1
|
Florini F, Visone JE, Hadjimichael E, Malpotra S, Nötzel C, Kafsack BFC, Deitsch KW. scRNA-seq reveals transcriptional plasticity of var gene expression in Plasmodium falciparum for host immune avoidance. Nat Microbiol 2025:10.1038/s41564-025-02008-5. [PMID: 40379932 DOI: 10.1038/s41564-025-02008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2025] [Indexed: 05/19/2025]
Abstract
Plasmodium falciparum evades antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. Previous work with clonal P. falciparum populations revealed var gene expression profiles inconsistent with uniform single var gene expression. However, the mechanisms underpinning this and how it might contribute to chronic infections were unclear. Here, using single-cell transcriptomics employing enrichment probes and a portable microwell system, we analysed var gene expression in clonal 3D7 and IT4 parasite lines. We show that in addition to mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. Reduced var gene expression resulted in greatly decreased antibody recognition of infected cells. This transcriptional flexibility provides parasites with greater adaptive capacity and could explain the antigenically 'invisible' parasites observed in chronic asymptomatic infections.
Collapse
Affiliation(s)
- Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Joseph E Visone
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Shivali Malpotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Christopher Nötzel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Björn F C Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Klimczak S, Packi K, Rudek A, Wenclewska S, Kurowski M, Kurczabińska D, Śliwińska A. The Influence of the Protozoan Giardia lamblia on the Modulation of the Immune System and Alterations in Host Glucose and Lipid Metabolism. Int J Mol Sci 2024; 25:8627. [PMID: 39201314 PMCID: PMC11354543 DOI: 10.3390/ijms25168627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Giardia lamblia, the cause of giardiasis, significantly impacts patients with metabolic disorders related to insulin resistance (IR). Both giardiasis and metabolic disorders share elements such as chronic inflammation and intestinal dysbiosis, which substantially affect the metabolic and cytokine profiles of patients. This review discusses the mechanisms of virulence of G. lamblia, its influence on the immune system, and its association with metabolic disorders. The review aims to show how G. lamblia invasion acts on the immune system and the glucose and lipid metabolism. Key findings reveal that G. lamblia infection, by disrupting intestinal permeability, alters microbiota composition and immune responses, potentially impairing metabolic status. Future research should focus on elucidating the specific mechanisms by which G. lamblia influences the metabolism, exploring the long-term consequences of chronic infection, and developing targeted therapeutic strategies that include both parasitic and metabolic aspects. These insights underscore the need for a multidisciplinary approach to the treatment of giardiasis in patients with metabolic disorders.
Collapse
Affiliation(s)
- Sylwia Klimczak
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- AllerGen Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland
| | - Kacper Packi
- AllerGen Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland
| | - Alicja Rudek
- AllerGen Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland
| | - Sylwia Wenclewska
- Diabetology and Internal Medicine Department, Provincial Hospital in Sieradz, 98-200 Sieradz, Poland
| | - Marcin Kurowski
- Department of Immunology and Allergy, Medical University of Lodz, 92-213 Lodz, Poland
| | | | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
3
|
Lagunas-Rangel FA. Exploration of Giardia small nucleolar RNAs (snoRNAs) and their possible microRNA derivatives. Parasitology 2024; 151:539-545. [PMID: 38767317 PMCID: PMC11427974 DOI: 10.1017/s003118202400060x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Small nucleolar RNAs (snoRNAs) are short non-coding RNAs that are abundant in the nucleoli of eukaryotic cells and play a crucial role in various aspects of ribosomal RNA (rRNA) maturation, including modifications such as 2′-O-methylation or pseudouridylation. On the other hand, Giardia duodenalis is a microaerophilic, flagellated, binucleate protozoan responsible for causing giardiasis. Although numerous snoRNAs have been detected in Giardia, their investigation remains limited. Nevertheless, they have been found to play a crucial role in the rRNA precursor processing pathway and influence other cellular functions. In addition, it has been proposed that some microRNAs are generated from these snoRNAs through excision by the Giardia endoribonuclease Dicer. These microRNAs are believed to contribute to the regulation of antigenic variation, which allows the parasite to evade the host immune response. Specifically, they play a role in modulating variant-specific surface proteins (VSPs) and other cysteine-rich surface antigens (CSAs). The main objective of this study was to bring together the available data on snoRNAs in Giardia, uncovering their functions in various processes and their importance on a global scale. In addition, the research delved into potential microRNAs speculated to originate from snoRNAs, exploring their impact on cellular processes.
Collapse
|
4
|
Florini F, Visone JE, Hadjimichael E, Malpotra S, Nötzel C, Kafsack BF, Deitsch KW. Transcriptional plasticity of virulence genes provides malaria parasites with greater adaptive capacity for avoiding host immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584127. [PMID: 38496509 PMCID: PMC10942408 DOI: 10.1101/2024.03.08.584127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Chronic, asymptomatic malaria infections contribute substantially to disease transmission and likely represent the most significant impediment preventing malaria elimination and eradication. Plasmodium falciparum parasites evade antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. This process can extend infections for up to a year; however, infections have been documented to last for over a decade, constituting an unseen reservoir of parasites that undermine eradication and control efforts. How parasites remain immunologically "invisible" for such lengthy periods is entirely unknown. Here we show that in addition to the accepted paradigm of mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. This unappreciated flexibility provides parasites with greater adaptive capacity than previously understood and challenges the dogma of mutually exclusive var gene expression. It also provides an explanation for the antigenically "invisible" parasites observed in chronic asymptomatic infections.
Collapse
Affiliation(s)
| | | | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Shivali Malpotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | | | - Björn F.C. Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
5
|
Barcons-Simon A, Carrington M, Siegel TN. Decoding the impact of nuclear organization on antigenic variation in parasites. Nat Microbiol 2023; 8:1408-1418. [PMID: 37524976 DOI: 10.1038/s41564-023-01424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the impact of nuclear organization on antigenic variation in the protozoan pathogens Trypanosoma brucei and Plasmodium falciparum. In particular, we highlight the relevance of nuclear organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation.
Collapse
Affiliation(s)
- Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
6
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
7
|
Comprehensive characterization of Cysteine-rich protein-coding genes of Giardia lamblia and their role during antigenic variation. Genomics 2022; 114:110462. [PMID: 35998788 DOI: 10.1016/j.ygeno.2022.110462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
Giardia lamblia encodes several families of cysteine-rich proteins, including the Variant-specific Surface Proteins (VSPs) involved in the process of antigenic variation. Their characteristics, definition and relationships are still controversial. An exhaustive analysis of the Cys-rich families including organization, features, evolution and levels of expression was performed, by combining pattern searches and predictions with massive sequencing techniques. Thus a new classification for Cys-rich proteins, genes and pseudogenes that better describes their involvement in Giardia's biology is presented. Moreover, three novel characteristics exclusive to the VSP genes, comprising an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation is presented as well as the finding that High Cysteine Membrane Proteins, upregulated under stress, may protect the parasite during VSP switching. These results allow better interpretation of previous reports providing the basis for further studies of the biology of this early-branching eukaryote.
Collapse
|
8
|
Castellanos M, Verhey TB, Goldstein M, Chaconas G. The Putative Endonuclease Activity of MutL Is Required for the Segmental Gene Conversion Events That Drive Antigenic Variation of the Lyme Disease Spirochete. Front Microbiol 2022; 13:888494. [PMID: 35663861 PMCID: PMC9159922 DOI: 10.3389/fmicb.2022.888494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi, encodes an elaborate antigenic variation system that promotes the ongoing variation of a major surface lipoprotein, VlsE. Changes in VlsE are continual and always one step ahead of the host acquired immune system, which requires 1–2 weeks to generate specific antibodies. By the time this happens, new VlsE variants have arisen that escape immunosurveillance, providing an avenue for persistent infection. This antigenic variation system is driven by segmental gene conversion events that transfer information from a series of silent cassettes (vls2-16) to the expression locus, vlsE. The molecular details of this process remain elusive. Recombinational switching at vlsE is RecA-independent and the only required factor identified to date is the RuvAB branch migrase. In this work we have used next generation long-read sequencing to analyze the effect of several DNA replication/recombination/repair gene disruptions on the frequency of gene conversions at vlsE and report a requirement for the mismatch repair protein MutL. Site directed mutagenesis of mutL suggests that the putative MutL endonuclease activity is required for recombinational switching at vlsE. This is the first report of an unexpected essential role for MutL in a bacterial recombination system and expands the known function of this protein as well as our knowledge of the details of the novel recombinational switching mechanism for vlsE variation.
Collapse
Affiliation(s)
- Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Theodore B. Verhey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Madeleine Goldstein
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: George Chaconas,
| |
Collapse
|
9
|
Florini F, Visone JE, Deitsch KW. Shared Mechanisms for Mutually Exclusive Expression and Antigenic Variation by Protozoan Parasites. Front Cell Dev Biol 2022; 10:852239. [PMID: 35350381 PMCID: PMC8957917 DOI: 10.3389/fcell.2022.852239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.
Collapse
Affiliation(s)
| | | | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
10
|
Krakovka S, Ribacke U, Miyamoto Y, Eckmann L, Svärd S. Characterization of Metronidazole-Resistant Giardia intestinalis Lines by Comparative Transcriptomics and Proteomics. Front Microbiol 2022; 13:834008. [PMID: 35222342 PMCID: PMC8866875 DOI: 10.3389/fmicb.2022.834008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Metronidazole (MTZ) is a clinically important antimicrobial agent that is active against both bacterial and protozoan organisms. MTZ has been used extensively for more than 60 years and until now resistance has been rare. However, a recent and dramatic increase in the number of MTZ resistant bacteria and protozoa is of great concern since there are few alternative drugs with a similarly broad activity spectrum. To identify key factors and mechanisms underlying MTZ resistance, we utilized the protozoan parasite Giardia intestinalis, which is commonly treated with MTZ. We characterized two in vitro selected, metronidazole resistant parasite lines, as well as one revertant, by analyzing fitness aspects associated with increased drug resistance and transcriptomes and proteomes. We also conducted a meta-analysis using already existing data from additional resistant G. intestinalis isolates. The combined data suggest that in vitro generated MTZ resistance has a substantial fitness cost to the parasite, which may partly explain why resistance is not widespread despite decades of heavy use. Mechanistically, MTZ resistance in Giardia is multifactorial and associated with complex changes, yet a core set of pathways involving oxidoreductases, oxidative stress responses and DNA repair proteins, is central to MTZ resistance in both bacteria and protozoa.
Collapse
Affiliation(s)
- Sascha Krakovka
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden.,SciLifeLab, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Benchimol M, de Souza W. Giardia intestinalis and its Endomembrane System. J Eukaryot Microbiol 2022; 69:e12893. [PMID: 35148450 DOI: 10.1111/jeu.12893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Giardia intestinalis has unique characteristics, even in the absence of certain organelles. For instance, Golgi and mitochondria are not found. On the other hand, there is a network of peripheral vacuoles (PVs) and mitosomes. The endoplasmic reticulum (ER), nuclear membrane, peroxisomes, and lipid bodies are present. The peripheral vacuole system seems to play several simultaneous roles. It is involved in the endocytic activity of the trophozoite but also has characteristics of early and late endosomes and even lysosomes, establishing a connection with the ER. Some of the PVs contain small vesicles, acting as multivesicular bodies, including the release of exosomes. The mitosomes are surrounded by two membranes, divide during mitosis, and are distributed throughout the cell. They do not contain DNA, enzymes involved in the citric acid cycle, respiratory chain, or ATP synthesis. However, they contain the iron-sulfur complex and transporters as TOM and TIM. Some mitosomes are linked to flagellar axonemes through a fibrillar connection. During encystation, two types of larger cytoplasmic vesicles appear. One originating from the ER contains the cyst wall proteins. Another contains carbohydrates. Both migrate to the cell periphery and fuse with plasma membrane secreting their contents to give rise to the cell wall.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade do Grande Rio (UNIGRANRIO), Rio de Janeiro Duque de Caxias, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Pipaliya SV, Santos R, Salas-Leiva D, Balmer EA, Wirdnam CD, Roger AJ, Hehl AB, Faso C, Dacks JB. Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biol 2021; 19:167. [PMID: 34446013 PMCID: PMC8394649 DOI: 10.1186/s12915-021-01077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Comparing a parasitic lineage to its free-living relatives is a powerful way to understand how that evolutionary transition to parasitism occurred. Giardia intestinalis (Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role in Giardia's pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined in G. intestinalis, and roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species. RESULTS We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed in Giardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement between Giardia strains. Microscopy-based investigations of key components of ESCRT machinery such as GiVPS36 and GiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the endoplasmic reticulum and, for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, including Giardia and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. CONCLUSIONS Our findings show that ESCRT machinery in G. intestinalis is far more varied and complete than previously thought, associates to multiple cellular locations, and presents changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Rui Santos
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Dayana Salas-Leiva
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Corina D Wirdnam
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
- Institute of Parasitology, Biology Centre, CAS, v.v.i. Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, London, UK.
| |
Collapse
|
13
|
Luzak V, López-Escobar L, Siegel TN, Figueiredo LM. Cell-to-Cell Heterogeneity in Trypanosomes. Annu Rev Microbiol 2021; 75:107-128. [PMID: 34228491 DOI: 10.1146/annurev-micro-040821-012953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent developments in single-cell and single-molecule techniques have revealed surprising levels of heterogeneity among isogenic cells. These advances have transformed the study of cell-to-cell heterogeneity into a major area of biomedical research, revealing that it can confer essential advantages, such as priming populations of unicellular organisms for future environmental stresses. Protozoan parasites, such as trypanosomes, face multiple and often hostile environments, and to survive, they undergo multiple changes, including changes in morphology, gene expression, and metabolism. But why does only a subset of proliferative cells differentiate to the next life cycle stage? Why do only some bloodstream parasites undergo antigenic switching while others stably express one variant surface glycoprotein? And why do some parasites invade an organ while others remain in the bloodstream? Building on extensive research performed in bacteria, here we suggest that biological noise can contribute to the fitness of eukaryotic pathogens and discuss the importance of cell-to-cell heterogeneity in trypanosome infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vanessa Luzak
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany.,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Lara López-Escobar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany.,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
14
|
Balmer EA, Faso C. The Road Less Traveled? Unconventional Protein Secretion at Parasite-Host Interfaces. Front Cell Dev Biol 2021; 9:662711. [PMID: 34109175 PMCID: PMC8182054 DOI: 10.3389/fcell.2021.662711] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
Protein secretion in eukaryotic cells is a well-studied process, which has been known for decades and is dealt with by any standard cell biology textbook. However, over the past 20 years, several studies led to the realization that protein secretion as a process might not be as uniform among different cargos as once thought. While in classic canonical secretion proteins carry a signal sequence, the secretory or surface proteome of several organisms demonstrated a lack of such signals in several secreted proteins. Other proteins were found to indeed carry a leader sequence, but simply circumvent the Golgi apparatus, which in canonical secretion is generally responsible for the modification and sorting of secretory proteins after their passage through the endoplasmic reticulum (ER). These alternative mechanisms of protein translocation to, or across, the plasma membrane were collectively termed “unconventional protein secretion” (UPS). To date, many research groups have studied UPS in their respective model organism of choice, with surprising reports on the proportion of unconventionally secreted proteins and their crucial roles for the cell and survival of the organism. Involved in processes such as immune responses and cell proliferation, and including far more different cargo proteins in different organisms than anyone had expected, unconventional secretion does not seem so unconventional after all. Alongside mammalian cells, much work on this topic has been done on protist parasites, including genera Leishmania, Trypanosoma, Plasmodium, Trichomonas, Giardia, and Entamoeba. Studies on protein secretion have mainly focused on parasite-derived virulence factors as a main source of pathogenicity for hosts. Given their need to secrete a variety of substrates, which may not be compatible with canonical secretion pathways, the study of mechanisms for alternative secretion pathways is particularly interesting in protist parasites. In this review, we provide an overview on the current status of knowledge on UPS in parasitic protists preceded by a brief overview of UPS in the mammalian cell model with a focus on IL-1β and FGF-2 as paradigmatic UPS substrates.
Collapse
Affiliation(s)
- Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Barrow P, Dujardin JC, Fasel N, Greenwood AD, Osterrieder K, Lomonossoff G, Fiori PL, Atterbury R, Rossi M, Lalle M. Viruses of protozoan parasites and viral therapy: Is the time now right? Virol J 2020; 17:142. [PMID: 32993724 PMCID: PMC7522927 DOI: 10.1186/s12985-020-01410-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Infections caused by protozoan parasites burden the world with huge costs in terms of human and animal health. Most parasitic diseases caused by protozoans are neglected, particularly those associated with poverty and tropical countries, but the paucity of drug treatments and vaccines combined with increasing problems of drug resistance are becoming major concerns for their control and eradication. In this climate, the discovery/repurposing of new drugs and increasing effort in vaccine development should be supplemented with an exploration of new alternative/synergic treatment strategies. Viruses, either native or engineered, have been employed successfully as highly effective and selective therapeutic approaches to treat cancer (oncolytic viruses) and antibiotic-resistant bacterial diseases (phage therapy). Increasing evidence is accumulating that many protozoan, but also helminth, parasites harbour a range of different classes of viruses that are mostly absent from humans. Although some of these viruses appear to have no effect on their parasite hosts, others either have a clear direct negative impact on the parasite or may, in fact, contribute to the virulence of parasites for humans. This review will focus mainly on the viruses identified in protozoan parasites that are of medical importance. Inspired and informed by the experience gained from the application of oncolytic virus- and phage-therapy, rationally-driven strategies to employ these viruses successfully against parasitic diseases will be presented and discussed in the light of the current knowledge of the virus biology and the complex interplay between the viruses, the parasite hosts and the human host. We also highlight knowledge gaps that should be addressed to advance the potential of virotherapy against parasitic diseases.
Collapse
Affiliation(s)
- Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Jean Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat, 155, 2000, Antwerpen, Belgium
| | - Nicolas Fasel
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Ch. des Boveresses 155, 1066, Epalinges, Switzerland
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Institut für Virologie, Robert Von Ostertag-Haus - Zentrum Fuer Infektionsmedizin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Klaus Osterrieder
- Institut für Virologie, Robert Von Ostertag-Haus - Zentrum Fuer Infektionsmedizin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, 31 To Yuen Street, Kowloon, Hong Kong
| | - George Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pier Luigi Fiori
- Dipartimento Di Scienze Biomedice, Universita Degli Studi Di Sassari, Sardinia, Italy
| | - Robert Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Matteo Rossi
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Ch. des Boveresses 155, 1066, Epalinges, Switzerland
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Diseases, European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore Di Sanità, viale Regina Elena 299, 00186, Rome, Italy.
| |
Collapse
|
16
|
Giardia duodenalis Induces Apoptosis in Intestinal Epithelial Cells via Reactive Oxygen Species-Mediated Mitochondrial Pathway In Vitro. Pathogens 2020; 9:pathogens9090693. [PMID: 32842537 PMCID: PMC7559850 DOI: 10.3390/pathogens9090693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
The intestinal protozoan parasite, Giardia duodenalis, infects a large number of people in the world annually. Giardia infection has been considered a negative effect on intestinal epithelial cell growth, while the underlying mechanisms remain to be explored. Here we evaluated reactive oxygen species (ROS) production and apoptotic events in Giardia trophozoites-stimulated Caco-2 cells via fluorescence microscopy, transmission electron microscopy, flow cytometry, western blot, and cell counting kit-8 analyses. The results showed that Giardia trophozoite treatment could induce lactate dehydrogenase release and Caco-2 cell apoptosis. The ROS levels were increased post treatment. The observed typical characteristics of mitochondria damage include significant swelling and degeneration of matrix and cristae. After trophozoite treatment, the level of Bax protein expression was increased, while Bcl-2 protein decreased. Trophozoite stimulation also led to reduction of mitochondrial membrane potential and release of cytochrome c from the mitochondria to the cytoplasm, and this process was accompanied by activation of caspase-9 and caspase-3 and poly (ADP-ribose) polymerase 1 cleavage. Pretreatment with N-acetyl-L-cysteine, a ROS inhibitor, reversed G. duodenalis-induced Caco-2 cell apoptosis. Taken together, we indicated that G. duodenalis could induce Caco-2 cell apoptosis through a ROS- and mitochondria-mediated caspase-dependent pathway. This study furthers our understanding of the cellular mechanism of the interaction between Giardia trophozoites and host cells.
Collapse
|
17
|
Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D, Eckmann L, Andersson JO, Svärd SG, Jerlström-Hultqvist J. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genom 2020; 6:mgen000402. [PMID: 32618561 PMCID: PMC7641422 DOI: 10.1099/mgen.0.000402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Diplomonad parasites of the genus Giardia have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic Giardia species, Giardia intestinalis, has been extensively studied at the genome and gene expression level, but no such information is available for other Giardia species. Comparative data would be particularly valuable for Giardia muris, which colonizes mice and is commonly used as a prototypic in vivo model for investigating host responses to intestinal parasitic infection. Here we report the draft-genome of G. muris. We discovered a highly streamlined genome, amongst the most densely encoded ever described for a nuclear eukaryotic genome. G. muris and G. intestinalis share many known or predicted virulence factors, including cysteine proteases and a large repertoire of cysteine-rich surface proteins involved in antigenic variation. Different to G. intestinalis, G. muris maintains tandem arrays of pseudogenized surface antigens at the telomeres, whereas intact surface antigens are present centrally in the chromosomes. The two classes of surface antigens engage in genetic exchange. Reconstruction of metabolic pathways from the G. muris genome suggest significant metabolic differences to G. intestinalis. Additionally, G. muris encodes proteins that might be used to modulate the prokaryotic microbiota. The responsible genes have been introduced in the Giardia genus via lateral gene transfer from prokaryotic sources. Our findings point to important evolutionary steps in the Giardia genus as it adapted to different hosts and it provides a powerful foundation for mechanistic exploration of host-pathogen interaction in the G. muris-mouse pathosystem.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | | | - Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jan O. Andersson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| |
Collapse
|
18
|
Liu L, Wei Z, Fang R, Li X, Li W. Giardia duodenalis induces extrinsic pathway of apoptosis in intestinal epithelial cells through activation of TNFR1 and K63 de-ubiquitination of RIP1 in vitro. Microb Pathog 2020; 149:104315. [PMID: 32525021 DOI: 10.1016/j.micpath.2020.104315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/04/2023]
Abstract
Giardia duodenalis is one of main causative agents of diarrhea that affects the health of millions of people on a global scale per year. It has been clear that attachment of G. duodenalis trophozoites to intestinal epithelium cells (IECs) can induce cell death, while the underlying cellular and molecular mechanisms remain to be explored. It was shown in this study that treatment of Caco-2 cells with Giardia trophozoites could result in reduced cell viability. RNA sequencing analysis demonstrated that expressions of many apoptosis-related genes and some deubiquitinase genes displayed marked changes in trophozoite-treated cells. Trophozoites activated the death-signaling receptor TNFR1 on the IEC surface and caspase-3/8 (CASP3/8) signaling pathways in Caco-2 cells. K63 ubiquitination level of RIP1 was reduced upon stimulation with trophozoites, in parallel, the expressions of deubiquitinases CYLD and A20 were increased. The caspase inhibitor Q-VD-OPH could rescue trophozoite-induced cell apoptosis. Likewise, TNFR1, CYLD, and A20 silencing decreased the levels of cleaved CASP3/8 in trophozoite-treated cells and reversed the pro-apoptosis induction effect of trophozoites. These data suggest that Giardia trophozoite stimulation can activate CASP3/8 signaling pathways via activation of TNFR1 and K63 de-ubiquitination of RIP1 caused by up-regulated expressions of CYLD and A20, and promote Caco-2 cell apoptosis. The present study deepens our understanding of the mechanism of interaction between Giardia and IECs.
Collapse
Affiliation(s)
- Lin Liu
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ziyan Wei
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Rui Fang
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaoyun Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
19
|
Winzer P, Müller J, Imhof D, Ritler D, Uldry AC, Braga-Lagache S, Heller M, Ojo KK, Van Voorhis WC, Ortega-Mora LM, Hemphill A. Neospora caninum: Differential Proteome of Multinucleated Complexes Induced by the Bumped Kinase Inhibitor BKI-1294. Microorganisms 2020; 8:microorganisms8060801. [PMID: 32466554 PMCID: PMC7355844 DOI: 10.3390/microorganisms8060801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background: the apicomplexan parasite Neospora caninum causes important reproductive problems in farm animals, most notably in cattle. After infection via oocysts or tissue cysts, rapidly dividing tachyzoites infect various tissues and organs, and in immunocompetent hosts, they differentiate into slowly dividing bradyzoites, which form tissue cysts and constitute a resting stage persisting within infected tissues. Bumped kinase inhibitors (BKIs) of calcium dependent protein kinase 1 are promising drug candidates for the treatment of Neospora infections. BKI-1294 exposure of cell cultures infected with N. caninum tachyzoites results in the formation of massive multinucleated complexes (MNCs) containing numerous newly formed zoites, which remain viable for extended periods of time under drug pressure in vitro. MNC and tachyzoites exhibit considerable antigenic and structural differences. Methods: Using shotgun mass spectrometry, we compared the proteomes of tachyzoites to BKI-1294 induced MNCs, and analyzed the mRNA expression levels of selected genes in both stages. Results: More than half of the identified proteins are downregulated in MNCs as compared to tachyzoites. Only 12 proteins are upregulated, the majority of them containing SAG1 related sequence (SRS) domains, and some also known to be expressed in bradyzoites Conclusions: MNCs exhibit a proteome different from tachyzoites, share some bradyzoite-like features, but may constitute a third stage, which remains viable and ensures survival under adverse conditions such as drug pressure. We propose the term “baryzoites” for this stage (from Greek βαρυσ = massive, bulky, heavy, inert).
Collapse
Affiliation(s)
- Pablo Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Correspondence: (J.M.); (A.H.); Tel.: +41-31-631-23-84 (A.H.); Fax: +41-31-631-24-76 (A.H.)
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010 Berne, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Sophie Braga-Lagache
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010 Berne, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010 Berne, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Correspondence: (J.M.); (A.H.); Tel.: +41-31-631-23-84 (A.H.); Fax: +41-31-631-24-76 (A.H.)
| |
Collapse
|
20
|
Abstract
Microbial parasites adapted to thrive at mammalian mucosal surfaces have evolved multiple times from phylogenetically distant lineages into various extracellular and intracellular life styles. Their symbiotic relationships can range from commensalism to parasitism and more recently some host-parasites interactions are thought to have evolved into mutualistic associations too. It is increasingly appreciated that this diversity of symbiotic outcomes is the product of a complex network of parasites-microbiota-host interactions. Refinement and broader use of DNA based detection techniques are providing increasing evidence of how common some mucosal microbial parasites are and their host range, with some species being able to swap hosts, including from farm and pet animals to humans. A selection of examples will illustrate the zoonotic potential for a number of microbial parasites and how some species can be either disruptive or beneficial nodes in the complex networks of host-microbe interactions disrupting or maintaining mucosal homoeostasis. It will be argued that mucosal microbial parasitic diversity will represent an important resource to help us dissect through comparative studies the role of host-microbe interactions in both human health and disease.
Collapse
|
21
|
Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. Recent advances in functional research in Giardia intestinalis. ADVANCES IN PARASITOLOGY 2020; 107:97-137. [PMID: 32122532 PMCID: PMC7878119 DOI: 10.1016/bs.apar.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review considers current advances in tools to investigate the functional biology of Giardia, it's coding and non-coding genes, features and cellular and molecular biology. We consider major gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and genomic elements, as well as detailed exploration of coding genes through inferred homology to model organisms, have provided significant, primary level insight. Improved methods to model the three-dimensional structure of proteins offer new insights into their function, and binding interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to prioritise proteins for further study and experimentation. These approaches can be supplemented by the growing and highly accessible arsenal of systems-based methods now being applied to Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating advanced tools for detection of real-time transcription, evaluation of chromatin states and direct measurement of macromolecular complexes. Methods to directly interrogate and perturb gene function have made major leaps in recent years, with CRISPr-interference now available. These approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo imaging, are set to revolutionize the field and herald an exciting time during which the field may finally realise Giardia's long proposed potential as a model parasite and eukaryote.
Collapse
Affiliation(s)
- Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Staffan Svärd
- Centre for Biomedicine, Uppsala University, Uppsala, Sweden
| | - Kari D Hagen
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Hannah Starcevich
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Chris Nosala
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Scott C Dawson
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| |
Collapse
|
22
|
Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. ADVANCES IN PARASITOLOGY 2020; 107:201-282. [PMID: 32122530 DOI: 10.1016/bs.apar.2019.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of chemotherapeutic drugs is the main resource against clinical giardiasis due to the lack of approved vaccines. Resistance of G. duodenalis to the most used drugs to treat giardiasis, metronidazole and albendazole, is a clinical issue of growing concern and yet unknown impact, respectively. In the search of new drugs, the completion of the Giardia genome project and the use of biochemical, molecular and bioinformatics tools allowed the identification of ligands/inhibitors for about one tenth of ≈150 potential drug targets in this parasite. Further, the synthesis of second generation nitroimidazoles and benzimidazoles along with high-throughput technologies have allowed not only to define overall mechanisms of resistance to metronidazole but to screen libraries of repurposed drugs and new pharmacophores, thereby increasing the known arsenal of anti-giardial compounds to some hundreds, with most demonstrating activity against metronidazole or albendazole-resistant Giardia. In particular, cysteine-modifying agents which include omeprazole, disulfiram, allicin and auranofin outstand due to their pleiotropic activity based on the extensive repertoire of thiol-containing proteins and the microaerophilic metabolism of this parasite. Other promising agents derived from higher organisms including phytochemicals, lactoferrin and propolis as well as probiotic bacteria/fungi have also demonstrated significant potential for therapeutic and prophylactic purposes in giardiasis. In this context the present chapter offers a comprehensive review of the current knowledge, including commonly prescribed drugs, causes of therapeutic failures, drug resistance mechanisms, strategies for the discovery of new agents and alternative drug therapies.
Collapse
|
23
|
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 2020; 295:301-313. [PMID: 31753921 PMCID: PMC6956529 DOI: 10.1074/jbc.rev119.008583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
24
|
Emery-Corbin SJ, Grüttner J, Svärd S. Transcriptomic and proteomic analyses of Giardia intestinalis: Intestinal epithelial cell interactions. ADVANCES IN PARASITOLOGY 2019; 107:139-171. [PMID: 32122528 DOI: 10.1016/bs.apar.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia intestinalis is a unicellular protozoan parasite that infects the small intestines of humans and animals. Giardiasis, the disease caused by the parasite, occurs globally across socioeconomic boundaries but is mainly endemic in developing countries and particularly within young children, where pronounced effects manifests in a failure to thrive condition. The molecular pathogenesis of Giardia has been studied using in vitro models of human and rat intestinal epithelial cells (IECs) and parasites from the two major human genotypes or assemblages (A and B). High-quality, genome sequencing of representative isolates from assemblages A (WB) and B (GS) has enabled exploration of these host-parasite models using 'omics' technologies, allowing deep and quantitative analyses of global gene expression changes in IECs and parasites during their interactions, cross-talk and competition. These include a major up-regulation of immune-related genes in the IECs early after the start of interactions, as well as competition between host cells and parasites for nutrients like sugars, amino acids and lipids, which is also reflected in their secretome interactions. Unique parasite proteins dominate these interactions, with many major up-regulated genes being either hypothetical proteins or members of Giardia-specific gene families like the high-cysteine-rich membrane proteins (HCMPs), variable surface proteins (VSPs), alpha-giardins and cysteine proteases. Furthermore, these proteins also dominate in the secretomes, suggesting that they are important virulence factors in Giardia and crucial molecular effectors at the host-parasite interface.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Comparative Pathobiology of the Intestinal Protozoan Parasites Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Pathogens 2019; 8:pathogens8030116. [PMID: 31362451 PMCID: PMC6789772 DOI: 10.3390/pathogens8030116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Protozoan parasites can infect the human intestinal tract causing serious diseases. In the following article, we focused on the three most prominent intestinal protozoan pathogens, namely, Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Both C. parvum and G. lamblia colonize the duodenum, jejunum, and ileum and are the most common causative agents of persistent diarrhea (i.e., cryptosporidiosis and giardiasis). Entamoeba histolytica colonizes the colon and, unlike the two former pathogens, may invade the colon wall and disseminate to other organs, mainly the liver, thereby causing life-threatening amebiasis. Here, we present condensed information concerning the pathobiology of these three diseases.
Collapse
|
26
|
Faria J, Glover L, Hutchinson S, Boehm C, Field MC, Horn D. Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex. Nat Commun 2019; 10:3023. [PMID: 31289266 PMCID: PMC6617441 DOI: 10.1038/s41467-019-10823-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
The largest gene families in eukaryotes are subject to allelic exclusion, but mechanisms underpinning single allele selection and inheritance remain unclear. Here, we describe a protein complex sustaining variant surface glycoprotein (VSG) allelic exclusion and antigenic variation in Trypanosoma brucei parasites. The VSG-exclusion-1 (VEX1) protein binds both telomeric VSG-associated chromatin and VEX2, an ortholog of nonsense-mediated-decay helicase, UPF1. VEX1 and VEX2 assemble in an RNA polymerase-I transcription-dependent manner and sustain the active, subtelomeric VSG-associated transcription compartment. VSG transcripts and VSG coats become highly heterogeneous when VEX proteins are depleted. Further, the DNA replication-associated chromatin assembly factor, CAF-1, binds to and specifically maintains VEX1 compartmentalisation following DNA replication. Thus, the VEX-complex controls VSG-exclusion, while CAF-1 sustains VEX-complex inheritance in association with the active-VSG. Notably, the VEX2-orthologue and CAF-1 in mammals are also implicated in exclusion and inheritance functions. In trypanosomes, these factors sustain a highly effective and paradigmatic immune evasion strategy.
Collapse
Affiliation(s)
- Joana Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Sebastian Hutchinson
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Cordula Boehm
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Mark C Field
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
27
|
New Zealand White Rabbits Effectively Clear Borrelia burgdorferi B31 despite the Bacterium's Functional vlsE Antigenic Variation System. Infect Immun 2019; 87:IAI.00164-19. [PMID: 30988058 DOI: 10.1128/iai.00164-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Borrelia burgdorferi is a tick-borne bacterium responsible for approximately 300,000 annual cases of Lyme disease (LD) in the United States, with increasing incidences in other parts of the world. The debilitating nature of LD is mainly attributed to the ability of B. burgdorferi to persist in patients for many years despite strong anti-Borrelia antibody responses. Antimicrobial treatment of persistent infection is challenging. Similar to infection of humans, B. burgdorferi establishes long-term infection in various experimental animal models except for New Zealand White (NZW) rabbits, which clear the spirochete within 4 to 12 weeks. LD spirochetes have a highly evolved antigenic variation vls system, on the lp28-1 plasmid, where gene conversion results in surface expression of the antigenically variable VlsE protein. VlsE is required for B. burgdorferi to establish persistent infection by continually evading otherwise potent antibodies. Since the clearance of B. burgdorferi is mediated by humoral immunity in NZW rabbits, the previously reported results that LD spirochetes lose lp28-1 during rabbit infection could potentially explain the failure of B. burgdorferi to persist. However, the present study unequivocally disproves that previous finding by demonstrating that LD spirochetes retain the vls system. However, despite the vls system being fully functional, the spirochete fails to evade anti-Borrelia antibodies of NZW rabbits. In addition to being protective against homologous and heterologous challenges, the rabbit antibodies significantly ameliorate LD-induced arthritis in persistently infected mice. Overall, the current data indicate that NZW rabbits develop a protective antibody repertoire, whose specificities, once defined, will identify potential candidates for a much-anticipated LD vaccine.
Collapse
|
28
|
Bajic G, Maron MJ, Adachi Y, Onodera T, McCarthy KR, McGee CE, Sempowski GD, Takahashi Y, Kelsoe G, Kuraoka M, Schmidt AG. Influenza Antigen Engineering Focuses Immune Responses to a Subdominant but Broadly Protective Viral Epitope. Cell Host Microbe 2019; 25:827-835.e6. [PMID: 31104946 DOI: 10.1016/j.chom.2019.04.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 10/26/2022]
Abstract
Viral glycoproteins are under constant immune surveillance by a host's adaptive immune responses. Antigenic variation including glycan introduction or removal is among the mechanisms viruses have evolved to escape host immunity. Understanding how glycosylation affects immunodominance on complex protein antigens may help decipher underlying B cell biology. To determine how B cell responses can be altered by such modifications, we engineered glycans onto the influenza virus hemagglutinin (HA) and characterized the molecular features of the elicited humoral immunity in mice. We found that glycan addition changed the initially diverse antibody repertoire into an epitope-focused, genetically restricted response. Structural analyses showed that one antibody gene family targeted a previously subdominant, occluded epitope at the head interface. Passive transfer of this antibody conferred Fc-dependent protection to influenza virus-challenged mice. These results have potential implications for next-generation viral vaccines aimed at directing B cell responses to preferred epitope(s).
Collapse
Affiliation(s)
- Goran Bajic
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Max J Maron
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kevin R McCarthy
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles E McGee
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | | | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Masayuki Kuraoka
- Department of Immunology, Duke University, Durham, NC 27710, USA.
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Kim J, Shin MY, Park SJ. RNA-sequencing Profiles of Cell Cycle-Related Genes Upregulated during the G2-Phase in Giardia lamblia. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:185-189. [PMID: 31104412 PMCID: PMC6526219 DOI: 10.3347/kjp.2019.57.2.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/27/2019] [Indexed: 01/13/2023]
Abstract
To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.
Collapse
Affiliation(s)
- Juri Kim
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Mee Young Shin
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
30
|
Müller J, Braga S, Heller M, Müller N. Resistance formation to nitro drugs in Giardia lamblia: No common markers identified by comparative proteomics. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 9:112-119. [PMID: 30889439 PMCID: PMC6423486 DOI: 10.1016/j.ijpddr.2019.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
In order to elucidate the question whether resistance to nitro drugs in G. lamblia is due to common resistance markers, trophozoites of three resistant G. lamblia strains, namely C4, 1062ID10, and 713M3 were grown in the presence of the two nitro drugs metronidazole and nitazoxanide and compared to their corresponding wild-types WBC6, 106, and 713 by mass spectometry shotgun analysis of their proteomes. Depending on the strain and the nitro drug, more than 200 to 500 differentially expressed proteins were identified, but there were no common patterns across strains and drugs. All resistant strains underwent antigenic variation with distinct surface antigens like variant surface proteins or cysteine rich proteins depending on strain and nitro compound. A closer look on enzymes involved in nitroreduction and detoxification of nitro radicals, NO or O2 suggested the existence of distinct strategies for each drug and each strain. Therefore, we conclude that resistance to nitro drugs in G. lamblia is not correlated with a specific pattern of differentially expressed proteins and therefore seems not to be the result of a directed process. Is resistance to nitro drugs in G. lamblia due to common resistance markers? Three resistant strains were grown in the presence of two nitro drugs separately and compared to wild-types by MS shotgun analysis. More than 200 to 500 differentially expressed proteins identified depending on strain and drug. No common patterns across strains and drugs. Strain specific antigenic variation and strategies linked to nitro reduction.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland.
| | - Sophie Braga
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010, Berne, Switzerland.
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010, Berne, Switzerland.
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland.
| |
Collapse
|
31
|
Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nat Commun 2019; 10:361. [PMID: 30664644 PMCID: PMC6341118 DOI: 10.1038/s41467-018-08265-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal and free-living protozoa, such as Giardia lamblia, express a dense coat of variant-specific surface proteins (VSPs) on trophozoites that protects the parasite inside the host’s intestine. Here we show that VSPs not only are resistant to proteolytic digestion and extreme pH and temperatures but also stimulate host innate immune responses in a TLR-4 dependent manner. We show that these properties can be exploited to both protect and adjuvant vaccine antigens for oral administration. Chimeric Virus-like Particles (VLPs) decorated with VSPs and expressing model surface antigens, such as influenza virus hemagglutinin (HA) and neuraminidase (NA), are protected from degradation and activate antigen presenting cells in vitro. Orally administered VSP-pseudotyped VLPs, but not plain VLPs, generate robust immune responses that protect mice from influenza infection and HA-expressing tumors. This versatile vaccine platform has the attributes to meet the ultimate challenge of generating safe, stable and efficient oral vaccines. Giardia lamblia express a dense coat of variant-specific surface proteins (VSPs) on trophozoites that protects the parasite inside the host´s intestine. Here the authors show that stability and immunomodulatory properties of VSPs can be exploited to both protect and adjuvant vaccine antigens for oral administration.
Collapse
|
32
|
Kabbara S, Hérivaux A, Dugé de Bernonville T, Courdavault V, Clastre M, Gastebois A, Osman M, Hamze M, Cock JM, Schaap P, Papon N. Diversity and Evolution of Sensor Histidine Kinases in Eukaryotes. Genome Biol Evol 2019; 11:86-108. [PMID: 30252070 PMCID: PMC6324907 DOI: 10.1093/gbe/evy213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Histidine kinases (HKs) are primary sensor proteins that act in cell signaling pathways generically referred to as "two-component systems" (TCSs). TCSs are among the most widely distributed transduction systems used by both prokaryotic and eukaryotic organisms to detect and respond to a broad range of environmental cues. The structure and distribution of HK proteins are now well documented in prokaryotes, but information is still fragmentary for eukaryotes. Here, we have taken advantage of recent genomic resources to explore the structural diversity and the phylogenetic distribution of HKs in the prominent eukaryotic supergroups. Searches of the genomes of 67 eukaryotic species spread evenly throughout the phylogenetic tree of life identified 748 predicted HK proteins. Independent phylogenetic analyses of predicted HK proteins were carried out for each of the major eukaryotic supergroups. This allowed most of the compiled sequences to be categorized into previously described HK groups. Beyond the phylogenetic analysis of eukaryotic HKs, this study revealed some interesting findings: 1) characterization of some previously undescribed eukaryotic HK groups with predicted functions putatively related to physiological traits; 2) discovery of HK groups that were previously believed to be restricted to a single kingdom in additional supergroups, and 3) indications that some evolutionary paths have led to the appearance, transfer, duplication, and loss of HK genes in some phylogenetic lineages. This study provides an unprecedented overview of the structure and distribution of HKs in the Eukaryota and represents a first step toward deciphering the evolution of TCS signaling in living organisms.
Collapse
Affiliation(s)
- Samar Kabbara
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Anaïs Hérivaux
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | | | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Marc Clastre
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Amandine Gastebois
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, Roscoff, France
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, United Kingdom
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| |
Collapse
|
33
|
Chromatin clues to the trypanosome parasite's uniform coat. Nature 2018; 563:40-42. [PMID: 30375500 DOI: 10.1038/d41586-018-07008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Argüello-García R, de la Vega-Arnaud M, Loredo-Rodríguez IJ, Mejía-Corona AM, Melgarejo-Trejo E, Espinoza-Contreras EA, Fonseca-Liñán R, González-Robles A, Pérez-Hernández N, Ortega-Pierres MG. Activity of Thioallyl Compounds From Garlic Against Giardia duodenalis Trophozoites and in Experimental Giardiasis. Front Cell Infect Microbiol 2018; 8:353. [PMID: 30374433 PMCID: PMC6196658 DOI: 10.3389/fcimb.2018.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fresh aqueous extracts (AGEs) and several thioallyl compounds (TACs) from garlic have an important antimicrobial activity that likely involves their interaction with exposed thiol groups at single aminoacids or target proteins. Since these groups are present in Giardia duodenalis trophozoites, in this work we evaluated the anti-giardial activity of AGE and several garlic's TACs. In vitro susceptibility assays showed that AGE affected trophozoite viability initially by a mechanism impairing cell integrity and oxidoreductase activities while diesterase activities were abrogated at higher AGE concentrations. The giardicidal activities of seven TACs were related to the molecular descriptor HOMO (Highest Occupied Molecular Orbital) energy and with their capacity to modify the -SH groups exposed in giardial proteins. Interestingly, the activity of several cysteine proteases in trophozoite lysates was inhibited by representative TACs as well as the cytopathic effect of the virulence factor giardipain-1. Of these, allicin showed the highest anti-giardial activity, the lower HOMO value, the highest thiol-modifying activity and the greatest inhibition of cysteine proteases. Allicin had a cytolytic mechanism in trophozoites with subsequent impairment of diesterase and oxidoreductase activities in a similar way to AGE. In addition, by electron microscopy a marked destruction of plasma membrane and endomembranes was observed in allicin-treated trophozoites while cytoskeletal elements were not affected. In further flow cytometry analyses pro-apoptotic effects of allicin concomitant to partial cell cycle arrest at G2 phase with the absence of oxidative stress were observed. In experimental infections of gerbils, the intragastric administration of AGE or allicin decreased parasite numbers and eliminated trophozoites in experimentally infected animals, respectively. These data suggest a potential use of TACs from garlic against G. duodenalis and in the treatment of giardiasis along with their additional benefits in the host's health.
Collapse
Affiliation(s)
- Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mariana de la Vega-Arnaud
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Iraís J. Loredo-Rodríguez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Adriana M. Mejía-Corona
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Elizabeth Melgarejo-Trejo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eulogia A. Espinoza-Contreras
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Fonseca-Liñán
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Experimental, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
35
|
Recent advances in the Giardia-host relationship reveal danger lurking behind the smile. PLoS Negl Trop Dis 2018; 12:e0006625. [PMID: 30188894 PMCID: PMC6126833 DOI: 10.1371/journal.pntd.0006625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
Ankarklev J, Lebbad M, Einarsson E, Franzén O, Ahola H, Troell K, Svärd SG. A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination. INFECTION GENETICS AND EVOLUTION 2018; 60:7-16. [DOI: 10.1016/j.meegid.2018.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/30/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
|
37
|
Cytokines, Antibodies, and Histopathological Profiles during Giardia Infection and Variant-Specific Surface Protein-Based Vaccination. Infect Immun 2018; 86:IAI.00773-17. [PMID: 29555679 DOI: 10.1128/iai.00773-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/10/2018] [Indexed: 12/13/2022] Open
Abstract
Giardiasis is one of the most common human intestinal diseases worldwide. Several experimental animal models have been used to evaluate Giardia infections, with gerbils (Meriones unguiculatus) being the most valuable model due to their high susceptibility to Giardia infection, abundant shedding of cysts, and pathophysiological alterations and signs of disease similar to those observed in humans. Here, we report cytokine and antibody profiles both during the course of Giardia infection in gerbils and after immunization with a novel oral vaccine comprising a mixture of purified variant-specific surface proteins (VSPs). Transcript levels of representative cytokines of different immune profiles as well as macro- and microtissue alterations were assessed in Peyer's patches, mesenteric lymph nodes, and spleens. During infection, cytokine responses showed a biphasic profile: an early induction of Th1 (gamma interferon [IFN-γ], interleukin-1β [IL-1β], IL-6, and tumor necrosis factor [TNF]), Th17 (IL-17), and Th2 (IL-4) cytokines, together with intestinal alterations typical of inflammation, followed by a shift toward a predominant Th2 (IL-5) response, likely associated with a counterregulatory mechanism. Conversely, immunization with an oral vaccine comprising the entire repertoire of VSPs specifically showed high levels of IL-17, IL-6, IL-4, and IL-5, without obvious signs of inflammation. Both immunized and infected animals developed local (intestinal secretory IgA [S-IgA]) and systemic (serum IgG) humoral immune responses against VSPs; however, only infected animals showed evident signs of giardiasis. This is the first comprehensive report of cytokine expression and anti-Giardia antibody production during infection and VSP vaccination in gerbils, a reliable model of the human disease.
Collapse
|
38
|
Synthesis and degradation of cAMP in Giardia lamblia: possible role and characterization of a nucleotidyl cyclase with a single cyclase homology domain. Biochem J 2017; 474:4001-4017. [PMID: 29054977 DOI: 10.1042/bcj20170590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/25/2023]
Abstract
Despite its importance in the regulation of growth and differentiation processes of a variety of organisms, the mechanism of synthesis and degradation of cAMP (cyclic AMP) has not yet been described in Giardia lamblia In this work, we measured significant quantities of cAMP in trophozoites of G. lamblia incubated in vitro and later detected how it increases during the first hours of encystation, and how it then returns to basal levels at 24 h. Through an analysis of the genome of G. lamblia, we found sequences of three putative enzymes - one phosphodiesterase (gPDE) and two nucleotidyl cyclases (gNC1 and gNC2) - that should be responsible for the regulation of cAMP in G. lamblia Later, an RT-PCR assay confirmed that these three genes are expressed in trophozoites. The bioinformatic analysis indicated that gPDE is a transmembrane protein of 154 kDa, with a single catalytic domain in the C-terminal end; gNC1 is predicted to be a transmembrane protein of 74 kDa, with only one class III cyclase homology domain (CHD) at the C-terminal end; and gNC2 should be a transmembrane protein of 246 kDa, with two class III CHDs. Finally, we cloned and enriched the catalytic domain of gNC1 (gNC1cd) from bacteria. After that, we confirmed that gNC1cd has adenylyl cyclase (AC) activity. This enzymatic activity depends on the presence of Mn2+ and Ca2+, but no significant activity was displayed in the presence of Mg2+ Additionally, the AC activity of gNC1cd is competitively inhibited with GTP, so it is highly possible that gNC1 has guanylyl cyclase activity as well.
Collapse
|
39
|
Verhey TB, Castellanos M, Chaconas G. Analysis of recombinational switching at the antigenic variation locus of the Lyme spirochete using a novel PacBio sequencing pipeline. Mol Microbiol 2017; 107:104-115. [PMID: 29105221 DOI: 10.1111/mmi.13873] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Abstract
The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Leitsch D. Drug susceptibility testing in microaerophilic parasites: Cysteine strongly affects the effectivities of metronidazole and auranofin, a novel and promising antimicrobial. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:321-327. [PMID: 28910741 PMCID: PMC5595233 DOI: 10.1016/j.ijpddr.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022]
Abstract
The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia annually cause hundreds of millions of human infections which are treated with antiparasitic drugs. Metronidazole is the most often prescribed drug but also other drugs are in use, and novel drugs with improved characteristics are constantly being developed. One of these novel drugs is auranofin, originally an antirheumatic which has been relabelled for the treatment of parasitic infections. Drug effectivity is arguably the most important criterion for its applicability and is commonly assessed in susceptibility assays using in vitro cultures of a given pathogen. However, drug susceptibility assays can be strongly affected by certain compounds in the growth media. In the case of microaerophilic parasites, cysteine which is added in large amounts as an antioxidant is an obvious candidate because it is highly reactive and known to modulate the toxicity of metronidazole in several microaerophilic parasites. In this study, it was attempted to reduce cysteine concentrations as far as possible without affecting parasite viability by performing drug susceptibility assays under strictly anaerobic conditions in an anaerobic cabinet. Indeed, T. vaginalis and E. histolytica could be grown without any cysteine added and the cysteine concentration necessary to maintain G. lamblia could be reduced to 20%. Susceptibilities to metronidazole were found to be clearly reduced in the presence of cysteine. With auranofin the protective effect of cysteine was extreme, providing protection to concentrations up to 100-fold higher as observed in the absence of cysteine. With three other drugs tested, albendazole, furazolidone and nitazoxanide, all in use against G. lamblia, the effect of cysteine was less pronounced. Oxygen was found to have a less marked impact on metronidazole and auranofin than cysteine but bovine bile which is standardly used in growth media for G. lamblia, displayed a marked synergistic effect with metronidazole. T. vaginalis and E. histolytica can grow anaerobically without cysteine. T. vaginalis and G. lamblia are more susceptible to metronidazole without cysteine. T. vaginalis is 100-fold more susceptible to auranofin without cysteine. G. lamblia is 12-fold more susceptible to auranofin with low cysteine. Bovine bile renders G. lamblia more susceptible to metronidazole.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.
| |
Collapse
|
41
|
Quintero J, Valdez A, Samaniego B, Lopez-Romero G, Astiazaran-Garcia H, Rascon L, Breci L, Garibay-Escobar A, Robles-Zepeda R, Velazquez C. Isolation and partial characterization of an immunogenic antigen of Giardia lamblia. Parasitol Int 2017; 66:324-330. [DOI: 10.1016/j.parint.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/26/2016] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
|
42
|
Allain T, Amat CB, Motta JP, Manko A, Buret AG. Interactions of Giardia sp. with the intestinal barrier: Epithelium, mucus, and microbiota. Tissue Barriers 2017; 5:e1274354. [PMID: 28452685 DOI: 10.1080/21688370.2016.1274354] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding how intestinal enteropathogens cause acute and chronic alterations has direct animal and human health perspectives. Significant advances have been made on this field by studies focusing on the dynamic crosstalk between the intestinal protozoan parasite model Giardia duodenalis and the host intestinal mucosa. The concept of intestinal barrier function is of the highest importance in the context of many gastrointestinal diseases such as infectious enteritis, inflammatory bowel disease, and post-infectious gastrointestinal disorders. This crucial function relies on 3 biotic and abiotic components, first the commensal microbiota organized as a biofilm, then an overlaying mucus layer, and finally the tightly structured intestinal epithelium. Herein we review multiple strategies used by Giardia parasite to circumvent these 3 components. We will summarize what is known and discuss preliminary observations suggesting how such enteropathogen directly and/ or indirectly impairs commensal microbiota biofilm architecture, disrupts mucus layer and damages host epithelium physiology and survival.
Collapse
Affiliation(s)
- Thibault Allain
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Christina B Amat
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Jean-Paul Motta
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Anna Manko
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - André G Buret
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| |
Collapse
|