1
|
Tang H, Wang Z, Li C, Yu J, Huang W, Zhou T, Zhang C, Wen B, Wang C, Zhu X, Wang D, Tao J, Lu J, Ni J, Yao YF. Disruption of sulfur transferase complex increases bacterial intramacrophage persistence. PLoS Pathog 2025; 21:e1013136. [PMID: 40367211 PMCID: PMC12077765 DOI: 10.1371/journal.ppat.1013136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Bacterial persisters contribute significantly to clinical treatment failure and relapse. These cells could resist antibiotic treatment via transient phenotypic and gene expression alterations. We conducted a high-throughput screening of Salmonella Typhimurium transposon mutants to identify key genes for intramacrophage antibiotic persistence. The results show that a sulfur transferase complex encoded by yheM, yheL, yheN, trmU and yhhP are involved in bacterial intramacrophage antibiotic persistence. Salmonella could persist in macrophages by downregulating the expression of the sulfur transferase complex during exposure to high concentrations of antibiotics, and even in a persistent infection mouse model. Mechanistically, deletion of yheM increases reactive nitrogen species (RNS) in the exponential phase, which inhibits bacterial respiration and ATP generation. In contrast, absence of yheM promotes persister formation by elevating (p)ppGpp levels in the stationary phase. Taken together, our data demonstrate that bacteria use the sulfur transferase to coordinate intramacrophage replication and persistence for adaptation to various environmental stresses. These findings reveal the role of the sulfur transferase complex in bacterial intramacrophage persistence and provide a promising target for antibacterial infection therapy.
Collapse
Affiliation(s)
- Huang Tang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congcong Li
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Huang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanzhen Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bingjie Wen
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyue Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaocen Zhu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
2
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial. PLoS Genet 2025; 21:e1011610. [PMID: 40053555 PMCID: PMC11918324 DOI: 10.1371/journal.pgen.1011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been described, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. A pyocyanin tolerant CodY mutant also had a survival advantage in co-culture with P. aeruginosa, likely through tolerance specifically to pyocyanin. The transcriptional response of the CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. First, the CodY mutant strongly suppressed metabolism by downregulating core metabolic pathways , especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Second, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways upon pyocyanin exposure, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain against purified pyocyanin and in co-culture with WT P. aeruginosa. Together, these results suggest that both transcriptional responses of reduced metabolism and an increased oxidative stress response likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Sim HS, Kwon YK, Song H, Hwang GS, Yeom J. Regulation of antibiotic persistence and pathogenesis in Acinetobacter baumannii by glutamate and histidine metabolic pathways. BMC Microbiol 2025; 25:74. [PMID: 39953398 PMCID: PMC11829494 DOI: 10.1186/s12866-024-03654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/15/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Metabolite production is essential for the proliferation and environmental adaptation of all living organisms. In pathogenic bacteria, metabolite exchange during host infection can regulate their physiology and virulence. However, there is still much unknown about which specific metabolic pathways in pathogenic bacteria respond to changes in the environment during infections. This study examines how pathogenic bacterium Acinetobacter baumannii uses particular metabolic pathways to regulate its ability to antibiotic persistence and pathogenesis. RESULTS To determine specific metabolic pathways in pathogenic antibiotic resistance bacteria, metabolite profiles of bacteria were constructed using ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry and multivariate statistical analysis. A. baumannii generates amino acid derivative metabolites, which are precursors for fatty acid production. Comparative genomic analysis identified specific genes regulating the production of these metabolites and fatty acids in A. baumannii. Inactivation of genes involved in glutamate metabolism, gdhA, aspB, murI1, and racD, impairs antibiotic persistence, while inactivation of the hisC gene, encoding histidinol - phosphate aminotransferase enzyme in histidine metabolic pathway, increases bacterial survival inside macrophages during infections. CONCLUSIONS This study reports that A. baumannii regulates antibiotic persistence and pathogenesis through glutamate and histidine metabolic pathways, respectively. These findings suggest that specific metabolic pathways regulate bacterial pathogenesis and antibiotic persistence during infections, providing potential therapeutic targets for pathogenic bacteria.
Collapse
Affiliation(s)
- Ho Seok Sim
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yong-Kook Kwon
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea
- Division of Food Safety Risk Assessment, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Hokyung Song
- Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea.
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Jinki Yeom
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea.
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Rahman KMT, Amaratunga R, Butzin XY, Singh A, Hossain T, Butzin NC. Rethinking dormancy: Antibiotic persisters are metabolically active, non-growing cells. Int J Antimicrob Agents 2025; 65:107386. [PMID: 39551274 DOI: 10.1016/j.ijantimicag.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVES Bacterial persisters are a subpopulation of multidrug-tolerant cells capable of surviving and resuming activity after exposure to bactericidal antibiotic concentrations, contributing to relapsing infections and the development of antibiotic resistance. In this study, we challenge the conventional view that persisters are metabolically dormant by providing compelling evidence that an isogenic population of Escherichia coli remains metabolically active in persistence. METHODS Using transcriptomic analysis, we examined E. coli persisters at multiple time points following exposure to bactericidal concentrations of ampicillin (Amp). Some genes were consistently upregulated in Amp treated persisters compared to the untreated controls, a change that can only occur in metabolically active cells capable of increasing RNA levels. RESULTS Some of the identified genes have been previously linked to persister cells, while others have not been associated with them before. If persister cells were metabolically dormant, gene expression changes over time would be minimal during Amp treatment. However, network analysis revealed major shifts in gene network activity at various time points of antibiotic exposure. CONCLUSIONS These findings reveal that persisters are metabolically active, non-dividing cells, thereby challenging the traditional view that they are dormant.
Collapse
Affiliation(s)
- K M Taufiqur Rahman
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Ruqayyah Amaratunga
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Xuan Yi Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA; Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, South Dakota, USA.
| |
Collapse
|
5
|
Batchelder JI, Taylor AJ, Mok WWK. Metabolites augment oxidative stress to sensitize antibiotic-tolerant Staphylococcus aureus to fluoroquinolones. mBio 2024; 15:e0271424. [PMID: 39475229 PMCID: PMC11633220 DOI: 10.1128/mbio.02714-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024] Open
Abstract
If left unchecked, infections involving antibiotic-refractory bacteria are expected to cause millions of deaths per year in the coming decades. Beyond genetically resistant bacteria, persisters, which are genetically susceptible cells that survive antibiotic doses that kill the rest of the clonal population, can potentially contribute to treatment failure and infection relapse. Stationary-phase bacterial cultures are enriched with persisters, and it has been shown that stimulating these populations with exogenous nutrients can reduce persistence to different classes of antibiotics, including topoisomerase-targeting fluoroquinolones (FQs). In this study, we show that adding glucose and amino acids to nutrient-starved Staphylococcus aureus cultures enhanced their sensitivity to FQs, including delafloxacin (Dela)-a drug that was recently approved for treating staphylococcal infections. We found that while the added nutrients increased nucleic acid synthesis, this increase was not required to sensitize S. aureus to FQs. We further demonstrate that addition of these nutrients increases membrane potential and the ability to generate harmful reactive oxygen species (ROS) during FQ treatment. Chelating iron, scavenging hydroxyl radicals, and limiting oxygenation during FQ treatment and during recovery following FQ treatment rescued nutrient-stimulated S. aureus. In all, our data suggest that while nutrient stimulation increases the activity of FQ targets in stationary-phase S. aureus, the resulting generation of ROS, presumably made possible through metabolic upregulation, is the primary driver of increased sensitivity to these drugs.IMPORTANCEStaphylococcus aureus causes many chronic and relapsing infections because of its ability to endure host immunity and antibiotic therapy. While several studies have focused on the nutrient requirements for the formation and maintenance of staphylococcal infections, the effects of the nutrient environment on bacterial responses to antibiotic treatment remain understudied. Here, we show that adding nutrients to starved S. aureus activates biosynthetic processes, including DNA synthesis, but it is the generation of harmful reactive oxidants that sensitizes S. aureus to DNA topoisomerase-targeting FQs. Our results suggest that the development of approaches aimed at perturbing metabolism and increasing oxidative stress can potentiate the bactericidal activity of FQs against antibiotic-tolerant S. aureus.
Collapse
Affiliation(s)
- Jonathan I. Batchelder
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Andrew J. Taylor
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Wendy W. K. Mok
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
6
|
Deventer AT, Stevens CE, Stewart A, Hobbs JK. Antibiotic tolerance among clinical isolates: mechanisms, detection, prevalence, and significance. Clin Microbiol Rev 2024; 37:e0010624. [PMID: 39364999 PMCID: PMC11629620 DOI: 10.1128/cmr.00106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYAntibiotic treatment failures in the absence of resistance are not uncommon. Recently, attention has grown around the phenomenon of antibiotic tolerance, an underappreciated contributor to recalcitrant infections first detected in the 1970s. Tolerance describes the ability of a bacterial population to survive transient exposure to an otherwise lethal concentration of antibiotic without exhibiting resistance. With advances in genomics, we are gaining a better understanding of the molecular mechanisms behind tolerance, and several studies have sought to examine the clinical prevalence of tolerance. Attempts have also been made to assess the clinical significance of tolerance through in vivo infection models and prospective/retrospective clinical studies. Here, we review the data available on the molecular mechanisms, detection, prevalence, and clinical significance of genotypic tolerance that span ~50 years. We discuss the need for standardized methodology and interpretation criteria for tolerance detection and the impact that methodological inconsistencies have on our ability to accurately assess the scale of the problem. In terms of the clinical significance of tolerance, studies suggest that tolerance contributes to worse outcomes for patients (e.g., higher mortality, prolonged hospitalization), but historical data from animal models are varied. Furthermore, we lack the necessary information to effectively treat tolerant infections. Overall, while the tolerance field is gaining much-needed traction, the underlying clinical significance of tolerance that underpins all tolerance research is still far from clear and requires attention.
Collapse
Affiliation(s)
- Ashley T. Deventer
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Claire E. Stevens
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Amy Stewart
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Joanne K. Hobbs
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
7
|
Nazeer RR, Askenasy I, Swain JEV, Welch M. Contribution of the infection ecosystem and biogeography to antibiotic failure in vivo. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:45. [PMID: 39649078 PMCID: PMC11618093 DOI: 10.1038/s44259-024-00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
The acquisition of antibiotic resistance in bacteria, though a deeply concerning international issue, is reasonably well-understood at a mechanistic level. Less well-understood is why bacteria that are sensitive in vitro to well-established and widely-used antibiotics sometimes fail to respond to these agents in vivo. This is a particularly common problem in chronic, polymicrobial infection scenarios. Here, we discuss this in vitro-in vivo disconnect from the perspective of the bacterium, focusing in particular on how infection micro/macro-environment, biogeography, and the presence of co-habiting species affect the response to antibiotics. Using selected exemplars, we also consider interventions that might improve treatment outcomes, as well as ecologically 'eubiotic' approaches that have less of an impact on the patient's commensal microflora. In our view, the accrued data strongly suggest that we need a more comprehensive understanding of the in situ microbiology at infection sites.
Collapse
Affiliation(s)
| | - Isabel Askenasy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Cho E, Kim J, Hur JI, Ryu S, Jeon B. Pleiotropic cellular responses underlying antibiotic tolerance in Campylobacter jejuni. Front Microbiol 2024; 15:1493849. [PMID: 39651349 PMCID: PMC11622253 DOI: 10.3389/fmicb.2024.1493849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Antibiotic tolerance enables antibiotic-susceptible bacteria to withstand prolonged exposure to high concentrations of antibiotics. Although antibiotic tolerance presents a major challenge for public health, its underlying molecular mechanisms remain unclear. Previously, we have demonstrated that Campylobacter jejuni develops tolerance to clinically important antibiotics, including ciprofloxacin and tetracycline. To identify cellular responses associated with antibiotic tolerance, RNA-sequencing was conducted on C. jejuni after inducing antibiotic tolerance through exposure to ciprofloxacin or tetracycline. Additionally, knockout mutants were constructed for genes exhibiting significant changes in expression levels during antibiotic tolerance. The genes involved in protein chaperones, bacterial motility, DNA repair system, drug efflux pump, and iron homeostasis were significantly upregulated during antibiotic tolerance. These mutants displayed markedly reduced viability compared to the wild-type strain, indicating the critical role of these cellular responses in sustaining antibiotic tolerance. Notably, the protein chaperone mutants exhibited increased protein aggregation under antibiotic treatment, suggesting that protein chaperones play a critical role in managing protein disaggregation and facilitating survival during antibiotic tolerance. Our findings demonstrate that various cellular defense mechanisms collectively contribute to sustaining antibiotic tolerance in C. jejuni, providing novel insights into the molecular mechanisms underlying antibiotic tolerance.
Collapse
Affiliation(s)
- Eunshin Cho
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jinshil Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Jeong In Hur
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
9
|
Kadeřábková N, Mahmood AJS, Mavridou DAI. Antibiotic susceptibility testing using minimum inhibitory concentration (MIC) assays. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:37. [PMID: 39843555 PMCID: PMC11721449 DOI: 10.1038/s44259-024-00051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/25/2024] [Indexed: 01/24/2025]
Abstract
Antimicrobial resistance is due to genetic changes that allow bacteria to evade antibiotic treatment. Antimicrobial susceptibility testing is critical for the detection of antibiotic-resistant strains, the selection of effective therapeutic strategies against bacterial infections, and the evaluation of the efficacy of novel antimicrobials. Among the variety of clinical microbiology methods used for antibiotic susceptibility testing, minimum inhibitory concentration (MIC) assays have become the gold standard in clinical practice. MIC assays determine the lowest concentration of an antimicrobial agent that is required to inhibit visible bacterial growth in vitro. Here, we outline MIC assay protocols, in strict accordance with European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines that aim to assess the susceptibility of non-fastidious organisms to antimicrobial agents. The protocols described in this methods paper are intended to aid the performance of reliable and informative MIC assays for research purposes that are in line with clinical microbiology practices.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, TX, USA.
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, TX, USA
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, TX, USA.
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, 78712, TX, USA.
| |
Collapse
|
10
|
El Meouche I, Jain P, Jolly MK, Capp JP. Drug tolerance and persistence in bacteria, fungi and cancer cells: Role of non-genetic heterogeneity. Transl Oncol 2024; 49:102069. [PMID: 39121829 PMCID: PMC11364053 DOI: 10.1016/j.tranon.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
A common feature of bacterial, fungal and cancer cell populations upon treatment is the presence of tolerant and persistent cells able to survive, and sometimes grow, even in the presence of usually inhibitory or lethal drug concentrations, driven by non-genetic differences among individual cells in a population. Here we review and compare data obtained on drug survival in bacteria, fungi and cancer cells to unravel common characteristics and cellular pathways, and to point their singularities. This comparative work also allows to cross-fertilize ideas across fields. We particularly focus on the role of gene expression variability in the emergence of cell-cell non-genetic heterogeneity because it represents a possible common basic molecular process at the origin of most persistence phenomena and could be monitored and tuned to help improve therapeutic interventions.
Collapse
Affiliation(s)
- Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM, IAME, F-75018 Paris, France.
| | - Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, Toulouse, France.
| |
Collapse
|
11
|
Sun J, Wang X, Gao Y, Li S, Hu Z, Huang Y, Fan B, Wang X, Liu M, Qiao C, Zhang W, Wang Y, Ji X. H 2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H 2S for antibacterial sensitization. Nat Commun 2024; 15:9422. [PMID: 39482291 PMCID: PMC11527999 DOI: 10.1038/s41467-024-53764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
Bacteria-derived H2S plays multifunctional protective roles against antibiotics insult, and the H2S biogenesis pathway is emerging as a viable target for the antibacterial adjuvant design. However, the development of a pan-inhibitor against H2S-synthesizing enzymes is challenging and underdeveloped. Herein, we propose an alternative strategy to downregulate the H2S levels in H2S-producing bacteria, which depletes the bacteria-derived H2S chemically by H2S scavengers without acting on the synthesizing enzymes. After the screening of chemically diversified scaffolds and a structural optimization campaign, a potent and specific H2S scavenger is successfully identified, which displays efficient H2S depletion in several H2S-producing bacteria, potentiates both bactericidal agents and photodynamic therapy, enhances the bacterial clearance of macrophages and polymorphonuclear neutrophils, disrupts the formation of bacterial biofilm and increases the sensitivity of bacterial persister cells to antibiotics. Most importantly, such an H2S scavenger exhibits sensitizing effects with gentamicin in Pseudomonas aeruginosa -infected pneumonia and skin wound female mouse models. In aggregate, our results not only provide an effective strategy to deplete bacteria-derived H2S and establish the H2S biogenesis pathway as a viable target for persisters and drug-resistant bacteria, but also deliver a promising antibacterial adjuvant for potential clinical translation.
Collapse
Affiliation(s)
- Jiekai Sun
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xu Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Ye Gao
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Shuangyu Li
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Ziwei Hu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Yan Huang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Baoqiang Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xia Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Miao Liu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Chunhua Qiao
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Yipeng Wang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Xingyue Ji
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
12
|
Bates NA, Rodriguez R, Drwich R, Ray A, Stanley SA, Penn BH. Reactive Oxygen Detoxification Contributes to Mycobacterium abscessus Antibiotic Survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618103. [PMID: 39554100 PMCID: PMC11565942 DOI: 10.1101/2024.10.13.618103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
When a population of bacteria encounter a bactericidal antibiotic most cells die rapidly. However, a sub-population, known as "persister cells", can survive for prolonged periods in a non-growing, but viable, state. Persister cell frequency is dramatically increased by stresses such as nutrient deprivation, but it is unclear what pathways are required to maintain viability, and how this process is regulated. To identify the genetic determinants of antibiotic persistence in mycobacteria, we carried out transposon mutagenesis high-throughput sequencing (Tn-Seq) screens in Mycobacterium abscessus (Mabs). This analysis identified genes essential in both spontaneous and stress-induced persister cells, allowing the first genetic comparison of these states in mycobacteria, and unexpectedly identified multiple genes involved in the detoxification of reactive oxygen species (ROS). We found that endogenous ROS were generated following antibiotic exposure, and that the KatG catalase-peroxidase contributed to survival in both spontaneous and starvation-induced persisters. We also found that that hypoxia significantly impaired bacterial killing, and notably, in the absence of oxygen, KatG became dispensable. Thus, the lethality of some antibiotics is amplified by toxic ROS accumulation, and persister cells depend on detoxification systems to remain viable.
Collapse
Affiliation(s)
- Nicholas A. Bates
- Department of Internal Medicine, University of California, Davis, California, USA
- Graduate Group in Immunology, University of California, Davis, California, USA
| | - Ronald Rodriguez
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, California, USA
| | - Rama Drwich
- Department of Internal Medicine, University of California, Davis, California, USA
| | - Abigail Ray
- Microbiology Graduate Group, University of California, Davis, California, USA
| | - Sarah A. Stanley
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
| | - Bennett H. Penn
- Department of Internal Medicine, University of California, Davis, California, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| |
Collapse
|
13
|
Vijay S, Bao NLH, Vinh DN, Nhat LTH, Thu DDA, Quang NL, Trieu LPT, Nhung HN, Ha VTN, Thai PVK, Ha DTM, Lan NH, Caws M, Thwaites GE, Javid B, Thuong NT. Rifampicin tolerance and growth fitness among isoniazid-resistant clinical Mycobacterium tuberculosis isolates from a longitudinal study. eLife 2024; 13:RP93243. [PMID: 39250422 PMCID: PMC11383526 DOI: 10.7554/elife.93243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Antibiotic tolerance in Mycobacterium tuberculosis reduces bacterial killing, worsens treatment outcomes, and contributes to resistance. We studied rifampicin tolerance in isolates with or without isoniazid resistance (IR). Using a minimum duration of killing assay, we measured rifampicin survival in isoniazid-susceptible (IS, n=119) and resistant (IR, n=84) isolates, correlating tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs), and isoniazid-resistant mutations. Longitudinal IR isolates were analyzed for changes in rifampicin tolerance and genetic variant emergence. The median time for rifampicin to reduce the bacterial population by 90% (MDK90) increased from 1.23 days (IS) and 1.31 days (IR) to 2.55 days (IS) and 1.98 days (IR) over 15-60 days of incubation, indicating fast and slow-growing tolerant sub-populations. A 6 log10-fold survival fraction classified tolerance as low, medium, or high, showing that IR is linked to increased tolerance and faster growth (OR = 2.68 for low vs. medium, OR = 4.42 for low vs. high, p-trend = 0.0003). High tolerance in IR isolates was associated with rifampicin treatment in patients and genetic microvariants. These findings suggest that IR tuberculosis should be assessed for high rifampicin tolerance to optimize treatment and prevent the development of multi-drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | | | - Dao Nguyen Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | | | - Do Dang Anh Thu
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | - Nguyen Le Quang
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | | | | | - Vu Thi Ngoc Ha
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
| | | | | | | | - Maxine Caws
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Babak Javid
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, United States
| | - Nguyen Thuy Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Kunnath AP, Suodha Suoodh M, Chellappan DK, Chellian J, Palaniveloo K. Bacterial Persister Cells and Development of Antibiotic Resistance in Chronic Infections: An Update. Br J Biomed Sci 2024; 81:12958. [PMID: 39170669 PMCID: PMC11335562 DOI: 10.3389/bjbs.2024.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The global issue of antimicrobial resistance poses significant challenges to public health. The World Health Organization (WHO) has highlighted it as a major global health threat, causing an estimated 700,000 deaths worldwide. Understanding the multifaceted nature of antibiotic resistance is crucial for developing effective strategies. Several physiological and biochemical mechanisms are involved in the development of antibiotic resistance. Bacterial cells may escape the bactericidal actions of the drugs by entering a physiologically dormant state known as bacterial persistence. Recent findings in this field suggest that bacterial persistence can be one of the main sources of chronic infections. The antibiotic tolerance developed by the persister cells could tolerate high levels of antibiotics and may give rise to persister offspring. These persister offspring could be attributed to antibiotic resistance mechanisms, especially in chronic infections. This review attempts to shed light on persister-induced antibiotic resistance and the current therapeutic strategies.
Collapse
Affiliation(s)
- Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Mohamed Suodha Suoodh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
16
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY Confer Tolerance to an Interspecies Redox-Active Antimicrobial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601769. [PMID: 39040146 PMCID: PMC11261909 DOI: 10.1101/2024.07.02.601769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been characterized, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. The transcriptional response of a pyocyanin tolerant CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. Firstly, the CodY mutant strongly suppressed metabolism, by downregulating pathways associated with core metabolism, especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Secondly, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain. Together, these results suggest that both transcriptional responses likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Morrison JJ, Madden EK, Banas DA, DiBiasio EC, Hansen M, Krogfelt KA, Rowley DC, Cohen PS, Camberg JL. Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic Escherichia coli. J Bacteriol 2024; 206:e0016224. [PMID: 38814092 PMCID: PMC11332148 DOI: 10.1128/jb.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after the completion of successful antibiotic treatment. Many clinical isolates, including the well-characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex integration host factor and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two-hybrid assays. We report direct interactions between the succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions may enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility. IMPORTANCE Uropathogenic Escherichia coli (UPEC) are the leading cause of urinary tract infections (UTIs). Upon invasion into bladder epithelial cells, UPEC establish quiescent intracellular reservoirs that may lead to antibiotic tolerance and recurrent UTIs. Here, we demonstrate using an in vitro system that quiescent UPEC cells are tolerant to ampicillin and have decreased metabolism characterized by succinyl-CoA limitation. We identify the global regulator integration host factor complex and the cell division protein ZapE as critical modifiers of quiescence and antibiotic tolerance. Finally, we show that ZapE interacts with components of both the cell division machinery and the tricarboxylic acid cycle, and this interaction is conserved in non-pathogenic E. coli, establishing a novel link between cell division and metabolism.
Collapse
Affiliation(s)
- Josiah J. Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Ellen K. Madden
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Daniel A. Banas
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Eric C. DiBiasio
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Mads Hansen
- Department of Natural Science and Environment, Centre for Mathematical Modeling - Human Health and Disease, University of Roskilde, Roskilde, Denmark
| | - Karen A. Krogfelt
- Department of Natural Science and Environment, Centre for Mathematical Modeling - Human Health and Disease, University of Roskilde, Roskilde, Denmark
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
18
|
Kelly JB, Nolan AC, Zeden MS. How can we escape the ESKAPEs: Antimicrobial resistance mechanisms and what lies ahead? PLoS Pathog 2024; 20:e1012270. [PMID: 38870133 PMCID: PMC11175505 DOI: 10.1371/journal.ppat.1012270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Affiliation(s)
- Jessica B. Kelly
- Microbiology, Infectious Disease Section, School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Aaron C. Nolan
- Microbiology, Infectious Disease Section, School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Merve S. Zeden
- Microbiology, Infectious Disease Section, School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
19
|
Su M, Yin M, Zhou Y, Xiao S, Yi J, Tang R. Freeze-Thaw Microfluidic System Produces "Themis" Nanocomplex for Cleaning Persisters-Infected Macrophages and Enhancing Uninfected Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311436. [PMID: 38181783 DOI: 10.1002/adma.202311436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Macrophages are the primary effectors against potential pathogen infections. They can be "parasitized" by intracellular bacteria, serving as "accomplices", protecting intracellular bacteria and even switching them to persisters. Here, using a freeze-thaw strategy-based microfluidic chip, a "Themis" nanocomplex (TNC) is created. The TNC consists of Lactobacillus reuteri-derived membrane vesicles, heme, and vancomycin, which cleaned infected macrophages and enhanced uninfected macrophages. In infected macrophages, TNC releases heme that led to the reconstruction of the respiratory chain complexes of intracellular persisters, forcing them to regrow. The revived bacteria produces virulence factors that destroyed host macrophages (accomplices), thereby being externalized and becoming vulnerable to immune responses. In uninfected macrophages, TNC upregulates the TCA cycle and oxidative phosphorylation (OXPHOS), contributing to immunoenhancement. The combined effect of TNC of cleaning the accomplice (infected macrophages) and reinforcing uninfected macrophages provides a promising strategy for intracellular bacterial therapy.
Collapse
Affiliation(s)
- Mingyue Su
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Mengying Yin
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Yifu Zhou
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Shuya Xiao
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Jundan Yi
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Rongbing Tang
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
20
|
Rodrigues M, Sabaeifard P, Yildiz MS, Lyon A, Coughlin L, Ahmed S, Poulides N, Toprak AC, Behrendt C, Wang X, Monogue M, Kim J, Gan S, Zhan X, Filkins L, Williams NS, Hooper LV, Koh AY, Toprak E. Susceptible bacteria can survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance. Cell Host Microbe 2024; 32:396-410.e6. [PMID: 38359828 PMCID: PMC10942764 DOI: 10.1016/j.chom.2024.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, "some" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, "some" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing "select" gastrointestinal bacteria to evade antibiotic treatment.
Collapse
Affiliation(s)
- Marinelle Rodrigues
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parastoo Sabaeifard
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Muhammed Sadik Yildiz
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Lyon
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Coughlin
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ahmed
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicole Poulides
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ahmet C Toprak
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie Behrendt
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoyu Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marguerite Monogue
- Department of Pharmacy, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuheng Gan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Filkins
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Y Koh
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Erdal Toprak
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Ke W, Xie Y, Chen Y, Ding H, Ye L, Qiu H, Li H, Zhang L, Chen L, Tian X, Shen Z, Song Z, Fan X, Zong JF, Guo Z, Ma X, Xiao M, Liao G, Liu CH, Yin WB, Dong Z, Yang F, Jiang YY, Perlin DS, Chen Y, Fu YV, Wang L. Fungicide-tolerant persister formation during cryptococcal pulmonary infection. Cell Host Microbe 2024; 32:276-289.e7. [PMID: 38215741 DOI: 10.1016/j.chom.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.
Collapse
Affiliation(s)
- Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leixin Ye
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoning Qiu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenghao Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zili Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Fa Zong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cui Hua Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuan-Ying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Yihua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu V Fu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Ronneau S, Michaux C, Giorgio RT, Helaine S. Intoxication of antibiotic persisters by host RNS inactivates their efflux machinery during infection. PLoS Pathog 2024; 20:e1012033. [PMID: 38421944 PMCID: PMC10903880 DOI: 10.1371/journal.ppat.1012033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
The host environment is of critical importance for antibiotic efficacy. By impacting bacterial machineries, stresses encountered by pathogens during infection promote the formation of phenotypic variants that are transiently insensitive to the action of antibiotics. It is assumed that these recalcitrant bacteria-termed persisters-contribute to antibiotic treatment failure and relapsing infections. Recently, we demonstrated that host reactive nitrogen species (RNS) transiently protect persisters against the action of β-lactam antibiotics by delaying their regrowth within host cells. Here, we discovered that RNS intoxication of persisters also collaterally sensitizing them to fluoroquinolones during infection, explaining the higher efficiency of fluoroquinolones against intramacrophage Salmonella. By reducing bacterial respiration and the proton-motive force, RNS inactivate the AcrAB efflux machinery of persisters, facilitating the accumulation of fluoroquinolones intracellularly. Our work shows that target inactivity is not the sole reason for Salmonella persisters to withstand antibiotics during infection, with active efflux being a major contributor to survival. Thus, understanding how the host environment impacts persister physiology is critical to optimize antibiotics efficacy during infection.
Collapse
Affiliation(s)
- Séverin Ronneau
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charlotte Michaux
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rachel T. Giorgio
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
23
|
Xiong X, Othmer HG, Harcombe WR. Emergent antibiotic persistence in a spatially structured synthetic microbial mutualism. THE ISME JOURNAL 2024; 18:wrae075. [PMID: 38691424 PMCID: PMC11104777 DOI: 10.1093/ismejo/wrae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Antibiotic persistence (heterotolerance) allows a subpopulation of bacteria to survive antibiotic-induced killing and contributes to the evolution of antibiotic resistance. Although bacteria typically live in microbial communities with complex ecological interactions, little is known about how microbial ecology affects antibiotic persistence. Here, we demonstrated within a synthetic two-species microbial mutualism of Escherichia coli and Salmonella enterica that the combination of cross-feeding and community spatial structure can emergently cause high antibiotic persistence in bacteria by increasing the cell-to-cell heterogeneity. Tracking ampicillin-induced death for bacteria on agar surfaces, we found that E. coli forms up to 55 times more antibiotic persisters in the cross-feeding coculture than in monoculture. This high persistence could not be explained solely by the presence of S. enterica, the presence of cross-feeding, average nutrient starvation, or spontaneous resistant mutations. Time-series fluorescent microscopy revealed increased cell-to-cell variation in E. coli lag time in the mutualistic co-culture. Furthermore, we discovered that an E. coli cell can survive antibiotic killing if the nearby S. enterica cells on which it relies die first. In conclusion, we showed that the high antibiotic persistence phenotype can be an emergent phenomenon caused by a combination of cross-feeding and spatial structure. Our work highlights the importance of considering spatially structured interactions during antibiotic treatment and understanding microbial community resilience more broadly.
Collapse
Affiliation(s)
- Xianyi Xiong
- Department of Ecology, Evolution, and Behavior, BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
- Division of Community Health & Epidemiology, University of Minnesota School of Public Health, Minneapolis, MN 55454, United States
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States
| | - William R Harcombe
- Department of Ecology, Evolution, and Behavior, BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
24
|
Cotten KL, Davis KM. Bacterial heterogeneity and antibiotic persistence: bacterial mechanisms utilized in the host environment. Microbiol Mol Biol Rev 2023; 87:e0017422. [PMID: 37962348 PMCID: PMC10732018 DOI: 10.1128/mmbr.00174-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
SUMMARYAntibiotic persistence, or the ability of small subsets of bacteria to survive prolonged antibiotic treatment, is an underappreciated cause of antibiotic treatment failure. Over the past decade, researchers have discovered multiple different stress responses and mechanisms that can promote antibiotic persistence. However, many of these studies have been completed in culture-based systems that fail to truly replicate the complexities of the host environment, and it is unclear whether the mechanisms defined in in vitro studies are applicable during host infection. In this review, we focus our discussion on recent studies that utilize a mixture of ex vivo culture systems and animal models to understand what stressors in the host environment are important for inducing antibiotic persistence. Different host stressors are involved depending on the anatomical niche the bacteria reside in and whether the host immune system is primed to generate a more robust response against bacteria, which can result in differing downstream effects on antibiotic susceptibility. Bacterial pathogens can also utilize specific strategies to reprogram their metabolism, which is vital for transitioning into an antibiotic-persistent state within host tissues. Importantly, we highlight that more attention is needed to establish guidelines for in vivo work on antibiotic persistence, particularly when identifying antibiotic-persistent subpopulations and distinguishing these phenotypes from antibiotic tolerance. Studying antibiotic persistence in the context of the host environment will be crucial for developing tools and strategies to target antibiotic-persistent bacteria and increase the efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- Katherine L. Cotten
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kimberly Michele Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Rueff AS, van Raaphorst R, Aggarwal SD, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions. Nat Commun 2023; 14:7454. [PMID: 37978173 PMCID: PMC10656556 DOI: 10.1038/s41467-023-43241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation. In this study, we use synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference (CRISPRi) together with live cell imaging and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Surya D Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Thompson NT, Kitzenberg DA, Kao DJ. Persister-mediated emergence of antimicrobial resistance in agriculture due to antibiotic growth promoters. AIMS Microbiol 2023; 9:738-756. [PMID: 38173975 PMCID: PMC10758577 DOI: 10.3934/microbiol.2023038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024] Open
Abstract
The creation and continued development of antibiotics have revolutionized human health and disease for the past century. The emergence of antimicrobial resistance represents a major threat to human health, and practices that contribute to the development of this threat need to be addressed. Since the 1950s, antibiotics have been used in low doses to increase growth and decrease the feed requirement of animal-derived food sources. A consequence of this practice is the accelerated emergence of antimicrobial resistance that can influence human health through its distribution via animal food products. In the laboratory setting, sublethal doses of antibiotics promote the expansion of bacterial persister populations, a low energy, low metabolism phenotype characterized broadly by antibiotic tolerance. Furthermore, the induction of persister bacteria has been positively correlated with an increased emergence of antibiotic-resistant strains. This body of evidence suggests that the use of antibiotics in agriculture at subtherapeutic levels is actively catalyzing the emergence of antimicrobial-resistant bacteria through the expansion of bacterial persister populations, which is potentially leading to increased infections in humans and decreased antibiotic potency. There is an urgent need to address this debilitating effect on antibiotics and its influence on human health. In this review, we summarize the recent literature on the topic of emerging antimicrobial resistance and its association with bacterial persister populations.
Collapse
Affiliation(s)
- Noah T Thompson
- Department of Medicine and Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A Kitzenberg
- Department of Medicine and Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel J Kao
- Department of Medicine and Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
27
|
Hossain T, Singh A, Butzin NC. Escherichia coli cells are primed for survival before lethal antibiotic stress. Microbiol Spectr 2023; 11:e0121923. [PMID: 37698413 PMCID: PMC10581089 DOI: 10.1128/spectrum.01219-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/16/2023] [Indexed: 09/13/2023] Open
Abstract
Non-genetic factors can cause significant fluctuations in gene expression levels. Regardless of growing in a stable environment, this fluctuation leads to cell-to-cell variability in an isogenic population. This phenotypic heterogeneity allows a tiny subset of bacterial cells in a population called persister cells to tolerate long-term lethal antibiotic effects by entering into a non-dividing, metabolically repressed state. We occasionally noticed a high variation in persister levels, and to explore this, we tested clonal populations starting from a single cell using a modified Luria-Delbrück fluctuation test. Although we kept the conditions same, the diversity in persistence level among clones was relatively consistent: varying from ~60- to 100- and ~40- to 70-fold for ampicillin and apramycin, respectively. Then, we divided and diluted each clone to observe whether the same clone had comparable persister levels for more than one generation. Replicates had similar persister levels even when clones were divided, diluted by 1:20, and allowed to grow for approximately five generations. This result explicitly shows a cellular memory passed on for generations and eventually lost when cells are diluted to 1:100 and regrown (>seven generations). Our result demonstrates (1) the existence of a small population prepared for stress ("primed cells") resulting in higher persister numbers; (2) the primed memory state is reproducible and transient, passed down for generations but eventually lost; and (3) a heterogeneous persister population is a result of a transiently primed reversible cell state and not due to a pre-existing genetic mutation. IMPORTANCE Antibiotics have been highly effective in treating lethal infectious diseases for almost a century. However, the increasing threat of antibiotic resistance is again causing these diseases to become life-threatening. The longer a bacteria can survive antibiotics, the more likely it is to develop resistance. Complicating matters is that non-genetic factors can allow bacterial cells with identical DNA to gain transient resistance (also known as persistence). Here, we show that a small fraction of the bacterial population called primed cells can pass down non-genetic information ("memory") to their offspring, enabling them to survive lethal antibiotics for a long time. However, this memory is eventually lost. These results demonstrate how bacteria can leverage differences among genetically identical cells formed through non-genetic factors to form primed cells with a selective advantage to survive antibiotics.
Collapse
Affiliation(s)
- Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
28
|
Chen L, Zhang L, Xie Y, Wang Y, Tian X, Fang W, Xue X, Wang L. Confronting antifungal resistance, tolerance, and persistence: Advances in drug target discovery and delivery systems. Adv Drug Deliv Rev 2023; 200:115007. [PMID: 37437715 DOI: 10.1016/j.addr.2023.115007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Human pathogenic fungi pose a serious threat to human health and safety. Unfortunately, the limited number of antifungal options is exacerbated by the continuous emergence of drug-resistant variants, leading to frequent drug treatment failures. Recent studies have also highlighted the clinical importance of other modes of fungal survival of antifungal treatment, including drug tolerance and persistence, pointing to the complexity of the fungal response to antifungal drugs. A lack of understanding of the fungal drug response has hampered the identification of new targets, the development of alternative antifungal strategies and the design of appropriate delivery systems. In this review we summarize recent advances in the study of antifungal resistance, tolerance and persistence, with an emphasis on promising drug targets and drug delivery systems that may yield important insights into the development of new or improved antifungal therapies against fungal infections.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Wang
- College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Fang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University; Peking University Ninth School of Clinical Medicine, Beijing 100038, China; Department of Respiratory and Critical Care, Weifang Medical College, 261053, Weifang, Shandong, China.
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Bollen C, Louwagie E, Verstraeten N, Michiels J, Ruelens P. Environmental, mechanistic and evolutionary landscape of antibiotic persistence. EMBO Rep 2023; 24:e57309. [PMID: 37395716 PMCID: PMC10398667 DOI: 10.15252/embr.202357309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Recalcitrant infections pose a serious challenge by prolonging antibiotic therapies and contributing to the spread of antibiotic resistance, thereby threatening the successful treatment of bacterial infections. One potential contributing factor in persistent infections is antibiotic persistence, which involves the survival of transiently tolerant subpopulations of bacteria. This review summarizes the current understanding of antibiotic persistence, including its clinical significance and the environmental and evolutionary factors at play. Additionally, we discuss the emerging concept of persister regrowth and potential strategies to combat persister cells. Recent advances highlight the multifaceted nature of persistence, which is controlled by deterministic and stochastic elements and shaped by genetic and environmental factors. To translate in vitro findings to in vivo settings, it is crucial to include the heterogeneity and complexity of bacterial populations in natural environments. As researchers continue to gain a more holistic understanding of this phenomenon and develop effective treatments for persistent bacterial infections, the study of antibiotic persistence is likely to become increasingly complex.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Elen Louwagie
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jan Michiels
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Philip Ruelens
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
- Laboratory of Socioecology and Social EvolutionKU LeuvenLeuvenBelgium
| |
Collapse
|
30
|
Ronneau S, Michaux C, Helaine S. Decline in nitrosative stress drives antibiotic persister regrowth during infection. Cell Host Microbe 2023; 31:993-1006.e6. [PMID: 37236190 DOI: 10.1016/j.chom.2023.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Internalization of pathogenic bacteria by macrophages results in formation of antibiotic-tolerant persisters. These cells are maintained in a non-growing state for extended periods of time, and it is assumed that their growth resumption causes infection relapse after cessation of antibiotic treatment. Despite this clinical relevance, the signals and conditions that drive persister regrowth during infection are not yet understood. Here, we found that after persister formation in macrophages, host reactive nitrogen species (RNS) produced in response to Salmonella infection lock persisters in growth arrest by intoxicating their TCA cycle, lowering cellular respiration and ATP production. Intracellular persisters resume growth when macrophage RNS production subsides and functionality of their TCA cycle is regained. Persister growth resumption within macrophages is slow and heterogeneous, dramatically extending the time the persister reservoir feeds infection relapse. Using an inhibitor of RNS production, we can force recalcitrant bacteria to regrow during antibiotic treatment, thereby facilitating their eradication.
Collapse
Affiliation(s)
- Séverin Ronneau
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Charlotte Michaux
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Rueff AS, van Raaphorst R, Aggarwal S, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Rewiring capsule production by CRISPRi-based genetic oscillators demonstrates a functional role of phenotypic variation in pneumococcal-host interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543575. [PMID: 37398107 PMCID: PMC10312626 DOI: 10.1101/2023.06.03.543575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence1-8, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes9-14, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation15-20. In this study, we used synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference together with live cell microscopy and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Surya Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Present address: Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
32
|
Morrison JJ, Banas DA, Madden EK, DiBiasio EC, Rowley DC, Cohen PS, Camberg JL. Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540013. [PMID: 37215002 PMCID: PMC10197701 DOI: 10.1101/2023.05.09.540013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after completion of successful antibiotic treatment. Many clinical isolates, including the well characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex IHF and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two hybrid assays. We report direct interactions between succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions likely enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility.
Collapse
Affiliation(s)
- Josiah J. Morrison
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Daniel A. Banas
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Ellen K. Madden
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Eric C. DiBiasio
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - David C. Rowley
- Department of Biomedical & Pharmaceutical Sciences, The University of Rhode Island, Kingston, RI, 02881
| | - Paul S. Cohen
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Jodi L. Camberg
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| |
Collapse
|
33
|
Schrader SM, Botella H, Vaubourgeix J. Reframing antimicrobial resistance as a continuous spectrum of manifestations. Curr Opin Microbiol 2023; 72:102259. [PMID: 36608373 DOI: 10.1016/j.mib.2022.102259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
To fight antimicrobial resistance (AMR), we must recognize and target all its manifestations. In this review, we briefly summarize the history that led to recognition of the various manifestations of AMR in bacterial pathogens and the ways in which they interrelate. We emphasize the importance of distinguishing between AMR arising from genetic alterations versus induction of endogenous machinery in response to environmental triggers, including - paradoxically - stresses from host immunity and antimicrobial therapy. We present an integrated view of AMR by reframing it as a spectrum of phenotypes within a continuous three-dimensional space defined by the growth rate, prevalence, and kill rate of cells displaying AMR. Finally, we reflect on strategies that may help stem the emergence of AMR.
Collapse
Affiliation(s)
- Sarah M Schrader
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Hélène Botella
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Julien Vaubourgeix
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
34
|
Personnic N, Doublet P, Jarraud S. Intracellular persister: A stealth agent recalcitrant to antibiotics. Front Cell Infect Microbiol 2023; 13:1141868. [PMID: 37065203 PMCID: PMC10102521 DOI: 10.3389/fcimb.2023.1141868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
The bulk of bacteria transiently evading appropriate antibiotic regimes and recovered from non-resolutive infections are commonly refer to as persisters. In this mini-review, we discuss how antibiotic persisters stem from the interplay between the pathogen and the cellular defenses mechanisms and its underlying heterogeneity.
Collapse
Affiliation(s)
- Nicolas Personnic
- CIRI, Centre International de Recherche en Infectiologie, CNRS UMR 5308, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, Lyon, France
- *Correspondence: Nicolas Personnic,
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, CNRS UMR 5308, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Group Legionella Pathogenesis, Lyon, France
| | - Sophie Jarraud
- CIRI, Centre International de Recherche en Infectiologie, CNRS UMR 5308, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Group Legionella Pathogenesis, Lyon, France
- National Reference Centre for Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
35
|
Yang K, Xu F, Zhu L, Li H, Sun Q, Yan A, Ren B, Zhu YG, Cui L. An Isotope-Labeled Single-Cell Raman Spectroscopy Approach for Tracking the Physiological Evolution Trajectory of Bacteria toward Antibiotic Resistance. Angew Chem Int Ed Engl 2023; 62:e202217412. [PMID: 36732297 DOI: 10.1002/anie.202217412] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Understanding evolution of antibiotic resistance is vital for containing its global spread. Yet our ability to in situ track highly heterogeneous and dynamic evolution is very limited. Here, we present a new single-cell approach integrating D2 O-labeled Raman spectroscopy, advanced multivariate analysis, and genotypic profiling to in situ track physiological evolution trajectory toward resistance. Physiological diversification of individual cells from isogenic population with cyclic ampicillin treatment is captured. Advanced multivariate analysis of spectral changes classifies all individual cells into four subsets of sensitive, intrinsic tolerant, evolved tolerant and resistant. Remarkably, their dynamic shifts with evolution are depicted and spectral markers of each state are identified. Genotypic analysis validates the phenotypic shift and provides insights into the underlying genetic basis. The new platform advances rapid phenotyping resistance evolution and guides evolution control.
Collapse
Affiliation(s)
- Kai Yang
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Fei Xu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Longji Zhu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Hongzhe Li
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qian Sun
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
36
|
Ospino K, Spira B. Glyphosate affects persistence and tolerance but not antibiotic resistance. BMC Microbiol 2023; 23:61. [PMID: 36882692 PMCID: PMC9990207 DOI: 10.1186/s12866-023-02804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Glyphosate is a herbicide widely used in food production that blocks the synthesis of aromatic amino acids in plants and in microorganisms and also induces the accumulation of the alarmone (p)ppGpp. The purpose of this study was to investigate whether glyphosate affects the resistance, tolerance or persistence of bacteria towards three different classes of antibiotics and the possible role of (p)ppGpp in this activity. Glyphosate did not affect the minimum inhibitory concentration of the tested antibiotics, but enhanced bacterial tolerance and/or persistence towards them. The upshift in ciprofloxacin and kanamycin tolerance was partially dependent on the presence of relA that promotes (p)ppGpp accumulation in response to glyphosate. Conversely, the strong increase in ampicillin tolerance caused by glyphosate was independent of relA. We conclude that by inducing aromatic amino acid starvation glyphosate contributes to the temporary increase in E. coli tolerance or persistence, but does not affect antibiotic resistance.
Collapse
Affiliation(s)
- Katia Ospino
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Mycobacterium tuberculosis Requires the Outer Membrane Lipid Phthiocerol Dimycocerosate for Starvation-Induced Antibiotic Tolerance. mSystems 2023; 8:e0069922. [PMID: 36598240 PMCID: PMC9948706 DOI: 10.1128/msystems.00699-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tolerance of Mycobacterium tuberculosis to antibiotics contributes to the long duration of tuberculosis (TB) treatment and the emergence of drug-resistant strains. M. tuberculosis drug tolerance is induced by nutrient restriction, but the genetic determinants that promote antibiotic tolerance triggered by nutrient limitation have not been comprehensively identified. Here, we show that M. tuberculosis requires production of the outer membrane lipid phthiocerol dimycocerosate (PDIM) to tolerate antibiotics under nutrient-limited conditions. We developed an arrayed transposon (Tn) mutant library in M. tuberculosis Erdman and used orthogonal pooling and transposon sequencing (Tn-seq) to map the locations of individual mutants in the library. We screened a subset of the library (~1,000 mutants) by Tn-seq and identified 32 and 102 Tn mutants with altered tolerance to antibiotics under stationary-phase and phosphate-starved conditions, respectively. Two mutants recovered from the arrayed library, ppgK::Tn and clpS::Tn, showed increased susceptibility to two different drug combinations under both nutrient-limited conditions, but their phenotypes were not complemented by the Tn-disrupted gene. Whole-genome sequencing revealed single nucleotide polymorphisms in both the ppgK::Tn and clpS::Tn mutants that prevented PDIM production. Complementation of the clpS::Tn ppsD Q291* mutant with ppsD restored PDIM production and antibiotic tolerance, demonstrating that loss of PDIM sensitized M. tuberculosis to antibiotics. Our data suggest that drugs targeting production of PDIM, a critical M. tuberculosis virulence determinant, have the potential to enhance the efficacy of existing antibiotics, thereby shortening TB treatment and limiting development of drug resistance. IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of active TB disease and over 1 million deaths worldwide each year. TB treatment is complex, requiring at least 6 months of therapy with a combination of antibiotics. One factor that contributes to the length of TB treatment is M. tuberculosis phenotypic antibiotic tolerance, which allows the bacteria to survive prolonged drug exposure even in the absence of genetic mutations causing drug resistance. Here, we report a genetic screen to identify M. tuberculosis genes that promote drug tolerance during nutrient starvation. Our study revealed the outer membrane lipid phthiocerol dimycocerosate (PDIM) as a key determinant of M. tuberculosis antibiotic tolerance triggered by nutrient starvation. Our study implicates PDIM synthesis as a potential target for development of new TB drugs that would sensitize M. tuberculosis to existing antibiotics to shorten TB treatment.
Collapse
|
38
|
Rodrigues M, Sabaeifard P, Yildiz MS, Coughlin L, Ahmed S, Behrendt C, Wang X, Monogue M, Kim J, Gan S, Zhan X, Filkins L, Williams NS, Hooper LV, Koh AY, Toprak E. Susceptible bacteria survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523617. [PMID: 36711614 PMCID: PMC9882032 DOI: 10.1101/2023.01.11.523617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In vitro systems have provided great insight into the mechanisms of antibiotic resistance. Yet, in vitro approaches cannot reflect the full complexity of what transpires within a host. As the mammalian gut is host to trillions of resident bacteria and thus a potential breeding ground for antibiotic resistance, we sought to better understand how gut bacteria respond to antibiotic treatment in vivo . Here, we colonized germ-free mice with a genetically barcoded antibiotic pan-susceptible Escherichia coli clinical isolate and then administered the antibiotic cefepime via programmable subcutaneous pumps which allowed for closer emulation of human parenteral antibiotic pharmacokinetics/dynamics. After seven days of antibiotics, we were unable to culture E. coli from feces. We were, however, able to recover barcoded E. coli from harvested gastrointestinal (GI) tissue, despite high GI tract and plasma cefepime concentrations. Strikingly, these E. coli isolates were not resistant to cefepime but had acquired mutations â€" most notably in the wbaP gene, which encodes an enzyme required for the initiation of the synthesis of the polysaccharide capsule and lipopolysaccharide O antigen - that increased their ability to invade and survive within intestinal cells, including cultured human colonocytes. Further, these E. coli mutants exhibited a persister phenotype when exposed to cefepime, allowing for greater survival to pulses of cefepime treatment when compared to the wildtype strain. Our findings highlight a mechanism by which bacteria in the gastrointestinal tract can adapt to antibiotic treatment by increasing their ability to persist during antibiotic treatment and invade intestinal epithelial cells where antibiotic concentrations are substantially reduced.
Collapse
|
39
|
Abstract
Bacterial populations can survive exposure to antibiotics through transient phenotypic and gene expression changes. These changes can be attributed to a small subpopulation of bacteria, giving rise to antibiotic persistence. Although this phenomenon has been known for decades, much remains to be learned about the mechanisms that drive persister formation. The RNA-binding protein ProQ has recently emerged as a global regulator of gene expression. Here, we show that ProQ impacts persister formation in Salmonella. In vitro, ProQ contributes to growth arrest in a subset of cells that are able to survive treatment at high concentrations of different antibiotics. The underlying mechanism for ProQ-dependent persister formation involves the activation of metabolically costly processes, including the flagellar pathway and the type III protein secretion system encoded on Salmonella pathogenicity island 2. Importantly, we show that the ProQ-dependent phenotype is relevant during macrophage infection and allows Salmonella to survive the combined action of host immune defenses and antibiotics. Together, our data highlight the importance of ProQ in Salmonella persistence and pathogenesis. IMPORTANCE Bacteria can avoid eradication by antibiotics through a phenomenon known as persistence. Persister cells arise through phenotypic heterogeneity and constitute a small fraction of dormant cells within a population of actively growing bacteria, which is susceptible to antibiotic killing. In this study, we show that ProQ, an RNA-binding protein and global regulator of gene expression, promotes persisters in the human pathogen Salmonella enterica serovar Typhimurium. Bacteria lacking the proQ gene outcompete wild-type bacteria under laboratory conditions, are less prone to enter growth dormancy, and form fewer persister cells. The basis for these phenotypes lies in ProQ's ability to activate energy-consuming cellular processes, including flagellar motility and protein secretion. Importantly, we show that ProQ contributes to the persister phenotype during Salmonella infection of macrophages, indicating an important role of this global regulator in Salmonella pathogenesis.
Collapse
|
40
|
González JF, Hitt R, Laipply B, Gunn JS. The Effect of the Gallbladder Environment during Chronic Infection on Salmonella Persister Cell Formation. Microorganisms 2022; 10:microorganisms10112276. [PMID: 36422346 PMCID: PMC9698170 DOI: 10.3390/microorganisms10112276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Typhoid fever is caused by Salmonella enterica serovar Typhi (S. Typhi). Around 3-5% of individuals infected become chronic carriers, with the gallbladder (GB) as the predominant site of persistence. Gallstones (GS) aid in the development and maintenance of GB carriage, serving as a substrate to which Salmonellae attach and form a biofilm. This biofilm matrix protects bacteria from the host immune system and environmental stress. This shielded environment is an ideal place for the development of persister cells, a transient phenotype of a subset of cells within a population that allows survival after antibiotic treatment. Persisters can also arise in response to harsh environments such as the GB. Here we investigate if GB conditions affect the number of persisters in a Salmonella population. To simulate the chronic GB environment, we cultured biofilms in cholesterol-coated 96-well plates in the presence of ox or human bile. We then treated planktonic or biofilm Salmonella cultures with high concentrations of different antibiotics. This study suggests that biofilms provide a niche for persister cells, but GB conditions either play no role or have a negative influence on persister formation, especially after kanamycin treatment. The antibiotic target was important, as antimicrobials directed against DNA replication or the cell wall had no effect on persister cell formation. Interestingly, repeated treatment with ciprofloxacin increased the percentage of S. Typhimurium persisters in a biofilm, but this increase was abolished by GB conditions. On the other hand, repeated ciprofloxacin treatment of S. Typhi biofilms in GB conditions slightly increased the fraction of persisters. Thus, while the harsh conditions in the GB would be thought to give rise to increased persisters, therefore contributing to the development of chronic carriage, these data suggest persister cell formation is dampened in this environment.
Collapse
Affiliation(s)
- Juan F. González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Regan Hitt
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Baileigh Laipply
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-(614)-355-3403
| |
Collapse
|
41
|
Antibiotic tolerance and persistence have distinct fitness trade-offs. PLoS Pathog 2022; 18:e1010963. [DOI: 10.1371/journal.ppat.1010963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/28/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
Genetically susceptible bacteria can escape the action of bactericidal antibiotics through antibiotic tolerance or persistence. However, one major difference between the two phenomena is their distinct penetrance within an isogenic population. While with antibiotic persistence, susceptible and persister cells co-exist, antibiotic tolerance affects the entire bacterial population. Here, we show that antibiotic tolerance can be achieved in numerous non-specific ways in vitro and during infection. More importantly, we highlight that, due to their impact on the entire bacterial population, these tolerance-inducing conditions completely mask persistence and the action of its molecular determinants. Finally, we show that even though tolerant populations display a high survival rate under bactericidal drug treatment, this feature comes at the cost of having impaired proliferation during infection. In contrast, persistence is a risk-limiting strategy that allows bacteria to survive antibiotic treatment without reducing the ability of the population to colonize their host. Altogether, our data emphasise that the distinction between these phenomena is of utmost importance to improve the design of more efficient antibiotic therapies.
Collapse
|
42
|
Wiradiputra MRD, Khuntayaporn P, Thirapanmethee K, Chomnawang MT. Toxin-Antitoxin Systems: A Key Role on Persister Formation in Salmonella enterica Serovar Typhimurium. Infect Drug Resist 2022; 15:5813-5829. [PMID: 36213766 PMCID: PMC9541301 DOI: 10.2147/idr.s378157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
The toxin and antitoxin modules in bacteria consist of a toxin molecule that has activity to inhibit various cellular processes and its cognate antitoxin that neutralizes the toxin. This system is considered taking part in the formation of persister cells, which are a subpopulation of recalcitrant cells able to survive antimicrobial treatment without any resistance mechanisms. Importantly, persisters have been associated with long-term infections and treatment failures in healthcare settings. It is a public health concern since persisters can be involved in the evolution and dissemination of antimicrobial resistance amidst the aggravating spread of multidrug-resistant bacteria and insufficient novel antimicrobial therapy to tackle this issue. Salmonella enterica serovar Typhimurium is one of the most prevalent Salmonella serotypes in the world and is a leading cause of food-borne salmonellosis. S. Typhimurium has been known to cause persistent infection and a wealth of investigations on Salmonella persisters indicates that toxin and antitoxin modules play a role in mediating the phenotypic switch of persisters, rendering its survival ability in the presence of antimicrobial agents. In this review, we discuss findings regarding mechanisms that underly persistence in S. Typhimurium, especially the involvement of toxin and antitoxin modules.
Collapse
Affiliation(s)
- Made Rai Dwitya Wiradiputra
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Biopharmaceutical Sciences Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Piyatip Khuntayaporn
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Krit Thirapanmethee
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Correspondence: Mullika Traidej Chomnawang, Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand, Tel +66 2 644 8692, Email
| |
Collapse
|
43
|
A DNA-Damage Inducible Gene Promotes the Formation of Antibiotic Persisters in Response to the Quorum Sensing Signaling Peptide in Streptococcus mutans. Genes (Basel) 2022; 13:genes13081434. [PMID: 36011345 PMCID: PMC9408444 DOI: 10.3390/genes13081434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Bacteria use quorum sensing (QS) to communicate with each other via secreted small autoinducers produced by individuals. QS allows bacteria to display a unified response that benefits the species during adaptation to environment, colonization, and defense against competitors. In oral streptococci, the CSP-ComDE QS is an inducible DNA damage repair system that is pivotal for bacterial survival. In the oral pathogen Streptococcus mutans, the QS system positively influences the formation of antibiotic persisters, cells that can survive antibiotic attack by entering a non-proliferative state. We recently identified a novel gene, pep299, that is activated in the persister cell fraction induced by QS. In this study, we focused our investigation on the role of pep299, a gene encoding a bacteriocin-like peptide, in the formation of antibiotic persisters. Mutant Δ299, unable to produce Pep299, showed a dramatic reduction in the number of stress-induced persisters. Using a co-culture assay, we showed that cells overproducing pep299 induced the formation of persisters in the mutant, suggesting that Pep299 was actively secreted and detected by neighboring cells. Cells exposed to DNA damage conditions activated the gene expression of pep299. Interestingly, our results suggested that the pep299 gene was also involved in the regulation of a QS-inducible toxin−antitoxin system. Our study suggests that the pep299 gene is at the core of the triggered persistence phenotype in S. mutans, allowing cells to transition into a state of reduced metabolic activity and antibiotic tolerance.
Collapse
|
44
|
Kaushik V, Sharma S, Tiwari M, Tiwari V. Anti-persister strategies against stress induced bacterial persistence. Microb Pathog 2022; 164:105423. [PMID: 35092834 DOI: 10.1016/j.micpath.2022.105423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/22/2023]
Abstract
The increase in antibiotic non-responsive bacteria is the leading concern in current research-oriented to eliminate pathogens. Nowadays, the excess use of antibiotics without specifically understanding the potentiality of killing pathogens and bacterial survival patterns has helped bacteria emerge indefatigably. Bacteria use various mechanisms such as resistance, persistence, and tolerance to ensure survival. Among these, persistence is a mechanism by which bacteria reside in their dormant state, bypassing the effects of treatments, making it crucial for bacterial survival. Persistent bacterial cells arise from the normal bacterial population as a slow-growing subset of bacteria with no metabolic flux. This behavior renders it to survive for a longer duration and at higher concentrations of antibiotics. They are one of the underlying causes of recurrence of bacterial infections. The present article explains the detailed molecular mechanisms and strategies of bacterial persistence, including the toxin-antitoxin modules, DNA damage, the formation of inactive ribosomal complexes, (p)ppGpp network, antibiotic-induced persistence, which are triggered by drug-induced stress. The article also comprehensively covers the epigenetic memory of persistence in bacteria, and anti-persistent therapeutics like antimicrobial molecules, synthetic peptides, acyldepsipeptide antibiotics, and endolysin therapy to reduce persister cell formation and control their frequency. These strategies could be utilized in combating the pathogenic bacteria undergoing persistence.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|