1
|
Dobreva E, Donchev D, Stoikov I, Teneva D, Hristova R, Murdjeva M, Vatcheva-Dobrevska R, Ivanov IN. Whole genome sequencing characterization of Clostridioides difficile from Bulgaria during the COVID-19 pandemic. Diagn Microbiol Infect Dis 2025; 111:116703. [PMID: 39862551 DOI: 10.1016/j.diagmicrobio.2025.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Increased incidence of Clostridioides difficile infections were documented in Bulgarian hospitals during COVID-19. WGS was performed on 39 isolates from seven hospitals during 2015-2022. Antimicrobial resistance and toxin genes were inferred from genomes. MLST profiles, cgMLST, and wgMLST phylogeny analyses were performed. Isolates were grouped into eight MLST types as predominant were ST3 (46.15%) and ST1/RT027 (33.33%). ST3 was detected in a single hospital (16/18) and characterized by two toxin variants: tcdA+/tcdB+ (14) and tcdA-/tcdB+ (4). Twelve ST3 strains belonged to the country-specific cgMLST HC2_6485 cluster and ten were identified as a putative outbreak in the infectious disease ward. All the ST1/RT027 isolates were distributed in six hospitals and clustered in an HC2_4711 with strains from neighbouring countries. All C. difficile were susceptible to vancomycin despite the Thr349Ile mutation in vanS in three isolates. We report the first insights into the C. difficile genotype hospital prevalence during the pandemic.
Collapse
Affiliation(s)
- Elina Dobreva
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria.
| | - Deyan Donchev
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| | - Ivan Stoikov
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| | - Deana Teneva
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| | - Rumyana Hristova
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| | - Marianna Murdjeva
- Laboratory of Microbiology with activities of a Regional tuberculosis laboratory; Hospital for Active Treatment "Sveti Georgi" EAD, 15А Vasil Aprilov Blvd., Plovdiv, Bulgaria
| | - Rossitza Vatcheva-Dobrevska
- Laboratory of Microbiology and Virology, Hospital for Active Treatment "Tsaritsa Yoanna- ISUL", 8 Byalo more Str., Sofia, Bulgaria
| | - Ivan N Ivanov
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| |
Collapse
|
2
|
Ptaszyńska A, Macieja A, Rosińska-Lewandoska D, Bielec F, Machnicki P, Brauncajs M, Pastuszak-Lewandoska D. Molecular Epidemiology of Clostridioides difficile Infections in Patients Hospitalized in 2017-2019 at the Central Teaching Hospital of Medical University of Lodz, Central Poland. Antibiotics (Basel) 2025; 14:219. [PMID: 40149031 PMCID: PMC11939216 DOI: 10.3390/antibiotics14030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:Clostridioides difficile infection (CDI) represents a significant public health challenge globally, driven by its increasing prevalence, hypervirulent strains like ribotype 027 (RT027), and growing antibiotic resistance. This study aimed to evaluate the prevalence of RT027 and analyze molecular markers of vancomycin and metronidazole resistance in stool samples from CDI patients hospitalized in Poland between 2017 and 2019. Methods: A total of 200 stool samples from confirmed CDI cases were analyzed for the presence of RT027, vanA (vancomycin resistance), and nim (metronidazole resistance) genes. DNA was extracted, and a polymerase chain reaction (PCR) was conducted using specific primers. Statistical associations between RT027 and resistance genes were evaluated using chi-square tests and logistic regression. Results: RT027 was detected in 14% of samples. The vanA gene, indicative of vancomycin resistance, was found in 52.5% of samples, while the nim gene, associated with metronidazole resistance, was present in 1.5% of cases. Co-occurrence of RT027 with vanA was not statistically significant. The study revealed no significant association between RT027 and vanA. Also, no significant association was observed between RT027 and nim due to the latter's low prevalence. Conclusions: This study highlights a concerning prevalence of vanA among CDI cases, indicating widespread vancomycin resistance and challenging current treatment guidelines. While RT027 prevalence was moderate, no significant associations with vancomycin or metronidazole resistance were observed. These findings emphasize the need for molecular surveillance and improved antimicrobial stewardship to manage CDI effectively.
Collapse
Affiliation(s)
- Agata Ptaszyńska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| | - Anna Macieja
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Dominika Rosińska-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Piotr Machnicki
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| | - Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| |
Collapse
|
3
|
Sholeh M, Beig M, Kouhsari E, Rohani M, Katouli M, Badmasti F. Global insights into the genome dynamics of Clostridioides difficile associated with antimicrobial resistance, virulence, and genomic adaptations among clonal lineages. Front Cell Infect Microbiol 2025; 14:1493225. [PMID: 39882343 PMCID: PMC11774869 DOI: 10.3389/fcimb.2024.1493225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Background Clostridioides difficile is a significant cause of healthcare-associated infections, with rising antimicrobial resistance complicating treatment. This study offers a genomic analysis of C. difficile, focusing on sequence types (STs), global distribution, antibiotic resistance genes, and virulence factors in its chromosomal and plasmid DNA. Methods A total of 19,711 C. difficile genomes were retrieved from GenBank. Prokka was used for genome annotation, and multi-locus sequence typing (MLST) identified STs. Pan-genome analysis with Roary identified core and accessory genes. Antibiotic resistance genes, virulence factors, and toxins were detected using the CARD and VFDB databases, and the ABRicate software. Statistical analyses and visualizations were performed in R. Results Among 366 identified STs, ST1 (1,326 isolates), ST2 (1,141), ST11 (893), and ST42 (763) were predominant. Trends of genome streamlining included reductions in chromosomal length, gene count, protein-coding genes, and pseudogenes. Common antibiotic resistance genes-cdeA (99.46%), cplR (99.63%), and nimB (99.67%)-were nearly ubiquitous. Rare resistance genes like blaCTX-M-2, cfxA3, and blaZ appeared in only 0.005% of genomes. Vancomycin susceptibility-reducing vanG cluster genes were detected at low frequencies. Virulence factors showed variability, with highly prevalent genes such as zmp1 (99.62%), groEL (99.60%), and rpoB/rpoB2 (99.60%). Moderately distributed genes included cwp66 (54.61%) and slpA (79.02%). Toxin genes tcdE (91.26%), tcdC (89.67%), and tcdB (89.06%) were widespread, while binary toxin genes cdtA (26.19%) and cdtB (26.26%) were less common. Toxin gene prevalence, particularly tcdA and tcdB, showed a gradual decline over time, with sharper reductions for cdtA and cdtB. Gene presence patterns (GPP-1) for resistance, virulence, and toxin genes were primarily linked to ST2, ST42, and ST8. Conclusion This study highlights C. difficile's adaptability and genetic diversity. The decline in toxin genes reflects fewer toxigenic isolates, but the bacterium's increasing preserved resistance factors and virulence genes enable its rapid evolution. ST2, ST42, and ST8 dominate globally, emphasizing the need for ongoing monitoring.
Collapse
Affiliation(s)
- Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Katouli
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Dang Z, Yang B, Xia P, Huang J, Liao J, Li Y, Tang S, Han Q, Luo S, Xia Y. Antimicrobial susceptibilities, resistance mechanisms and molecular characteristics of toxigenic Clostridioides difficile isolates in a large teaching hospital in Chongqing, China. J Glob Antimicrob Resist 2024; 38:198-204. [PMID: 39048055 DOI: 10.1016/j.jgar.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Clostridioides difficile ranks among the primary sources of healthcare-related infections and diarrhoea in numerous nations. We evaluated the drug susceptibility and resistance mechanisms of C. difficile isolates from a hospital in Chongqing, China, and identified resistance rates and resistance mechanisms that differed from previous findings. METHODS The toxin genes and drug resistance genes of clinical strains were detected using Polymerase Chain Reaction (PCR), and these strains were subjected to Multilocus Sequence Typing (MLST). The agar dilution technique was employed for assessing susceptibility of antibiotics. Clinical data collection was completed through a review of electronic medical records. RESULTS A total of 67 strains of toxin-producing C. difficile were detected. All C. difficile isolates demonstrated susceptibility to both metronidazole and vancomycin. However, resistance was observed in 8.95%, 16.42%, 56.72%, 56.72%, 31.34% and 5.97% of the isolates for tigecycline, tetracycline, clindamycin, erythromycin, moxifloxacin and rifampin, respectively. Among the strains with toxin genotypes A + B + CDT - and belonging to the ST3, six strains exhibited reduced susceptibility to tigecycline (MIC=0.5mg/L) and tetracycline (MIC=8mg/L). The tetA(P) and tetB(P) genes were present in these six strains, but were absent in tetracycline-resistant strains. Resistance genes (ermB, tetM, tetA(P) and tetB(P)) and mutations (in gyrA, gyrB, and rpoB) were identified in resistant strains. CONCLUSIONS In contrast to prior studies, we found higher proportions of ST3 isolates with decreased tigecycline sensitivity, sharing similar resistance patterns and resistance genes. In the resistance process of tigecycline and tetracycline, the tetA(P) and tetB(P) genes may play a weak role.
Collapse
Affiliation(s)
- Zijun Dang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bingxue Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiwen Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajia Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqiong Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyu Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Han
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengli Luo
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Asghari Ozma M, Mahmoodzadeh Hosseini H, Ataee MH, Mirhosseini SA. Evaluating the antibacterial, antibiofilm, and anti-toxigenic effects of postbiotics from lactic acid bacteria on Clostridium difficile. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:497-508. [PMID: 39267941 PMCID: PMC11389761 DOI: 10.18502/ijm.v16i4.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background and Objectives The most common cause of healthcare-associated diarrhea is Clostridium difficile infection (CDI), which causes severe and recurring symptoms. The increase of antibiotic-resistant C. difficile requires alternate treatments. Postbiotics, metabolites produced by probiotics, fight CDI owing to their antibacterial capabilities. This study aims to evaluate the antibacterial, antibiofilm, and anti-toxigenic potential of postbiotics in combating CDI. Materials and Methods GC-MS evaluated postbiotics from Bifidobacterium bifidum and Lactobacillus plantarum. Disk diffusion and broth microdilution determined C. difficile antibacterial inhibition zones and MICs. Microtiter plates assessed antibiofilm activity. MTT assay evaluated postbiotics anti-viability on HEK293. ELISA testing postbiotic detoxification of toxins A and B. Postbiotics were examined for tcdA and tcdB genes expression using real-time PCR. Results The most identified B. bifidum and L. plantarum postbiotic compounds were glycolic acid (7.2%) and butyric acid (13.57%). B. bifidum and L. plantarum displayed 13 and 10 mm inhibition zones and 2.5 and 5 mg/ml MICs against C. difficile. B. bifidum reduced biofilm at 1.25 mg/ml by 49% and L. plantarum by 31%. MTT assay showed both postbiotics had little influence on cell viability, which was over 80%. The detoxification power of postbiotics revealed that B. bifidum decreased toxin A and B production more effectively than L. plantarum, and also their related tcdA and tcdB genes expression reduction were statistically significant (p < 0.05). Conclusion Postbiotics' ability to inhibit bacterial growth, biofilm disruption, and toxin reduction makes them a promising adjunctive for CDI treatment and a good solution to pathogens' antibiotic resistance.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Baqiytallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ataee
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Eubank TA, Dureja C, Garey KW, Hurdle JG, Gonzales-Luna AJ. Reduced Vancomycin Susceptibility in Clostridioides difficile Is Associated With Lower Rates of Initial Cure and Sustained Clinical Response. Clin Infect Dis 2024; 79:15-21. [PMID: 38382090 PMCID: PMC11259216 DOI: 10.1093/cid/ciae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Epidemiologic studies have shown decreasing vancomycin susceptibility among clinical Clostridioides difficile isolates, but the impact on patient outcomes is unknown. We hypothesized that reduced vancomycin susceptibility would be associated with decreased rates of sustained clinical response (SCR). METHODS This multicenter cohort study included adults with C. difficile infection (CDI) treated with oral vancomycin between 2016 and 2021. Clostridioides difficile isolates underwent agar dilution vancomycin susceptibility testing, ribotyping, and Sanger sequencing of the vancomycin resistance vanR gene. Reduced susceptibility was defined as vancomycin minimum inhibitory concentration (MIC) >2 μg/mL. The primary outcome was 30-day SCR; secondary outcomes were 14-day initial cure, 30-day recurrence, and 30-day mortality. Exploratory analysis assessed the association between the VanR Thr115Ala polymorphism, susceptibility, and outcomes. RESULTS A high proportion (34% [102/300]) of C. difficile isolates exhibited reduced vancomycin susceptibility (range, 0.5-16 μg/mL; MIC50/90 = 2/4 μg/mL). Ribotype 027 accounted for the highest proportion (77.4% [41/53]) of isolates with reduced vancomycin susceptibility. Overall, 83% (249) of patients achieved 30-day SCR. Reduced vancomycin susceptibility was associated with lower rates of 30-day SCR (76% [78/102]) than vancomycin-susceptible strains (86% [171/198]; P = .031). A significantly lower rate of 14-day initial cure was also observed among individuals infected with strains with reduced vancomycin susceptibility (89% vs 96%; P = .04). Reduced susceptibility remained an independent predictor of 30-day SCR in multivariable modeling (odds ratio, 0.52 [95% confidence interval, .28-.97]; P = .04). CONCLUSIONS Reduced vancomycin susceptibility in C. difficile was associated with decreased odds of 30-day SCR and lower 14-day initial cure rates in the studied patient cohort.
Collapse
Affiliation(s)
- Taryn A Eubank
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy
| | - Chetna Dureja
- Center of Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy
| | - Julian G Hurdle
- Center of Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy
| |
Collapse
|
7
|
Kolte B, Nübel U. Genetic determinants of resistance to antimicrobial therapeutics are rare in publicly available Clostridioides difficile genome sequences. J Antimicrob Chemother 2024; 79:1320-1328. [PMID: 38598696 PMCID: PMC11144481 DOI: 10.1093/jac/dkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVES To determine the frequencies and clonal distributions of putative genetic determinants of resistance to antimicrobials applied for treatment of Clostridioides difficile infection (CDI), as documented in the genomic record. METHODS We scanned 26 557 C. difficile genome sequences publicly available from the EnteroBase platform for plasmids, point mutations and gene truncations previously reported to reduce susceptibility to vancomycin, fidaxomicin or metronidazole, respectively. We measured the antimicrobial susceptibility of 143 selected C. difficile isolates. RESULTS The frequency of mutations causing reduced susceptibility to vancomycin and metronidazole, respectively, increased strongly after 2000, peaking at up to 52% of all sequenced C. difficile genomes. However, both mutations declined sharply more recently, reflecting major changes in CDI epidemiology. We detected mutations associated with fidaxomicin resistance in several major genotypes, but found no evidence of international spread of resistant clones. The pCD-METRO plasmid, conferring metronidazole resistance, was detected in a single previously unreported C. difficile isolate, recovered from a hospital patient in Germany in 2008. The pX18-498 plasmid, putatively associated with decreased vancomycin susceptibility, was confined to related, recent isolates from the USA. Phenotype measurements confirmed that most of those genetic features were useful predictors of antibiotic susceptibility, even though ranges of MICs typically overlapped among isolates with and without specific mutations. CONCLUSIONS Genomic data suggested that resistance to therapeutic antimicrobial drugs is rare in C. difficile. Public antimicrobial resistance marker databases were not equipped to detect most of the genetic determinants relevant to antibiotic therapy of CDI.
Collapse
Affiliation(s)
- Baban Kolte
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Inhoffenstr. 7B, 38124, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Inhoffenstr. 7B, 38124, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| |
Collapse
|
8
|
Rampedi PN, Ogunrombi MO, Adeleke OA. Leading Paediatric Infectious Diseases-Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics 2024; 16:712. [PMID: 38931836 PMCID: PMC11206886 DOI: 10.3390/pharmaceutics16060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments.
Collapse
Affiliation(s)
- Penelope N. Rampedi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Modupe O. Ogunrombi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Oluwatoyin A. Adeleke
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3J5, Canada
- School of Pharmacy, Sefako Makgatho Health Science University, Pretoria 0208, South Africa
| |
Collapse
|
9
|
Bassères E, Eubank TA, Begum K, Alam MJ, Jo J, Le TM, Lancaster CK, Gonzales-Luna AJ, Garey KW. Antibacterial activity of ibezapolstat against antimicrobial-resistant clinical strains of Clostridioides difficile. Antimicrob Agents Chemother 2024; 68:e0162123. [PMID: 38364016 PMCID: PMC10916401 DOI: 10.1128/aac.01621-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Antimicrobial resistance is emerging in clinical strains of Clostridioides difficile. Ibezapolstat (IBZ) is a DNA polymerase IIIC inhibitor that has completed phase II clinical trials. IBZ has potent in vitro activity against wild-type, susceptible strains but its effect on C. difficile strains with reduced susceptibility to metronidazole (MTZ), vancomycin (VAN), or fidaxomicin (FDX) has not been tested. The primary objective of this study was to test the antibacterial properties of IBZ against multidrug-resistant C. difficile strains. The in vitro activity, bactericidal, and time-kill activity of IBZ versus comparators were evaluated against 100 clinical strains of which 59 had reduced susceptibility to other C. difficile antibiotics. Morphologic changes against a multidrug resistance strain were visualized by light and scanning electron microscopy. The overall IBZ MIC50/90 values (µg/mL) for evaluated C. difficile strains were 4/8, compared with 2/4 for VAN, 0.5/1 for FDX, and 0.25/4 for MTZ. IBZ MIC50/90 values did not differ based on non-susceptibility to antibiotic class or number of classes to which strains were non-susceptible. IBZ bactericidal activity was similar to the minimum inhibitory concentration (MIC) and maintained in wild-type and non-susceptible strains. Time-kill assays against two laboratory wild-type and two clinical non-susceptible strains demonstrated sustained IBZ activity despite reduced killing by comparator antibiotics for IBZ and VAN non-susceptible strains. Microscopy visualized increased cell lengthening and cellular damage in multidrug-resistant strains exposed to IBZ sub-MIC concentrations. This study demonstrated the potent antibacterial activity of IBZ against a large collection of C. difficile strains including multidrug-resistant strains. This study highlights the therapeutic potential of IBZ against multidrug-resistant strains of C. difficile.
Collapse
Affiliation(s)
- Eugénie Bassères
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Taryn A. Eubank
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Khurshida Begum
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - M. Jahangir Alam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Jinhee Jo
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Thanh M. Le
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Chris K. Lancaster
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Anne J. Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Kevin W. Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| |
Collapse
|
10
|
Barth SA, Preussger D, Pietschmann J, Feßler AT, Heller M, Herbst W, Schnee C, Schwarz S, Kloss F, Berens C, Menge C. In Vitro Antibacterial Activity of Microbial Natural Products against Bacterial Pathogens of Veterinary and Zoonotic Relevance. Antibiotics (Basel) 2024; 13:135. [PMID: 38391521 PMCID: PMC10886079 DOI: 10.3390/antibiotics13020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is considered one of the greatest threats to both human and animal health. Efforts to address AMR include implementing antimicrobial stewardship programs and introducing alternative treatment options. Nevertheless, effective treatment of infectious diseases caused by bacteria will still require the identification and development of new antimicrobial agents. Eight different natural products were tested for antimicrobial activity against seven pathogenic bacterial species (Brachyspira sp., Chlamydia sp., Clostridioides sp., Mannheimia sp., Mycobacterium sp., Mycoplasma sp., Pasteurella sp.). In a first pre-screening, most compounds (five out of eight) inhibited bacterial growth only at high concentrations, but three natural products (celastramycin A [CA], closthioamide [CT], maduranic acid [MA]) displayed activity at concentrations <2 µg/mL against Pasteurella sp. and two of them (CA and CT) also against Mannheimia sp. Those results were confirmed by testing a larger collection of isolates encompassing 64 Pasteurella and 56 Mannheimia field isolates originating from pigs or cattle, which yielded MIC90 values of 0.5, 0.5, and 2 µg/mL against Pasteurella and 0.5, 4, and >16 µg/mL against Mannheimia for CA, CT, and MA, respectively. CA, CT, and MA exhibited higher MIC50 and MIC90 values against Pasteurella isolates with a known AMR phenotype against commonly used therapeutic antimicrobial agents than against isolates with unknown AMR profiles. This study demonstrates the importance of whole-cell antibacterial screening of natural products to identify promising scaffolds with broad- or narrow-spectrum antimicrobial activity against important Gram-negative veterinary pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Stefanie A Barth
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Daniel Preussger
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Jana Pietschmann
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Martin Heller
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Werner Herbst
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, 35392 Giessen, Germany
| | - Christiane Schnee
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, 07745 Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| |
Collapse
|
11
|
Markantonis JE, Fallon JT, Madan R, Alam MZ. Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens 2024; 13:118. [PMID: 38392856 PMCID: PMC10891949 DOI: 10.3390/pathogens13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is the most important cause of healthcare-associated diarrhea in the United States. The high incidence and recurrence rates of C. difficile infection (CDI), associated with high morbidity and mortality, pose a public health challenge. Although antibiotics targeting C. difficile bacteria are the first treatment choice, antibiotics also disrupt the indigenous gut flora and, therefore, create an environment that is favorable for recurrent CDI. The challenge of treating CDI is further exacerbated by the rise of antibiotic-resistant strains of C. difficile, placing it among the top five most urgent antibiotic resistance threats in the USA. The evolution of antibiotic resistance in C. difficile involves the acquisition of new resistance mechanisms, which can be shared among various bacterial species and different C. difficile strains within clinical and community settings. This review provides a summary of commonly used diagnostic tests and antibiotic treatment strategies for CDI. In addition, it discusses antibiotic treatment and its resistance mechanisms. This review aims to enhance our current understanding and pinpoint knowledge gaps in antimicrobial resistance mechanisms in C. difficile, with an emphasis on CDI therapies.
Collapse
Affiliation(s)
- John E. Markantonis
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - John T. Fallon
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| |
Collapse
|
12
|
Oludiran A, Malik A, Zourou AC, Wu Y, Gross SP, Siryapon A, Poudel A, Alleyne K, Adams S, Courson DS, Cotten ML, Purcell EB. Host-defense piscidin peptides as antibiotic adjuvants against Clostridioides difficile. PLoS One 2024; 19:e0295627. [PMID: 38252641 PMCID: PMC10802969 DOI: 10.1371/journal.pone.0295627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/26/2023] [Indexed: 01/24/2024] Open
Abstract
The spore-forming intestinal pathogen Clostridioides difficile causes multidrug resistant infection with a high rate of recurrence after treatment. Piscidins 1 (p1) and 3 (p3), cationic host defense peptides with micromolar cytotoxicity against C. difficile, sensitize C. difficile to clinically relevant antibiotics tested at sublethal concentrations. Both peptides bind to Cu2+ using an amino terminal copper and nickel binding motif. Here, we investigate the two peptides in the apo and holo states as antibiotic adjuvants against an epidemic strain of C. difficile. We find that the presence of the peptides leads to lower doses of metronidazole, vancomycin, and fidaxomicin to kill C. difficile. The activity of metronidazole, which targets DNA, is enhanced by a factor of 32 when combined with p3, previously shown to bind and condense DNA. Conversely, the activity of vancomycin, which acts at bacterial cell walls, is enhanced 64-fold when combined with membrane-active p1-Cu2+. As shown through microscopy monitoring the permeabilization of membranes of C. difficile cells and vesicle mimics of their membranes, the adjuvant effect of p1 and p3 in the apo and holo states is consistent with a mechanism of action where the peptides enable greater antibiotic penetration through the cell membrane to increase their bioavailability. The variations in effects obtained with the different forms of the peptides reveal that while all piscidins generally sensitize C. difficile to antibiotics, co-treatments can be optimized in accordance with the underlying mechanism of action of the peptides and antibiotics. Overall, this study highlights the potential of antimicrobial peptides as antibiotic adjuvants to increase the lethality of currently approved antibiotic dosages, reducing the risk of incomplete treatments and ensuing drug resistance.
Collapse
Affiliation(s)
- Adenrele Oludiran
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States of America
| | - Areej Malik
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States of America
- Biomedical Sciences Program, Old Dominion University, Norfolk, Virginia, United States of America
| | - Andriana C. Zourou
- Department of Applied Science, William & Mary, Williamsburg, Virginia, United States of America
| | - Yonghan Wu
- Irvine Department of Physics and Astronomy, University of California, Los Angeles, California, United States of America
| | - Steven P. Gross
- Ivrine Department of Developmental and Cell Biology, University of California, Los Angeles, California, United States of America
| | - Albert Siryapon
- Irvine Department of Physics and Astronomy, University of California, Los Angeles, California, United States of America
| | - Asia Poudel
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States of America
| | - Kwincy Alleyne
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States of America
| | - Savion Adams
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States of America
| | - David S. Courson
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States of America
| | - Myriam L. Cotten
- Department of Applied Science, William & Mary, Williamsburg, Virginia, United States of America
| | - Erin B. Purcell
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
13
|
Ahmed H, Joshi LT. Clostridioides difficile spores tolerate disinfection with sodium hypochlorite disinfectant and remain viable within surgical scrubs and gown fabrics. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001418. [PMID: 37988292 PMCID: PMC10710845 DOI: 10.1099/mic.0.001418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Clostridioides difficile is the most common cause of antibiotic-associated diarrhoea globally. Its spores have been implicated in the prevalence of C. difficile infection due to their resistance and transmission ability between surfaces. Currently, disinfectants such as chlorine-releasing agents (CRAs) and hydrogen peroxide are used to decontaminate and reduce the incidence of infections in clinical environments. Our previous research demonstrated the ability of C. difficile spores to survive exposure to recommended concentrations of sodium dichloroisocyanurate in liquid form and within personal protective fabrics such as surgical gowns; however, the present study examined the spore response to clinical in-use concentrations of sodium hypochlorite. Spores were exposed to a 10 min contact time of 1000, 5000 and 10 000 p.p.m. sodium hypochlorite, and spore recovery was determined. To understand whether biocide-exposed spores transmitted across clinical surfaces in vitro , biocide-exposed spores were spiked onto surgical scrubs and patient gowns and recovery was determined by a plate transfer assay. Scanning electron microscopy was used to establish if there were any morphological changes to the outer spore coat. The results revealed that viable biocide-exposed C. difficile spores can be recovered from surgical scrubs and patient gowns, with no observable changes to spore morphology, highlighting the potential of these fabrics as vectors of spore transmission. This study demonstrates that alternative strategies should be urgently sought to disinfect C. difficile spores to break the chain of transmission in clinical environments.
Collapse
Affiliation(s)
- Humaira Ahmed
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| | - Lovleen Tina Joshi
- Peninsula Dental School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| |
Collapse
|
14
|
Dicks LMT. Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI. Microorganisms 2023; 11:2161. [PMID: 37764005 PMCID: PMC10534356 DOI: 10.3390/microorganisms11092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Clostridioides difficile is considered a nosocomial pathogen that flares up in patients exposed to antibiotic treatment. However, four out of ten patients diagnosed with C. difficile infection (CDI) acquired the infection from non-hospitalized individuals, many of whom have not been treated with antibiotics. Treatment of recurrent CDI (rCDI) with antibiotics, especially vancomycin (VAN) and metronidazole (MNZ), increases the risk of experiencing a relapse by as much as 70%. Fidaxomicin, on the other hand, proved more effective than VAN and MNZ by preventing the initial transcription of RNA toxin genes. Alternative forms of treatment include quorum quenching (QQ) that blocks toxin synthesis, binding of small anion molecules such as tolevamer to toxins, monoclonal antibodies, such as bezlotoxumab and actoxumab, bacteriophage therapy, probiotics, and fecal microbial transplants (FMTs). This review summarizes factors that affect the colonization of C. difficile and the pathogenicity of toxins TcdA and TcdB. The different approaches experimented with in the destruction of C. difficile and treatment of CDI are evaluated.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
15
|
Boyanova L, Dimitrov G, Gergova R, Hadzhiyski P, Markovska R. Clostridioides difficile resistance to antibiotics, including post-COVID-19 data. Expert Rev Clin Pharmacol 2023; 16:925-938. [PMID: 37642560 DOI: 10.1080/17512433.2023.2252331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Updating data on Clostridioides difficile antibiotic resistance is important for treatment improvement of C. difficile infections (CDIs). AREAS COVERED Results from 20 countries were included. The mean resistance to 2 mg/l vancomycin, 2 mg/l metronidazole, 4 mg/l moxifloxacin, and 4 mg/l clindamycin was 4.7% (0 to ≥ 26% in two studies), 2.6% (0 to ≥ 40% in 3 studies), 34.9% (6.6->80%), and 61.0% (30->90%), respectively. Resistance to erythromycin (>60-88%), rifampin (>23-55.0%), imipenem (0.6 to > 78% in a clone), tigecycline (0-<5.0%), and fidaxomicin (0-2%) was also found. Resistance to ≥ 5 antibiotics of different classes was reported in some countries. High resistance and multidrug resistance were observed in hypervirulent and epidemic strains. Although only 1% of COVID-19 patients had CDIs, the proportion might be underestimated. EXPERT OPINION C. difficile antimicrobial susceptibility varied by country/region, study period, and circulating ribotypes. For CDI treatment, fidaxomicin (preferably) or vancomycin is recommended, while metronidazole is suitable for mild infections. New approaches, including biotherapeutics (Rebyota), strains, antibiotics (ridinilazole and ibezapolstat), and monoclonal antibodies/cocktails merit further evaluation. Because of the resistance rate variations, C. difficile antibiotic susceptibility should be regularly monitored. Post-COVID-19 resistance should be separately presented. Some discrepancies between vancomycin and metronidazole results need to be clarified.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Dimitrov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Petyo Hadzhiyski
- Specialized Hospital for Active Pediatric Treatment, Medical University of Sofia, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
16
|
Kamiya S. Microbial ecology between Clostridioides difficile and gut microbiota. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:229-235. [PMID: 37791342 PMCID: PMC10542429 DOI: 10.12938/bmfh.2023-033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 10/05/2023]
Abstract
Clostridioides difficile colonizes a polymicrobial environment in the intestine and is a causative agent for antibiotic-associated diarrhea (AAD) and pseudomembranous colitis (PMC). The most important virulence factors of C. difficile are bacterial toxins, and three toxins (toxin A, toxin B, and binary toxin) are produced by toxigenic strains. Other virulence factors include spores, flagella, capsules, biofilms, hydrolytic enzymes and adhesins. C. difficile infection (CDI) is specifically diagnosed by anaerobic culture and toxin detection by either nucleic acid amplification test (NAAT) or enzyme-linked immunosorbent assay (ELISA). For treatment of CDI, metronidazole, vancomycin and fidaxomicin are used based on the severity of CDI. Mutual interaction between C. difficile and gut microbiota is associated with pathogenesis of CDI, and decreased microbial diversity with altered gut microbiome was detected in CDI patients. Restoration of certain gut microbiota is considered to be potentially effective for the prevention and treatment of CDI, and an ideal goal for CDI patients is restoration of the gut microbiota to a healthy state. Fecal microbiota transplantation (FMT) is a highly successful method of microbiome restoration and has been reported to be effective for the prevention of recurrent CDI. In addition, approaches to restoring the gut microbiota by using probioitcs and live biotherapeutic products (LBPs) are currently being studied to examine the effect on CDI. Further microbial ecological research on C. difficile and gut microbiota could lead to a better understanding of the pathogenesis and treatment of CDI.
Collapse
Affiliation(s)
- Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
- R&D Division, Miyarisan Pharmaceutical Co. Ltd., 1-10-3 Kaminakazato, Kita-ku, Tokyo 114-0016, Japan
| |
Collapse
|
17
|
Schönherr S, Jung L, Lübbert C. [Clostridioides difficile - New Insights and Therapy Recommendations]. Dtsch Med Wochenschr 2023; 148:752-758. [PMID: 37257477 DOI: 10.1055/a-1970-9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
After an increase in Clostridioides difficile infections (CDI) until 2013 due to epidemic ribotypes such as 027 and 078, CDI incidence in Germany is now declining, as confirmed by recent epidemiological data. Despite this success through antimicrobial stewardship and hospital hygiene, the burden of disease remains high, especially in older patients (>65 years) with comorbidities. The main risk factor for CDI is the use of broad-spectrum antibiotics, which disrupt the gut microbiota, allowing C. difficile colonization. Coinfection with other intestinal pathogens such as enterococci can further increase the virulence of C. difficile. The updated 2021 ESCMID guidelines recommend fidaxomicin instead of vancomycin as the antibiotic of choice for the treatment of CDI because of its lower recurrence rate. Vancomycin remains a good alternative; however, metronidazole should only be used if neither antibiotic is available. In the future, ridinilazole may be available as another therapeutic option that has a narrow spectrum of activity and low intestinal absorption. For the treatment of recurrent CDI, the new guidelines also include the use of the monoclonal antibody bezlotoxumab. In addition, a new oral microbiome therapy, SER-109 (capsules containing purified Firmicutes spores), which showed promising results in a phase 3 study, may provide an easy-to-administer alternative to fecal microbiota transplantation. Hopes for a well-performing toxoid vaccine for primary and secondary prevention of CDI have unfortunately not been fulfilled in the CLOVER trial.
Collapse
Affiliation(s)
- Sebastian Schönherr
- Bereich Infektiologie und Tropenmedizin, Klinik und Poliklinik für Hämatologie, Zelltherapie, Hämostaseologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig
- Interdisziplinäres Zentrum für Infektionsmedizin, Universitätsklinikum Leipzig, Leipzig
| | - Laura Jung
- Bereich Infektiologie und Tropenmedizin, Klinik und Poliklinik für Hämatologie, Zelltherapie, Hämostaseologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig
- Interdisziplinäres Zentrum für Infektionsmedizin, Universitätsklinikum Leipzig, Leipzig
| | - Christoph Lübbert
- Bereich Infektiologie und Tropenmedizin, Klinik und Poliklinik für Hämatologie, Zelltherapie, Hämostaseologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig
- Interdisziplinäres Zentrum für Infektionsmedizin, Universitätsklinikum Leipzig, Leipzig
- Klinik für Infektiologie und Tropenmedizin, Klinikum St. Georg, Leipzig
| |
Collapse
|
18
|
Sinhorelli BS, Oliveira SD. Antimicrobial Prophylaxis in Dentistry: Survey among Dental Surgeons in Porto Alegre, Brazil, and the Metropolitan Region. Am J Trop Med Hyg 2023; 108:1071-1077. [PMID: 36940669 PMCID: PMC10160882 DOI: 10.4269/ajtmh.22-0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 03/23/2023] Open
Abstract
The irrational use of antimicrobial drugs has become a serious epidemiological problem due to the development of bacterial resistance, causing consequences for global health. In dentistry, antibiotics are the second most common pharmacological class prescribed. Thus, we evaluated the use of antimicrobial prophylaxis by dentists in Porto Alegre, Brazil, and the metropolitan region using an online questionnaire. Dentists were asked to complete an anonymous questionnaire concerning antimicrobial prescription. The questionnaire was prepared on the Microsoft Forms platform and shared with dentists through social media and was available for a period of 40 days. The questionnaire was answered by 82 dentists, and 85.3% of them reported prescribing antibiotic prophylaxis (AP). Many different protocols were observed, but the majority of dentists prescribe amoxicillin (2 g) 1 hour before a procedure. The greatest diversity was found in the prescriptions for post-procedure prophylaxis, but most professionals prescribe 500 mg of antibiotics every 8 hours for 7 days. An overwhelming 91.5% of participants think that guidelines for prescribing antibiotics in dentistry are necessary, and 62.2% believe that the use of AP can have some impact on bacterial resistance. There is a wide range of different prescriptions for antimicrobials, suggesting a need for better aligned guidelines and education of professionals on the proper use of antimicrobials and its consequences on bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Bethina S. Sinhorelli
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Sílvia D. Oliveira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
19
|
Zhang X, Li J, Chen C, Liu YJ, Cui Q, Hong W, Chen Z, Feng Y, Cui G. Molecular Basis of TcdR-Dependent Promoter Activity for Toxin Production by Clostridioides difficile Studied by a Heterologous Reporter System. Toxins (Basel) 2023; 15:toxins15050306. [PMID: 37235341 DOI: 10.3390/toxins15050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The alternative σ factor TcdR controls the synthesis of two major enterotoxins: TcdA and TcdB in Clostridioides difficile. Four potential TcdR-dependent promoters in the pathogenicity locus of C. difficile showed different activities. In this study, we constructed a heterologous system in Bacillus subtilis to investigate the molecular basis of TcdR-dependent promoter activity. The promoters of the two major enterotoxins showed strong TcdR-dependent activity, while the two putative TcdR-dependent promoters in the upstream region of the tcdR gene did not show detectable activity, suggesting that the autoregulation of TcdR may need other unknown factors involved. Mutation analysis indicated that the divergent -10 region is the key determinant for different activities of the TcdR-dependent promoters. Analysis of the TcdR model predicted by AlphaFold2 suggested that TcdR should be classified into group 4, i.e., extracytoplasmic function, σ70 factors. The results of this study provide the molecular basis of the TcdR-dependent promoter recognition for toxin production. This study also suggests the feasibility of the heterologous system in analyzing σ factor functions and possibly in drug development targeting these factors.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jie Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hong
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
| | - Yingang Feng
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
20
|
Zhou J, Horton JR, Menna M, Fiorentino F, Ren R, Yu D, Hajian T, Vedadi M, Mazzoccanti G, Ciogli A, Weinhold E, Hüben M, Blumenthal RM, Zhang X, Mai A, Rotili D, Cheng X. Systematic Design of Adenosine Analogs as Inhibitors of a Clostridioides difficile-Specific DNA Adenine Methyltransferase Required for Normal Sporulation and Persistence. J Med Chem 2023; 66:934-950. [PMID: 36581322 PMCID: PMC9841527 DOI: 10.1021/acs.jmedchem.2c01789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 12/31/2022]
Abstract
Antivirulence agents targeting endospore-transmitted Clostridioides difficile infections are urgently needed. C. difficile-specific DNA adenine methyltransferase (CamA) is required for efficient sporulation and affects persistence in the colon. The active site of CamA is conserved and closely resembles those of hundreds of related S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which makes the design of selective inhibitors more challenging. We explored the solvent-exposed edge of the SAM adenosine moiety and systematically designed 42 analogs of adenosine carrying substituents at the C6-amino group (N6) of adenosine. We compare the inhibitory properties and binding affinity of these diverse compounds and present the crystal structures of CamA in complex with 14 of them in the presence of substrate DNA. The most potent of these inhibitors, compound 39 (IC50 ∼ 0.4 μM and KD ∼ 0.2 μM), is selective for CamA against closely related bacterial and mammalian DNA and RNA adenine methyltransferases, protein lysine and arginine methyltransferases, and human adenosine receptors.
Collapse
Affiliation(s)
- Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - John R. Horton
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Martina Menna
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Ren Ren
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Taraneh Hajian
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Masoud Vedadi
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giulia Mazzoccanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessia Ciogli
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Elmar Weinhold
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Michael Hüben
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
21
|
Hishiki A, Okazaki S, Hara K, Hashimoto H. Crystal structure of the sliding DNA clamp from the Gram-positive anaerobic bacterium Clostridioides difficile. J Biochem 2022; 173:13-20. [PMID: 36166824 DOI: 10.1093/jb/mvac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 01/07/2023] Open
Abstract
The sliding DNA clamp is a ring-shaped protein that encircles DNA within its central channel. It binds to multiple proteins, such as DNA polymerases and DNA repair enzymes, and stimulates their enzymatic activities, thereby playing a crucial role in cell survival and proliferation. Accordingly, the bacterial clamp DnaN is considered to be a promising target for bacterial infection therapy. In this regard, 3D structures of DnaN from pathogenic bacteria are essential for the development of chemical compounds with antimicrobial activity. Here, the crystal structure of DnaN from a Gram-positive bacterium Clostridioides difficile, a human pathogen causing infectious diarrhoea, has been determined at 2.13 Å resolution. A comparison of the structures of DnaN from other bacteria indicates that the structural features of DnaN in terms of overall organization are essentially conserved within Gram-positive and Gram-negative bacteria. However, DnaN from C. difficile has structural differences in the potential binding pocket for partner proteins, implying a non-conventional interaction with its binding partners. Our findings will provide insight into the development of new therapies for C. difficile infection.
Collapse
Affiliation(s)
- Asami Hishiki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8002, Japan
| | - Sumire Okazaki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8002, Japan
| | - Kodai Hara
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8002, Japan
| | - Hiroshi Hashimoto
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8002, Japan
| |
Collapse
|
22
|
Johnstone M, Landgraf AD, Si A, Sucheck SJ, Self WT. Evaluation of Derivatives of (+)-Puupehenone against Clostridioides difficile and Other Gram-Positive Bacteria. ACS OMEGA 2022; 7:33511-33517. [PMID: 36157757 PMCID: PMC9494636 DOI: 10.1021/acsomega.2c04471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Patients receiving healthcare are at higher risk of acquiring healthcare-associated infections, which cause a significant number of illnesses and deaths. Most pathogens responsible for these infections are highly resistant to multiple antibiotics, prompting the need for discovery of new therapeutics to combat these evolved threats. We synthesized structural derivatives of (+)-puupehenone, a marine natural product, and observed growth inhibition of several clinically relevant Gram-positive bacteria, particularly Clostridioides difficile. The most potent compounds-(+)-puupehenone, 1, 15, 19, and 20-all inhibited C. difficile in the range of 2.0-4.0 μg/mL. Additionally, when present in the range of 1-8 μg/mL, a subset of active compounds-(+)-puupehenone, 1, 6, 15, and 20-greatly reduced the ability of C. difficile to produce exotoxins, which are required for disease in infected hosts. Our findings showcase a promising class of compounds for potential drug development against Gram-positive pathogens, such as C. difficile.
Collapse
Affiliation(s)
- Michael
A. Johnstone
- Burnett
School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816-2364, United States
| | - Alexander D. Landgraf
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Anshupriya Si
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Steven J. Sucheck
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - William T. Self
- Burnett
School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816-2364, United States
| |
Collapse
|