodford N, Templeton KE, Gillespie SH, Holden MTG. Presence of optrA-mediated linezolid resistance in multiple lineages and plasmids of Enterococcus faecalis revealed by long read sequencing. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35130141 PMCID: PMC8941993 DOI: 10.1099/mic.0.001137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transferable linezolid resistance due to optrA, poxtA, cfr and cfr-like genes is increasingly detected in enterococci associated with animals and humans globally. We aimed to characterize the genetic environment of optrA in linezolid-resistant Enterococcus faecalis isolates from Scotland. Six linezolid-resistant E. faecalis isolated from urogenital samples were confirmed to carry the optrA gene by PCR. Short read (Illumina) sequencing showed the isolates were genetically distinct (>13900 core SNPs) and belonged to different MLST sequence types. Plasmid contents were examined using hybrid assembly of short and long read (Oxford Nanopore MinION) sequencing technologies. The optrA gene was located on distinct plasmids in each isolate, suggesting that transfer of a single plasmid did not contribute to optrA dissemination in this collection. pTM6294-2, BX5936-1 and pWE0438-1 were similar to optrA-positive plasmids from China and Japan, while the remaining three plasmids had limited similarity to other published examples. We identified the novel Tn6993 transposon in pWE0254-1 carrying linezolid (optrA), macrolide (ermB) and spectinomycin [ANT(9)-Ia] resistance genes. OptrA amino acid sequences differed by 0–20 residues. We report multiple variants of optrA on distinct plasmids in diverse strains of E. faecalis. It is important to identify the selection pressures driving the emergence and maintenance of resistance against linezolid to retain the clinical utility of this antibiotic.
Collapse
Affiliation(s)
- Martin P McHugh
- School of Medicine, University of St Andrews, St Andrews, UK.,NHS Lothian Infection Service, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Benjamin J Parcell
- School of Medicine, University of St Andrews, St Andrews, UK.,Medical Microbiology, Aberdeen Royal Infirmary, Aberdeen, UK.,Present address: Medical Microbiology, Ninewells Hospital, Dundee, UK
| | - Kerry A Pettigrew
- School of Medicine, University of St Andrews, St Andrews, UK.,Present address: School of Social and Behavioural Sciences, Erasmus University, Rotterdam, Netherlands
| | - Geoff Toner
- NHS Lothian Infection Service, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Elham Khatamzas
- NHS Lothian Infection Service, Royal Infirmary of Edinburgh, Edinburgh, UK.,Present address: Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Noha El Sakka
- Medical Microbiology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Anne Marie Karcher
- Medical Microbiology, Aberdeen Royal Infirmary, Aberdeen, UK.,Present address: Medical Microbiology, Ninewells Hospital, Dundee, UK
| | - Joanna Walker
- Medical Microbiology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Robert Weir
- Medical Microbiology, Forth Valley Royal Hospital, Larbert, UK
| | - Danièle Meunier
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Kate E Templeton
- NHS Lothian Infection Service, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
20
|
Chen Z, Wang Z, Chen Z, Fu F, Huang X, Huang Z. Pseudogene HSPB1P1 contributes to renal cell carcinoma proliferation and metastasis by targeting miR-296-5p to regulate HMGA1 expression. Cell Biol Int 2021; 45:2479-2489. [PMID: 34431162 DOI: 10.1002/cbin.11694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022]
Abstract
With the aid of next-generation sequencing technology, pseudogenes have been widely recognized as functional regulators in the development and progression of certain diseases, especially cancer. Our present study aimed to investigate the functions and molecular mechanisms of HSPB1-associated protein 1 pseudogene 1 (HSPB1P1) in renal cell carcinoma (RCC). HSPB1P1 expression at the mRNA levels was determined by quantitative real-time polymerase chain reaction, and its clinical significance was assessed. Cell viability was detected by Cell Counting Kit-8 assay. Cell migration and invasion were detected by transwell assays. The location of HSPB1P1 in RCC cells was detected by subcellular distribution analysis. The direct relationship between HSPB1P1 and miR-296-5p/HMGA1 axis was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Our results identify the elevated expression of HSPB1P1 in RCC tissues and cell lines, which predicted advanced progression and poor prognosis in patients with RCC. Knockdown of HSPB1P1 suppressed cell proliferation, migration, and invasion, and reversed epithelial-mesenchymal transition process in RCC. HSPB1P1 was mostly enriched in the cytoplasm and functioned as a miRNA sponge for miR-296-5p and then regulated high-mobility group A1 expression. In conclusion, our study indicated that HSPB1P1 contributed to RCC progression by targeting the miR-296-5p/HMGA1 axis, and should be considered as a promising biomarker and therapeutic target for clinical applications.
Collapse
Affiliation(s)
- Zerong Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziming Wang
- Department of Urology, Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuangfei Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangxiang Fu
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaomin Huang
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Genome Sequencing of a Historic Staphylococcus aureus Collection Reveals New Enterotoxin Genes and Sheds Light on the Evolution and Genomic Organization of This Key Virulence Gene Family. J Bacteriol 2021; 203:JB.00587-20. [PMID: 33649144 DOI: 10.1128/jb.00587-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
We take advantage of a historic collection of 133 Staphylococcus aureus strains accessioned between 1924 and 2016, whose genomes have been long-read sequenced as part of a major National Collection of Type Cultures (NCTC) initiative, to conduct a gene family-wide computational analysis of enterotoxin genes. We identify two novel staphylococcal enterotoxin (pseudo)genes (sel29p and sel30), the former of which has not been observed in any contemporary strain to date. We provide further information on five additional enterotoxin genes or gene variants that either have recently entered the literature or for which the nomenclature or description is currently unclear (selz, sel26, sel27, sel28, and ses-2p). An examination of over 11,000 RefSeq genomes in search of wider support for these seven (pseudo)genes led to the identification of an additional three novel enterotoxin gene family members (sel31, sel32, and sel33) plus two new variants (seh-2p and ses-3p). We cast light on the genomic distribution of the enterotoxin genes, further defining their arrangement in gene clusters. Finally, we show that cooccurrence of enterotoxin genes is prevalent, with individual NCTC strains possessing as many as 18 enterotoxin genes and pseudogenes, and that clonal complex membership rather than time of isolation is the key factor in determining enterotoxin load.IMPORTANCE Staphylococcus aureus strains pose a significant health risk to both human and animal populations. Key among this species' virulence factors is the staphylococcal enterotoxin gene family. Certain enterotoxin forms can induce a potentially life-threatening immune response, while others are implicated in less fatal though often severe conditions such as food poisoning. Genetic characterization of staphylococcal enterotoxin gene family members has steadily accumulated over recent decades, with over 20 genes now established in the literature. Despite the current wealth of knowledge on this important gene family, questions remain about the presence of additional enterotoxin genes and the genomic composition of family members. This study further expands knowledge of the staphylococcal enterotoxins while shedding light on their evolution over the last century.
Collapse
|
22
|
Belinky F, Ganguly I, Poliakov E, Yurchenko V, Rogozin IB. Analysis of Stop Codons within Prokaryotic Protein-Coding Genes Suggests Frequent Readthrough Events. Int J Mol Sci 2021; 22:ijms22041876. [PMID: 33672790 PMCID: PMC7918605 DOI: 10.3390/ijms22041876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons—where an intermediate step is a nonsense substitution—show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
Collapse
Affiliation(s)
- Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Ishan Ganguly
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: (V.Y.); (I.B.R.)
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
- Correspondence: (V.Y.); (I.B.R.)
| |
Collapse
|
23
|
Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 Pseudogenes in Cancer and Cell Metabolism. Cells 2020; 9:E2554. [PMID: 33260500 PMCID: PMC7760355 DOI: 10.3390/cells9122554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ferritin, the principal intracellular iron-storage protein localized in the cytoplasm, nucleus, and mitochondria, plays a major role in iron metabolism. The encoding ferritin genes are members of a multigene family that includes some pseudogenes. Even though pseudogenes have been initially considered as relics of ancient genes or junk DNA devoid of function, their role in controlling gene expression in normal and transformed cells has recently been re-evaluated. Numerous studies have revealed that some pseudogenes compete with their parental gene for binding to the microRNAs (miRNAs), while others generate small interference RNAs (siRNAs) to decrease functional gene expression, and still others encode functional mutated proteins. Consequently, pseudogenes can be considered as actual master regulators of numerous biological processes. Here, we provide a detailed classification and description of the structural features of the ferritin pseudogenes known to date and review the recent evidence on their mutual interrelation within the complex regulatory network of the ferritin gene family.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
24
|
Zhou Z, Charlesworth J, Achtman M. Accurate reconstruction of bacterial pan- and core genomes with PEPPAN. Genome Res 2020; 30:1667-1679. [PMID: 33055096 PMCID: PMC7605250 DOI: 10.1101/gr.260828.120] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
Bacterial genomes can contain traces of a complex evolutionary history, including extensive homologous recombination, gene loss, gene duplications, and horizontal gene transfer. To reconstruct the phylogenetic and population history of a set of multiple bacteria, it is necessary to examine their pangenome, the composite of all the genes in the set. Here we introduce PEPPAN, a novel pipeline that can reliably construct pangenomes from thousands of genetically diverse bacterial genomes that represent the diversity of an entire genus. PEPPAN outperforms existing pangenome methods by providing consistent gene and pseudogene annotations extended by similarity-based gene predictions, and identifying and excluding paralogs by combining tree- and synteny-based approaches. The PEPPAN package additionally includes PEPPAN_parser, which implements additional downstream analyses, including the calculation of trees based on accessory gene content or allelic differences between core genes. To test the accuracy of PEPPAN, we implemented SimPan, a novel pipeline for simulating the evolution of bacterial pangenomes. We compared the accuracy and speed of PEPPAN with four state-of-the-art pangenome pipelines using both empirical and simulated data sets. PEPPAN was more accurate and more specific than any of the other pipelines and was almost as fast as any of them. As a case study, we used PEPPAN to construct a pangenome of approximately 40,000 genes from 3052 representative genomes spanning at least 80 species of Streptococcus The resulting gene and allelic trees provide an unprecedented overview of the genomic diversity of the entire Streptococcus genus.
Collapse
Affiliation(s)
- Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jane Charlesworth
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark Achtman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
25
|
Suárez-Esquivel M, Chaves-Olarte E, Moreno E, Guzmán-Verri C. Brucella Genomics: Macro and Micro Evolution. Int J Mol Sci 2020; 21:E7749. [PMID: 33092044 PMCID: PMC7589603 DOI: 10.3390/ijms21207749] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/25/2023] Open
Abstract
Brucella organisms are responsible for one of the most widespread bacterial zoonoses, named brucellosis. The disease affects several species of animals, including humans. One of the most intriguing aspects of the brucellae is that the various species show a ~97% similarity at the genome level. Still, the distinct Brucella species display different host preferences, zoonotic risk, and virulence. After 133 years of research, there are many aspects of the Brucella biology that remain poorly understood, such as host adaptation and virulence mechanisms. A strategy to understand these characteristics focuses on the relationship between the genomic diversity and host preference of the various Brucella species. Pseudogenization, genome reduction, single nucleotide polymorphism variation, number of tandem repeats, and mobile genetic elements are unveiled markers for host adaptation and virulence. Understanding the mechanisms of genome variability in the Brucella genus is relevant to comprehend the emergence of pathogens.
Collapse
Affiliation(s)
- Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| |
Collapse
|
26
|
Chu X, Li S, Wang S, Luo D, Luo H. Gene loss through pseudogenization contributes to the ecological diversification of a generalist Roseobacter lineage. ISME JOURNAL 2020; 15:489-502. [PMID: 32999421 DOI: 10.1038/s41396-020-00790-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Ecologically relevant genes generally show patchy distributions among related bacterial genomes. This is commonly attributed to lateral gene transfer, whereas the opposite mechanism-gene loss-has rarely been explored. Pseudogenization is a major mechanism underlying gene loss, and pseudogenes are best characterized by comparing closely related genomes because of their short life spans. To explore the role of pseudogenization in microbial ecological diversification, we apply rigorous methods to characterize pseudogenes in the 279 newly sequenced Ruegeria isolates of the globally abundant Roseobacter group collected from two typical coastal habitats in Hong Kong, the coral Platygyra acuta and the macroalga Sargassum hemiphyllum. Pseudogenes contribute to ~16% of the accessory genomes of these strains. Ancestral state reconstruction reveals that many pseudogenization events are correlated with ancestral niche shifts. Specifically, genes related to resource scavenging and energy acquisition were often pseudogenized when roseobacters inhabiting carbon-limited and energy-poor coral skeleton switched to other resource-richer niches. For roseobacters inhabiting the macroalgal niches, genes for nitrogen regulation and carbohydrate utilization were important but became dispensable upon shift to coral skeleton where nitrate is abundant but carbohydrates are less available. Whereas low-energy-demanding secondary transporters are more favorable in coral skeleton, ATP-driven primary transporters are preferentially kept in the energy-replete macroalgal niches. Moreover, a large proportion of these families mediate organismal interactions, suggesting their rapid losses by pseudogenization as a potential response to host and niche shift. These findings illustrate an important role of pseudogenization in shaping genome content and driving ecological diversification of marine roseobacters.
Collapse
Affiliation(s)
- Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Siyao Li
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Danli Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China.
| |
Collapse
|
27
|
Lin W, Liu H, Tang Y, Wei Y, Wei W, Zhang L, Chen J. The development and controversy of competitive endogenous RNA hypothesis in non-coding genes. Mol Cell Biochem 2020; 476:109-123. [PMID: 32975695 DOI: 10.1007/s11010-020-03889-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
As a momentous post-transcriptional regulator, microRNAs (miRNAs) are attracting more and more attention. The classical miRNAs regulated mechanism shows it binds to the targets' 3'UTR thus play the role in post-transcription. Meanwhile, single miRNA can target multiple genes, so those should compete to bind that miRNA. Vice versa, single gene can sponge mass of miRNAs as well. Thus the competitive endogenous RNAs (ceRNAs) hypothesis was put forward in 2011. The ceRNA hypothesis has made huge achievements, in particular in non-coding genes, which including long non-coding RNAs (lncRNAs), circle RNAs (circRNAs) and pseudogenes, even viral transcripts. It also contributed greatly to epigenetics development. However, an increasing number of controversies have occurred with applause. Based on this situation, this review introduces something in detail about the ceRNAs hypothesis achieved in lncRNAs, circRNAs, pseudogenes and viral transcripts, respectively. Meanwhile, it also covers controversy of the ceRNAs hypothesis.
Collapse
Affiliation(s)
- Weimin Lin
- Nanjing Agricultural University, Nanjing, China
| | | | | | - Yuchen Wei
- Nanjing Agricultural University, Nanjing, China
| | - Wei Wei
- Nanjing Agricultural University, Nanjing, China
| | - Lifan Zhang
- Nanjing Agricultural University, Nanjing, China
| | - Jie Chen
- Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
28
|
Krogh TJ, Franke A, Møller-Jensen J, Kaleta C. Elucidating the Influence of Chromosomal Architecture on Transcriptional Regulation in Prokaryotes - Observing Strong Local Effects of Nucleoid Structure on Gene Regulation. Front Microbiol 2020; 11:2002. [PMID: 32983020 PMCID: PMC7491251 DOI: 10.3389/fmicb.2020.02002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Both intrinsic and extrinsic mechanisms regulating bacterial expression have been elucidated and described, however, such studies have mainly focused on local effects on the two-dimensional structure of the prokaryote genome while long-range as well as spatial interactions influencing gene expression are still only poorly understood. In this paper, we investigate the association between co-expression and distance between genes, using RNA-seq data at multiple growth phases in order to illuminate whether such conserved patterns are an indication of a gene regulatory mechanism relevant for prokaryotic cell proliferation, adaption, and evolution. We observe recurrent sinusoidal patterns in correlation of pairwise expression as function of genomic distance and rule out that these are caused by transcription-induced supercoiling gradients, gene clustering in operons, or association with regulatory transcription factors (TFs). By comparing spatial proximity for pairs of genomic bins with their correlation of pairwise expression, we further observe a high co-expression proportional with the spatial proximity. Based on these observations, we propose that the observed patterns are related to nucleoid structure as a product of transcriptional spilling, where genes actively influence transcription of spatially proximal genes through increases within shared local pools of RNA polymerases (RNAP), and actively spilling transcription onto neighboring genes.
Collapse
Affiliation(s)
- Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
29
|
Ardern Z, Neuhaus K, Scherer S. Are Antisense Proteins in Prokaryotes Functional? Front Mol Biosci 2020; 7:187. [PMID: 32923454 PMCID: PMC7457138 DOI: 10.3389/fmolb.2020.00187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Many prokaryotic RNAs are transcribed from loci outside of annotated protein coding genes. Across bacterial species hundreds of short open reading frames antisense to annotated genes show evidence of both transcription and translation, for instance in ribosome profiling data. Determining the functional fraction of these protein products awaits further research, including insights from studies of molecular interactions and detailed evolutionary analysis. There are multiple lines of evidence, however, that many of these newly discovered proteins are of use to the organism. Condition-specific phenotypes have been characterized for a few. These proteins should be added to genome annotations, and the methods for predicting them standardized. Evolutionary analysis of these typically young sequences also may provide important insights into gene evolution. This research should be prioritized for its exciting potential to uncover large numbers of novel proteins with extremely diverse potential practical uses, including applications in synthetic biology and responding to pathogens.
Collapse
Affiliation(s)
- Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
30
|
Janiak MC, Pinto SL, Duytschaever G, Carrigan MA, Melin AD. Genetic evidence of widespread variation in ethanol metabolism among mammals: revisiting the 'myth' of natural intoxication. Biol Lett 2020; 16:20200070. [PMID: 32343936 DOI: 10.1098/rsbl.2020.0070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Humans have a long evolutionary relationship with ethanol, pre-dating anthropogenic sources, and possess unusually efficient ethanol metabolism, through a mutation that evolved in our last common ancestor with African great apes. Increased exposure to dietary ethanol through fermenting fruits and nectars is hypothesized to have selected for this in our lineage. Yet, other mammals have frugivorous and nectarivorous diets, raising the possibility of natural ethanol exposure and adaptation in other taxa. We conduct a comparative genetic analysis of alcohol dehydrogenase class IV (ADH IV) across mammals to provide insight into their evolutionary history with ethanol. We find genetic variation and multiple pseudogenization events in ADH IV, indicating the ability to metabolize ethanol is variable. We suggest that ADH enzymes are evolutionarily plastic and show promise for revealing dietary adaptation. We further highlight the derived condition of humans and draw attention to problems with modelling the physiological responses of other mammals on them, a practice that has led to potentially erroneous conclusions about the likelihood of natural intoxication in wild animals. It is a fallacy to assume that other animals share our metabolic adaptations, rather than taking into consideration each species' unique physiology.
Collapse
Affiliation(s)
- Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Swellan L Pinto
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada
| | - Gwen Duytschaever
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada
| | | | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, University of Calgary, AB, Canada
| |
Collapse
|
31
|
Cervantes-Rivera R, Tronnet S, Puhar A. Complete genome sequence and annotation of the laboratory reference strain Shigella flexneri serotype 5a M90T and genome-wide transcriptional start site determination. BMC Genomics 2020; 21:285. [PMID: 32252626 PMCID: PMC7132871 DOI: 10.1186/s12864-020-6565-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
Background Shigella is a Gram-negative facultative intracellular bacterium that causes bacillary dysentery in humans. Shigella invades cells of the colonic mucosa owing to its virulence plasmid-encoded Type 3 Secretion System (T3SS), and multiplies in the target cell cytosol. Although the laboratory reference strain S. flexneri serotype 5a M90T has been extensively used to understand the molecular mechanisms of pathogenesis, its complete genome sequence is not available, thereby greatly limiting studies employing high-throughput sequencing and systems biology approaches. Results We have sequenced, assembled, annotated and manually curated the full genome of S. flexneri 5a M90T. This yielded two complete circular contigs, the chromosome and the virulence plasmid (pWR100). To obtain the genome sequence, we have employed long-read PacBio DNA sequencing followed by polishing with Illumina RNA-seq data. This provides a new hybrid strategy to prepare gapless, highly accurate genome sequences, which also cover AT-rich tracks or repetitive sequences that are transcribed. Furthermore, we have performed genome-wide analysis of transcriptional start sites (TSS) and determined the length of 5′ untranslated regions (5′-UTRs) at typical culture conditions for the inoculum of in vitro infection experiments. We identified 6723 primary TSS (pTSS) and 7328 secondary TSS (sTSS). The S. flexneri 5a M90T annotated genome sequence and the transcriptional start sites are integrated into RegulonDB (http://regulondb.ccg.unam.mx) and RSAT (http://embnet.ccg.unam.mx/rsat/) databases to use their analysis tools in the S. flexneri 5a M90T genome. Conclusions We provide the first complete genome for S. flexneri serotype 5a, specifically the laboratory reference strain M90T. Our work opens the possibility of employing S. flexneri M90T in high-quality systems biology studies such as transcriptomic and differential expression analyses or in genome evolution studies. Moreover, the catalogue of TSS that we report here can be used in molecular pathogenesis studies as a resource to know which genes are transcribed before infection of host cells. The genome sequence, together with the analysis of transcriptional start sites, is also a valuable tool for precise genetic manipulation of S. flexneri 5a M90T. Further, we present a new hybrid strategy to prepare gapless, highly accurate genome sequences. Unlike currently used hybrid strategies combining long- and short-read DNA sequencing technologies to maximize accuracy, our workflow using long-read DNA sequencing and short-read RNA sequencing provides the added value of using non-redundant technologies, which yield distinct, exploitable datasets.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden.,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Sophie Tronnet
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden.,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden. .,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden. .,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
32
|
Goodhead I, Blow F, Brownridge P, Hughes M, Kenny J, Krishna R, McLean L, Pongchaikul P, Beynon R, Darby AC. Large-scale and significant expression from pseudogenes in Sodalis glossinidius - a facultative bacterial endosymbiont. Microb Genom 2020; 6:e000285. [PMID: 31922467 PMCID: PMC7067036 DOI: 10.1099/mgen.0.000285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 07/10/2019] [Indexed: 01/30/2023] Open
Abstract
The majority of bacterial genomes have high coding efficiencies, but there are some genomes of intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50 % pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple 'omic' strategies, combining Illumina and Pacific Biosciences Single-Molecule Real-Time DNA sequencing and annotation, stranded RNA sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53 and 74 % of the Sodalis transcriptome remains active in cell-free culture. The mean sense transcription from coding domain sequences (CDSs) is four times greater than that from pseudogenes. Comparative genomic analysis of six Illumina-sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40 % of the 2729 genes in the core genome, suggesting that they are stable and/or that Sodalis is a recent introduction across the genus Glossina as a facultative symbiont. These data shed further light on the importance of transcriptional and translational control in deciphering host-microbe interactions. The combination of genomics, transcriptomics and proteomics gives a multidimensional perspective for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches.
Collapse
Affiliation(s)
- Ian Goodhead
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- School of Science, Engineering and Environment, Peel Building, University of Salford, M5 4WT, UK
| | - Frances Blow
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- Department of Entomology, Cornell University, Ithaca 14853, NY, USA
| | - Philip Brownridge
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Margaret Hughes
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - John Kenny
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Ritesh Krishna
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- IBM Research UK, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK
| | - Lynn McLean
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Pisut Pongchaikul
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Rob Beynon
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Alistair C. Darby
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| |
Collapse
|
33
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
34
|
Krogh TJ, Møller-Jensen J, Kaleta C. Impact of Chromosomal Architecture on the Function and Evolution of Bacterial Genomes. Front Microbiol 2018; 9:2019. [PMID: 30210483 PMCID: PMC6119826 DOI: 10.3389/fmicb.2018.02019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
The bacterial nucleoid is highly condensed and forms compartment-like structures within the cell. Much attention has been devoted to investigating the dynamic topology and organization of the nucleoid. In contrast, the specific nucleoid organization, and the relationship between nucleoid structure and function is often neglected with regard to importance for adaption to changing environments and horizontal gene acquisition. In this review, we focus on the structure-function relationship in the bacterial nucleoid. We provide an overview of the fundamental properties that shape the chromosome as a structured yet dynamic macromolecule. These fundamental properties are then considered in the context of the living cell, with focus on how the informational flow affects the nucleoid structure, which in turn impacts on the genetic output. Subsequently, the dynamic living nucleoid will be discussed in the context of evolution. We will address how the acquisition of foreign DNA impacts nucleoid structure, and conversely, how nucleoid structure constrains the successful and sustainable chromosomal integration of novel DNA. Finally, we will discuss current challenges and directions of research in understanding the role of chromosomal architecture in bacterial survival and adaptation.
Collapse
Affiliation(s)
- Thøger J Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
35
|
Branchu P, Bawn M, Kingsley RA. Genome Variation and Molecular Epidemiology of Salmonella enterica Serovar Typhimurium Pathovariants. Infect Immun 2018; 86:e00079-18. [PMID: 29784861 PMCID: PMC6056856 DOI: 10.1128/iai.00079-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is one of approximately 2,500 distinct serovars of the genus Salmonella but is exceptional in its wide distribution in the environment, livestock, and wild animals. S Typhimurium causes a large proportion of nontyphoidal Salmonella (NTS) infections, accounting for a quarter of infections, second only to S. enterica serovar Enteritidis in incidence. S Typhimurium was once considered the archetypal broad-host-range Salmonella serovar due to its wide distribution in livestock and wild animals, and much of what we know of the interaction of Salmonella with the host comes from research using a small number of laboratory strains of the serovar (LT2, SL1344, and ATCC 14028). But it has become clear that these strains do not reflect the genotypic or phenotypic diversity of S Typhimurium. Here, we review the epidemiological record of S Typhimurium and studies of the host-pathogen interactions of diverse strains of S Typhimurium. We present the concept of distinct pathovariants of S Typhimurium that exhibit diversity of host range, distribution in the environment, pathogenicity, and risk to food safety. We review recent evidence from whole-genome sequencing that has revealed the extent of genomic diversity of S Typhimurium pathovariants, the genomic basis of differences in the level of risk to human and animal health, and the molecular epidemiology of prominent strains. An improved understanding of the impact of genome variation of bacterial pathogens on pathogen-host and pathogen-environment interactions has the potential to improve quantitative risk assessment and reveal how new pathogens evolve.
Collapse
Affiliation(s)
- Priscilla Branchu
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, United Kingdom
| |
Collapse
|
36
|
Sedlar K, Koscova P, Vasylkivska M, Branska B, Kolek J, Kupkova K, Patakova P, Provaznik I. Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq. BMC Genomics 2018; 19:415. [PMID: 29843608 PMCID: PMC5975590 DOI: 10.1186/s12864-018-4805-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Thinning supplies of natural resources increase attention to sustainable microbial production of bio-based fuels. The strain Clostridium beijerinckii NRRL B-598 is a relatively well-described butanol producer regarding its genotype and phenotype under various conditions. However, a link between these two levels, lying in the description of the gene regulation mechanisms, is missing for this strain, due to the lack of transcriptomic data. RESULTS In this paper, we present a transcription profile of the strain over the whole fermentation using an RNA-Seq dataset covering six time-points with the current highest dynamic range among solventogenic clostridia. We investigated the accuracy of the genome sequence and particular genome elements, including pseudogenes and prophages. While some pseudogenes were highly expressed, all three identified prophages remained silent. Furthermore, we identified major changes in the transcriptional activity of genes using differential expression analysis between adjacent time-points. We identified functional groups of these significantly regulated genes and together with fermentation and cultivation kinetics captured using liquid chromatography and flow cytometry, we identified basic changes in the metabolism of the strain during fermentation. Interestingly, C. beijerinckii NRRL B-598 demonstrated different behavior in comparison with the closely related strain C. beijerinckii NCIMB 8052 in the latter phases of cultivation. CONCLUSIONS We provided a complex analysis of the C. beijerinckii NRRL B-598 fermentation profile using several technologies, including RNA-Seq. We described the changes in the global metabolism of the strain and confirmed the uniqueness of its behavior. The whole experiment demonstrated a good reproducibility. Therefore, we will be able to repeat the experiment under selected conditions in order to investigate particular metabolic changes and signaling pathways suitable for following targeted engineering.
Collapse
Affiliation(s)
- Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czechia
| | - Pavlina Koscova
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czechia
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czechia
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czechia
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czechia
- Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czechia
| | - Kristyna Kupkova
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czechia
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908 USA
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czechia
| |
Collapse
|
37
|
Bakhtiarizadeh MR, Salehi A, Rivera RM. Genome-wide identification and analysis of A-to-I RNA editing events in bovine by transcriptome sequencing. PLoS One 2018; 13:e0193316. [PMID: 29470549 PMCID: PMC5823453 DOI: 10.1371/journal.pone.0193316] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/08/2018] [Indexed: 12/30/2022] Open
Abstract
RNA editing increases the diversity of the transcriptome and proteome. Adenosine-to-inosine (A-to-I) editing is the predominant type of RNA editing in mammals and it is catalyzed by the adenosine deaminases acting on RNA (ADARs) family. Here, we used a largescale computational analysis of transcriptomic data from brain, heart, colon, lung, spleen, kidney, testes, skeletal muscle and liver, from three adult animals in order to identify RNA editing sites in bovine. We developed a computational pipeline and used a rigorous strategy to identify novel editing sites from RNA-Seq data in the absence of corresponding DNA sequence information. Our methods take into account sequencing errors, mapping bias, as well as biological replication to reduce the probability of obtaining a false-positive result. We conducted a detailed characterization of sequence and structural features related to novel candidate sites and found 1,600 novel canonical A-to-I editing sites in the nine bovine tissues analyzed. Results show that these sites 1) occur frequently in clusters and short interspersed nuclear elements (SINE) repeats, 2) have a preference for guanines depletion/enrichment in the flanking 5′/3′ nucleotide, 3) occur less often in coding sequences than other regions of the genome, and 4) have low evolutionary conservation. Further, we found that a positive correlation exists between expression of ADAR family members and tissue-specific RNA editing. Most of the genes with predicted A-to-I editing in each tissue were significantly enriched in biological terms relevant to the function of the corresponding tissue. Lastly, the results highlight the importance of the RNA editome in nervous system regulation. The present study extends the list of RNA editing sites in bovine and provides pipelines that may be used to investigate the editome in other organisms.
Collapse
Affiliation(s)
| | - Abdolreza Salehi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Rocío Melissa Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
38
|
Abstract
Our understanding of cancer pathways has been changed by the determination of noncoding transcripts in the human genome in recent years. miRNAs and pseudogenes are key players of the noncoding transcripts from the genome, and alteration of their expression levels provides clues for significant biomarkers in pathogenesis of diseases. Especially, miRNAs and pseudogenes have both oncogenic and tumor-suppressive roles in each step of cancer tumorigenesis. In this current study, association between oncogenes and miRNAs-pseudogenes was reviewed and determined in human cancer by the CellMiner web-tool.
Collapse
Affiliation(s)
- Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ahi Evran University, Kırşehir, Turkey
| | - Aykut Özgür
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey.
- Department of Nutrition and Dietetics, Health Sciences Faculty, University of Health Sciences, Üsküdar, Istanbul, 34668, Turkey.
| |
Collapse
|
39
|
Ndah E, Jonckheere V, Giess A, Valen E, Menschaert G, Van Damme P. REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes. Nucleic Acids Res 2017; 45:e168. [PMID: 28977509 PMCID: PMC5714196 DOI: 10.1093/nar/gkx758] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Prokaryotic genome annotation is highly dependent on automated methods, as manual curation cannot keep up with the exponential growth of sequenced genomes. Current automated methods depend heavily on sequence composition and often underestimate the complexity of the proteome. We developed RibosomeE Profiling Assisted (re-)AnnotaTION (REPARATION), a de novo machine learning algorithm that takes advantage of experimental protein synthesis evidence from ribosome profiling (Ribo-seq) to delineate translated open reading frames (ORFs) in bacteria, independent of genome annotation (https://github.com/Biobix/REPARATION). REPARATION evaluates all possible ORFs in the genome and estimates minimum thresholds based on a growth curve model to screen for spurious ORFs. We applied REPARATION to three annotated bacterial species to obtain a more comprehensive mapping of their translation landscape in support of experimental data. In all cases, we identified hundreds of novel (small) ORFs including variants of previously annotated ORFs and >70% of all (variants of) annotated protein coding ORFs were predicted by REPARATION to be translated. Our predictions are supported by matching mass spectrometry proteomics data, sequence composition and conservation analysis. REPARATION is unique in that it makes use of experimental translation evidence to intrinsically perform a de novo ORF delineation in bacterial genomes irrespective of the sequence features linked to open reading frames.
Collapse
Affiliation(s)
- Elvis Ndah
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.,Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Veronique Jonckheere
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Adam Giess
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
40
|
Wilkes MC, Repellin CE, Sakamoto KM. Beyond mRNA: The role of non-coding RNAs in normal and aberrant hematopoiesis. Mol Genet Metab 2017; 122:28-38. [PMID: 28757239 PMCID: PMC5722683 DOI: 10.1016/j.ymgme.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023]
Abstract
The role of non-coding Ribonucleic Acids (ncRNAs) in biology is currently an area of intense focus. Hematopoiesis requires rapidly changing regulatory molecules to guide appropriate differentiation and ncRNA are well suited for this. It is not surprising that virtually all aspects of hematopoiesis have roles for ncRNAs assigned to them and doubtlessly much more await characterization. Stem cell maintenance, lymphoid, myeloid and erythroid differentiation are all regulated by various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and various transposable elements within the genome. As our understanding of the many and complex ncRNA roles continues to grow, new discoveries are challenging the existing classification schemes. In this review we briefly overview the broad categories of ncRNAs and discuss a few examples regulating normal and aberrant hematopoiesis.
Collapse
Affiliation(s)
- Mark C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
Herrera CM, Henderson JC, Crofts AA, Trent MS. Novel coordination of lipopolysaccharide modifications in Vibrio cholerae promotes CAMP resistance. Mol Microbiol 2017; 106:582-596. [PMID: 28906060 DOI: 10.1111/mmi.13835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/02/2023]
Abstract
In the environment and during infection, the human intestinal pathogen Vibrio cholerae must overcome noxious compounds that damage the bacterial outer membrane. The El Tor and classical biotypes of O1 V. cholerae show striking differences in their resistance to membrane disrupting cationic antimicrobial peptides (CAMPs), such as polymyxins. The classical biotype is susceptible to CAMPs, but current pandemic El Tor biotype isolates gain CAMP resistance by altering the net charge of their cell surface through glycine modification of lipid A. Here we report a second lipid A modification mechanism that only functions in the V. cholerae El Tor biotype. We identify a functional EptA ortholog responsible for the transfer of the amino-residue phosphoethanolamine (pEtN) to the lipid A of V. cholerae El Tor that is not functional in the classical biotype. We previously reported that mildly acidic growth conditions (pH 5.8) downregulate expression of genes encoding the glycine modification machinery. In this report, growth at pH 5.8 increases expression of eptA with concomitant pEtN modification suggesting coordinated regulation of these LPS modification systems. Similarly, efficient pEtN lipid A substitution is seen in the absence of lipid A glycinylation. We further demonstrate EptA orthologs from non-cholerae Vibrio species are functional.
Collapse
Affiliation(s)
- Carmen M Herrera
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy C Henderson
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Alexander A Crofts
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - M Stephen Trent
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
42
|
Suárez-Esquivel M, Baker KS, Ruiz-Villalobos N, Hernández-Mora G, Barquero-Calvo E, González-Barrientos R, Castillo-Zeledón A, Jiménez-Rojas C, Chacón-Díaz C, Cloeckaert A, Chaves-Olarte E, Thomson NR, Moreno E, Guzmán-Verri C. Brucella Genetic Variability in Wildlife Marine Mammals Populations Relates to Host Preference and Ocean Distribution. Genome Biol Evol 2017; 9:1901-1912. [PMID: 28854602 PMCID: PMC5554395 DOI: 10.1093/gbe/evx137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
Intracellular bacterial pathogens probably arose when their ancestor adapted from a free-living environment to an intracellular one, leading to clonal bacteria with smaller genomes and less sources of genetic plasticity. Still, this plasticity is needed to respond to the challenges posed by the host. Members of the Brucella genus are facultative-extracellular intracellular bacteria responsible for causing brucellosis in a variety of mammals. The various species keep different host preferences, virulence, and zoonotic potential despite having 97-99% similarity at genome level. Here, we describe elements of genetic variation in Brucella ceti isolated from wildlife dolphins inhabiting the Pacific Ocean and the Mediterranean Sea. Comparison with isolates obtained from marine mammals from the Atlantic Ocean and the broader Brucella genus showed distinctive traits according to oceanic distribution and preferred host. Marine mammal isolates display genetic variability, represented by an important number of IS711 elements as well as specific IS711 and SNPs genomic distribution clustering patterns. Extensive pseudogenization was found among isolates from marine mammals as compared with terrestrial ones, causing degradation in pathways related to energy, transport of metabolites, and regulation/transcription. Brucella ceti isolates infecting particularly dolphin hosts, showed further degradation of metabolite transport pathways as well as pathways related to cell wall/membrane/envelope biogenesis and motility. Thus, gene loss through pseudogenization is a source of genetic variation in Brucella, which in turn, relates to adaptation to different hosts. This is relevant to understand the natural history of bacterial diseases, their zoonotic potential, and the impact of human interventions such as domestication.
Collapse
Affiliation(s)
- Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Kate S. Baker
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Institute for Integrative Biology, University of Liverpool, United Kingdom
| | - Nazareth Ruiz-Villalobos
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Gabriela Hernández-Mora
- Servicio Nacional de Salud Animal, Ministerio de Agricultura y Ganadería, Heredia, Costa Rica
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Amanda Castillo-Zeledón
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - César Jiménez-Rojas
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Axel Cloeckaert
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
43
|
Zhang H, Xiong Y, Xia R, Wei C, Shi X, Nie F. The pseudogene-derived long noncoding RNA SFTA1P is down-regulated and suppresses cell migration and invasion in lung adenocarcinoma. Tumour Biol 2017; 39:1010428317691418. [PMID: 28231733 DOI: 10.1177/1010428317691418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pseudogenes were once considered to be genomic fossils without biological function. Interestingly, recent evidence showed that a lot of pseudogenes are transcribed in human cancers, and their alterations contribute to multiple cancer development and progression. It is apparent that many pseudogenes transcribe noncoding RNAs and contribute to the role noncoding genome plays in human cancers. On this basis, some pseudogene transcripts are currently ranked among the classes of long noncoding RNAs. In this study, we identified a new pseudogene-derived long noncoding RNA termed SFTA1P by analyzing the microarray data of non-small cell lung cancer from Gene Expression Omnibus datasets. We found that SFTA1P expression was significantly decreased in non-small cell lung cancer tissues compared with normal tissues in non-small cell lung cancer microarray data. Moreover, decreased SFTA1P expression is only correlated with lung adenocarcinoma patients' poor survival time but not with lung squamous cell carcinoma patients' survival. In addition, gain-of-function studies including growth curves, migration, invasion assays, and in vivo studies were performed to verify the tumor suppressor role of SFTA1P in non-small cell lung cancer. Finally, the potential underlying pathways involved in SFTA1P were investigated by analyzing the SFTA1P-correlated genes in The Cancer Genome Atlas lung adenocarcinoma and normal tissues RNA sequencing data. Taken together, these findings demonstrate that pseudogene-derived long noncoding RNA SFTA1P exerts the tumor suppressor functions in human lung adenocarcinoma. Our investigation reveals the novel roles of pseudogene in lung adenocarcinoma, which may serve as a new target for lung adenocarcinoma diagnosis and therapy.
Collapse
Affiliation(s)
- Hua Zhang
- 1 Department of Joint Trauma, Junan County People's Hospital, Linyi, People's Republic of China
| | - Yaqiong Xiong
- 2 Department of Respiratory Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, People's Republic of China
| | - Rui Xia
- 3 Department of Clinical Laboratory, Nanjing Chest Hospital, Nanjing, People's Republic of China
| | - Chenchen Wei
- 4 Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuefei Shi
- 5 Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Fengqi Nie
- 4 Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
44
|
Vonk JM, Scholtens S, Postma DS, Moffatt MF, Jarvis D, Ramasamy A, Wjst M, Omenaas ER, Bouzigon E, Demenais F, Nadif R, Siroux V, Polonikov AV, Solodilova M, Ivanov VP, Curjuric I, Imboden M, Kumar A, Probst-Hensch N, Ogorodova LM, Puzyrev VP, Bragina EY, Freidin MB, Nolte IM, Farrall AM, Cookson WOCM, Strachan DP, Koppelman GH, Boezen HM. Adult onset asthma and interaction between genes and active tobacco smoking: The GABRIEL consortium. PLoS One 2017; 12:e0172716. [PMID: 28253294 PMCID: PMC5333809 DOI: 10.1371/journal.pone.0172716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/08/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified novel genetic associations for asthma, but without taking into account the role of active tobacco smoking. This study aimed to identify novel genes that interact with ever active tobacco smoking in adult onset asthma. METHODS We performed a genome-wide interaction analysis in six studies participating in the GABRIEL consortium following two meta-analyses approaches based on 1) the overall interaction effect and 2) the genetic effect in subjects with and without smoking exposure. We performed a discovery meta-analysis including 4,057 subjects of European descent and replicated our findings in an independent cohort (LifeLines Cohort Study), including 12,475 subjects. RESULTS First approach: 50 SNPs were selected based on an overall interaction effect at p<10-4. The most pronounced interaction effect was observed for rs9969775 on chromosome 9 (discovery meta-analysis: ORint = 0.50, p = 7.63*10-5, replication: ORint = 0.65, p = 0.02). Second approach: 35 SNPs were selected based on the overall genetic effect in exposed subjects (p <10-4). The most pronounced genetic effect was observed for rs5011804 on chromosome 12 (discovery meta-analysis ORint = 1.50, p = 1.21*10-4; replication: ORint = 1.40, p = 0.03). CONCLUSIONS Using two genome-wide interaction approaches, we identified novel polymorphisms in non-annotated intergenic regions on chromosomes 9 and 12, that showed suggestive evidence for interaction with active tobacco smoking in the onset of adult asthma.
Collapse
Affiliation(s)
- J. M. Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - S. Scholtens
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - D. S. Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands
| | - M. F. Moffatt
- Division of Respiratory Sciences, Imperial College, London, United Kingdom
| | - D. Jarvis
- Population Health and Occupational Disease, Imperial College, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College, London, United Kingdom
| | - A. Ramasamy
- Population Health and Occupational Disease, Imperial College, London, United Kingdom
| | - M. Wjst
- Institute of Medical Statistics and Epidemiology (IMSE), Klinikum Rechts der Isar, Technical University, Munich, Germany
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease (iLBD), Helmholtz Center Munich, Neuherberg, Germany
| | - E. R. Omenaas
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - E. Bouzigon
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, Paris, France
- INSERM, UMR-946, Paris, France
| | - F. Demenais
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, Paris, France
- INSERM, UMR-946, Paris, France
| | - R. Nadif
- INSERM, U1168, VIMA: Aging and chronic diseases, Epidemiological and public health approaches, Villejuif, France
- Univ Versailles St-Quentin-en-Yvelines, UMR-S 1168, Montigny le Bretonneux, France
| | - V. Siroux
- INSERM, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
- Univ. Grenoble Alpes, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
- CHU de Grenoble, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - A. V. Polonikov
- Kursk State Medical University, Department of Biology, Medical Genetics and Ecology, Kursk, Russian Federation
| | - M. Solodilova
- Kursk State Medical University, Department of Biology, Medical Genetics and Ecology, Kursk, Russian Federation
| | - V. P. Ivanov
- Kursk State Medical University, Department of Biology, Medical Genetics and Ecology, Kursk, Russian Federation
| | - I. Curjuric
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - M. Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - A. Kumar
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - N. Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - V. P. Puzyrev
- Siberian State Medical University, Tomsk, Russia
- Research Institute of Medical Genetics, Tomsk NRMC, Russia
| | - E. Yu Bragina
- Research Institute of Medical Genetics, Tomsk NRMC, Russia
| | - M. B. Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, Russia
| | - I. M. Nolte
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - A. M. Farrall
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - D. P. Strachan
- Population Health Research Institute, St George's, University of London, London, United Kingdom
| | - G. H. Koppelman
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, Groningen, the Netherlands
| | - H. M. Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| |
Collapse
|
45
|
Sun M, Nie FQ, Zang C, Wang Y, Hou J, Wei C, Li W, He X, Lu KH. The Pseudogene DUXAP8 Promotes Non-small-cell Lung Cancer Cell Proliferation and Invasion by Epigenetically Silencing EGR1 and RHOB. Mol Ther 2017; 25:739-751. [PMID: 28131418 PMCID: PMC5363203 DOI: 10.1016/j.ymthe.2016.12.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 01/06/2023] Open
Abstract
Recently, the non-protein-coding functional elements in the human genome have been identified as key regulators in postgenomic biology, and a large number of pseudogenes as well as long non-coding RNAs (lncRNAs) have been found to be transcribed in multiple human cancers. However, only a small proportion of these pseudogenes has been functionally characterized. In this study, we screened for pseudogenes associated with human non-small-cell lung cancer (NSCLC) by comparative analysis of several independent datasets from the GEO. We identified a transcribed pseudogene named DUXAP8 that is upregulated in tumor tissues. Patients with higher DUXAP8 expression exhibited shorter survival, suggesting DUXAP8 as a new candidate prognostic marker for NSCLC patients. Knockdown of DUXAP8 impairs cell growth, migration, and invasion, and induces apoptosis both in vitro and in vivo. Mechanistically, DUXAP8 represses the tumor suppressors EGR1 and RHOB by recruiting histone demethylase LSD1 and histone methyltransferase EZH2, thereby promoting cell proliferation, migration, and invasion. These findings indicate that the pseudogene DUXAP8 may act as an oncogene in NSCLC by silencing EGR1 and RHOB transcription by binding with EZH2 and LSD1, which may offer a novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Ming Sun
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Feng-Qi Nie
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Chongshuang Zang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yunfei Wang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chenchen Wei
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiang He
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Kai-Hua Lu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
46
|
Koonin EV. Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol 2016; 14:114. [PMID: 28010725 PMCID: PMC5180405 DOI: 10.1186/s12915-016-0338-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The study of any biological features, including genomic sequences, typically revolves around the question: what is this for? However, population genetic theory, combined with the data of comparative genomics, clearly indicates that such a "pan-adaptationist" approach is a fallacy. The proper question is: how has this sequence evolved? And the proper null hypothesis posits that it is a result of neutral evolution: that is, it survives by sheer chance provided that it is not deleterious enough to be efficiently purged by purifying selection. To claim adaptation, the neutral null has to be falsified. The adaptationist fallacy can be costly, inducing biologists to relentlessly seek function where there is none.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
47
|
Ortega A, Villagra N, Urrutia I, Valenzuela L, Talamilla-Espinoza A, Hidalgo A, Rodas P, Gil F, Calderón I, Paredes-Sabja D, Mora G, Fuentes J. Lose to win: marT pseudogenization in Salmonella enterica serovar Typhi contributed to the surV -dependent survival to H 2 O 2 , and inside human macrophage-like cells. INFECTION GENETICS AND EVOLUTION 2016; 45:111-121. [DOI: 10.1016/j.meegid.2016.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023]
|
48
|
Tutar Y, Özgür A, Tutar E, Tutar L, Pulliero A, Izzotti A. Regulation of oncogenic genes by MicroRNAs and pseudogenes in human lung cancer. Biomed Pharmacother 2016; 83:1182-1190. [PMID: 27551766 DOI: 10.1016/j.biopha.2016.08.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is one of the most common mortal cancer types both for men and women. Several different biomarkers have been analyzed to reveal lung cancer prognosis pathways for developing efficient therapeutics and diagnostic agents. microRNAs (miRNAs) and pseudogenes are critical biomarkers in lung cancer and alteration of their expression levels has been identified in each step of lung cancer tumorigenesis. miRNAs and pseudogenes are crucial gene regulators in normal cells as well as in lung cancer cells, and they have both oncogenic and tumor-suppressive roles in lung cancer tumorigenesis. In this study, we have determined the relationship between lung cancer related oncogenes and miRNAs along with pseudogenes in lung cancer, and the results indicate their potential as biological markers for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Yusuf Tutar
- Cumhuriyet University, Faculty of Pharmacy, Department of Basic Sciences, Division of Biochemistry, Sivas, Turkey.
| | - Aykut Özgür
- Gaziosmanpaşa University, Faculty of Natural Sciences and Engineering, Department of Bioengineering, Tokat, Turkey
| | - Esen Tutar
- Kahramanmaraş Sütçü İmam University, Graduate School of Natural and Applied Sciences, Department of Bioengineering and Sciences, Kahramanmaraş, Turkey
| | - Lütfi Tutar
- Kahramanmaraş Sütçü İmam University, Faculty of Science and Letters, Department of Biology, Kahramanmaraş, Turkey
| | | | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Italy; Mutagenesis Unit, IRCCS University Hospital San Martino-IST, National Institute for Cancer Research, Genoa, Italy
| |
Collapse
|
49
|
Wheeler NE, Barquist L, Kingsley RA, Gardner PP. A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes. Bioinformatics 2016; 32:3566-3574. [PMID: 27503221 PMCID: PMC5181535 DOI: 10.1093/bioinformatics/btw518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 02/04/2023] Open
Abstract
Motivation: Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predicting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. Results: We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica. We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. Availability and Implementation: A program implementing DBS for pairwise genome comparisons is freely available at: https://github.com/UCanCompBio/deltaBS. Contact:nicole.wheeler@pg.canterbury.ac.nz or lars.barquist@uni-wuerzburg.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nicole E Wheeler
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Robert A Kingsley
- Institute of Food Research, Norwich Research Park, Norwich, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Paul P Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Bio-protection Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
50
|
The pseudogene derived long noncoding RNA DUXAP8 promotes gastric cancer cell proliferation and migration via epigenetically silencing PLEKHO1 expression. Oncotarget 2016; 8:52211-52224. [PMID: 28881724 PMCID: PMC5581023 DOI: 10.18632/oncotarget.11075] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer death due to its poor prognosis and limited treatment options. Evidence indicates that pseudogene-derived long noncoding RNAs (lncRNAs) may be important players in human cancer progression, including GC. In this paper, we report that a newly discovered pseudogene-derived lncRNA named DUXAP8, a 2107-bp RNA, was remarkably upregulated in GC. Additionally, a higher level of DUXAP8 expression in GC was significantly associated with greater tumor size, advanced clinical stage, and lymphatic metastasis. Patients with a higher level of DUXAP8 expression had a relatively poor prognosis. Further experiments revealed that knockdown of DUXAP8 significantly inhibited cell proliferation and migration, as documented in the SGC7901 and BGC823 cell lines. Furthermore, RNA immunoprecipitation and chromatin immunoprecipitation assays demonstrated that DUXAP8 could epigenetically suppress the expression of PLEKHO1 by binding to EZH2 and SUZ12 (two key components of PRC2), thus promoting GC development. Taken together, our findings suggest that the pseudogene-derived lncRNA DUXAP8 promotes the progression of GC and is a potential therapeutic target for GC intervention.
Collapse
|