1
|
Xu H, Blagg BSJ. Glucose-regulated protein 94 (Grp94/gp96) in viral pathogenesis: Insights into its role and therapeutic potentials. Eur J Med Chem 2025; 292:117713. [PMID: 40319577 DOI: 10.1016/j.ejmech.2025.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Glucose-regulated protein 94 (Grp94/gp96) is endoplasmic reticulum (ER) resident form of the 90 kDa heat shock protein 90 (Hsp90) that is responsible for folding, maturation and stabilization of more than 400 client proteins. Grp94 has been implicated for various diseases including metastatic cancer, primary open-angle glaucoma, and infectious diseases. In fact, Grp94 plays critical roles in different stages of viral infection cycle. It chaperones receptor proteins and viral glycoproteins that are necessary for viral entry and replication. Beyond its role in protein homeostasis, Grp94 modulates host cellular processes such as apoptosis and immune responses, which are often exploited by viruses to sustain infection. This work provides an overview of the roles of Grp94 in viral pathogenesis across various viruses and its involvement in immune modulation with the development of Grp94-selective inhibitors and their potential as anti-viral therapeutics.
Collapse
Affiliation(s)
- Hao Xu
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Saini V, Safwan SM, Mehta D, Das EE, Bajaj A. Recent Advances in the Development of Antifungal Agents: Beyond Azoles, Polyenes, and Echinocandins. ACS Infect Dis 2025. [PMID: 40358027 DOI: 10.1021/acsinfecdis.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The escalating incidence of antimicrobial resistance to antifungal agents, alongside the emergence of drug-resistant fungal strains, constitutes a significant threat to a potential global fungal pandemic. In response, researchers are intensifying efforts to identify novel antifungal compounds through diverse methodologies. Emerging strategies focus on innovative therapeutic targets that may reduce the risk of resistance development while offering broad-spectrum efficacy against fungal infections. Additionally, these approaches present potential cost-effectiveness and accelerated development timelines. This review systematically categorizes a range of novel antifungal compounds, including antifungal peptides, cationic amphiphiles, small molecules, polymers, and repurposed drugs, based on their efficacy in inhibiting fungal growth and associated virulence factors. These compounds exhibit notable antimicrobial activity across in silico, in vitro, and in vivo systems against various pathogenic fungal strains, with several showing substantial promise for clinical application. Furthermore, the review highlights the limitations of standard antifungals and elucidates the mechanisms by which fungal strains develop resistance. This work aims to engage researchers in the distinctive field of fungal biology and foster the exploration of new antifungal strategies.
Collapse
Affiliation(s)
- Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sayed M Safwan
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Eric Evan Das
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
3
|
Fu C, Robbins N, Cowen LE. Adaptation of the tetracycline-repressible system for modulating the expression of essential genes in Cryptococcus neoformans. mSphere 2025:e0101824. [PMID: 40310102 DOI: 10.1128/msphere.01018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
The opportunistic human fungal pathogen Cryptococcus neoformans has an enormous impact on human health as the causative agent of cryptococcal meningitis, and there is a dire need to expand our current antifungal arsenal. Essential gene products often serve as ideal targets for antimicrobials, and identifying and characterizing essential genes in a pathogen of interest is critical for drug development. Unfortunately, characterization of essential genes in C. neoformans is limited due to its haploid nature and lack of genetic tools for generating effective conditional-expression mutants. To date, the copper-repressible promoter pCTR4 is the most widely used system to regulate essential gene expression; however, its expression is leaky and copper has pleiotropic effects. In diverse fungal species, including Saccharomyces cerevisiae, Candida albicans, and Candida auris, the tetracycline-repressible promoter system is a powerful tool to regulate gene expression; however, it has yet to be adapted for C. neoformans. In this study, we successfully implemented the tetracycline-repressible system in C. neoformans to regulate the expression of the essential genes HSP90 and FKS1. Supplementation of cultures with the tetracycline analog doxycycline efficiently depleted HSP90 at both transcript and protein levels and inhibited C. neoformans growth and viability. Similarly, the depletion of FKS1 with doxycycline enhanced sensitivity of the strain to the echinocandin caspofungin, an antifungal that targets the glucan synthase but is generally ineffective against C. neoformans. Thus, this work unveils a novel approach to generate conditional-expression mutants in C. neoformans, providing unprecedented potential to systematically study essential gene function in this important human fungal pathogen.IMPORTANCEInvasive fungal infections cause millions of deaths annually, while the number of antifungals available to combat these pathogens is limited to only three classes: polyenes, azoles, and echinocandins. The largest source of novel antifungal drug targets are essential gene products, which are required for cellular viability. However, tools to identify and characterize essential genes in C. neoformans are extremely limited. Here, we adapted the tetracycline-repressible promoter system, that has been widely used in other organisms, to study essential gene function in C. neoformans. By placing this regulatable promoter upstream of the essential genes HSP90 and FKS1, we confirmed that the growth of the strains in the presence of the tetracycline analog doxycycline results in the depletion of essential gene expression. This approach provides a significant advance for the systematic study of essential genes in C. neoformans.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Ramírez-Sotelo U, Gómez-Gaviria M, Mora-Montes HM. Signaling Pathways Regulating Dimorphism in Medically Relevant Fungal Species. Pathogens 2025; 14:350. [PMID: 40333127 PMCID: PMC12030348 DOI: 10.3390/pathogens14040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Pathogenic fungi that exhibit the ability to alternate between hyphal and yeast morphology in response to environmental stimuli are considered dimorphic. Under saprobic conditions, some fungi exist as filamentous hyphae, producing conidia. When conidia are inhaled by mammals or traumatically inoculated, body temperature (37 °C) triggers dimorphism into yeast cells. This shift promotes fungal dissemination and immune evasion. Some fungal pathogens undergo dimorphism in the contrary way, forming pseudohyphae and hyphae within the host. While temperature is a major driver of dimorphism, other factors, including CO2 concentration, pH, nitrogen sources, and quorum-sensing molecules, also contribute to morphological shifts. This morphological transition is associated with increased expression of virulence factors that aid in adhesion, colonization, and immune evasion. Candida albicans is a fungus that is commonly found as a commensal on human mucous membranes but has the potential to be an opportunistic fungal pathogen of immunocompromised patients. C. albicans exhibits a dimorphic change from the yeast form to the hyphal form when it becomes established as a pathogen. In contrast, Histoplasma capsulatum is an environmental dimorphic fungus where human infection begins when conidia or hyphal fragments of the fungus are inhaled into the alveoli, where the dimorphic change to yeast occurs, this being the morphology associated with its pathogenic phase. This review examines the main signaling pathways that have been mostly related to fungal dimorphism, using as a basis the information available in the literature on H. capsulatum and C. albicans because these fungi have been widely studied for the morphological transition from hypha to yeast and from yeast to hypha, respectively. In addition, we have included the reported findings of these signaling pathways associated with the dimorphism of other pathogenic fungi, such as Paracoccidioides brasiliensis, Sporothrix schenckii, Cryptococcus neoformans, and Blastomyces dermatitis. Understanding these pathways is essential for advancing therapeutic approaches against systemic fungal infections.
Collapse
Affiliation(s)
| | | | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico; (U.R.-S.); (M.G.-G.)
| |
Collapse
|
5
|
Gomez-Artiguez L, de la Cámara-Fuentes S, Sun Z, Hernáez ML, Borrajo A, Pitarch A, Molero G, Monteoliva L, Moritz RL, Deutsch EW, Gil C. Candida albicans: A Comprehensive View of the Proteome. J Proteome Res 2025; 24:1636-1648. [PMID: 40084908 DOI: 10.1021/acs.jproteome.4c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
We describe a new release of the Candida albicans PeptideAtlas proteomics spectral resource (build 2024-03), providing a sequence coverage of 79.5% at the canonical protein level, matched mass spectrometry spectra, and experimental evidence identifying 3382 and 536 phosphorylated serine and threonine sites with false localization rates of 1% and 5.3%, respectively. We provide a tutorial on how to use the PeptideAtlas and associated tools to access this information. The C. albicans PeptideAtlas summary web page provides "Build overview", "PTM coverage", "Experiment contribution", and "Data set contribution" information. The protein and peptide information can also be accessed via the Candida Genome Database via hyperlinks on each protein page. This allows users to peruse identified peptides, protein coverage, post-translational modifications (PTMs), and experiments that identify each protein. Given the value of understanding the PTM landscape in the sequence of each protein, a more detailed explanation of how to interpret and analyze PTM results is provided in the PeptideAtlas of this important pathogen. Candida albicans PeptideAtlas web page: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildDetails?atlas_build_id=578.
Collapse
Affiliation(s)
- Leticia Gomez-Artiguez
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Zhi Sun
- Institute for Systems Biology, 401 Terry Ave North, Seattle, Washington 98109, United States
| | - María Luisa Hernáez
- Proteomics Unit, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Borrajo
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aída Pitarch
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gloria Molero
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lucía Monteoliva
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Ave North, Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology, 401 Terry Ave North, Seattle, Washington 98109, United States
| | - Concha Gil
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Proteomics Unit, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Dishan A, Ozkaya Y, Temizkan MC, Barel M, Gonulalan Z. Candida species covered from traditional cheeses: Characterization of C. albicans regarding virulence factors, biofilm formation, caseinase activity, antifungal resistance and phylogeny. Food Microbiol 2025; 127:104679. [PMID: 39667852 DOI: 10.1016/j.fm.2024.104679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
This study has provided characterization data (carriage of virulence, antifungal resistance, caseinase activity, biofilm-forming ability and genotyping) of Candida albicans isolates and the occurrence of Candida species in traditional cheeses collected from Kayseri, Türkiye. Phenotypic (E-test, Congo red agar and microtiter plate tests) and molecular tests (identification, virulence factors, biofilm-formation, antifungal susceptibility) were carried out. The phylogenetic relatedness of C. albicans isolates was obtained by constructing the PCA dendrogram from the mass spectra data. Of 102 samples, 13 (12.7%) were found to be contaminated with C. albicans, 15 (14.7%), 10 (9.8%) and five (4.9%) were found to be contaminated with C. krusei, C. lusitane and C. paraplosis, respectively. While seven (16.2%) of 43 Candida spp. isolates were obtained from cheese collected from villages, 36 (83.7%) belonged to cheeses collected from traditional retail stores. The carriage rate of C. albicans isolates belonging to virulence factors HSP90 and PLB1 genes was 30.7%. ALST1, ALST3, BCR, ECE, andHWP (virulence and biofilm-associated) genes were harbored by 30.7%, 23%, 38.4%, 53.8%, and 38.4% of the 13 isolates. According to the microplate test, eight (61.5%) of 13 isolates had strong biofilm production. ERG11 and FKS1 (antifungal resistance genes) were found in 46.1% and 23% of 13 isolates, respectively. Due to missense mutations, K128T, E266D and V488I amino acid changes were detected for some isolates regarding azole resistance. As a result of the E-test, of the 13 isolates, one (7.6%) was resistant to flucytosine, four (30.7%) were resistant to caspofungin, and nine (69.2%) were resistant to fluconazole. The PCA analysis clustered the studied isolates into two major clades. C. albicans isolates of traditional cheese collected from villages were grouped in the same cluster. Among the C. albicans isolates from village cheese, there were those obtained from the same dairy milk at different times. Samples from the same sales points produced at different dairy farms were also contaminated with C. albicans. Concerning food safety standards applied from farm to fork, in order to prevent these pathogenic agents from contaminating cheeses, attention to the hygiene conditions of the sale points, conscious personnel, prevention of cross contamination will greatly reduce public health threats in addition to the application of animal health control, milking hygiene, pasteurization parameters in traditional cheese production.
Collapse
Affiliation(s)
- Adalet Dishan
- Yozgat Bozok University, Faculty of Veterinary Medicine, Dept. of Food Hygiene and Technology, Yozgat, Turkiye.
| | - Yasin Ozkaya
- Erciyes University, Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Kayseri, Turkiye
| | - Mehmet Cevat Temizkan
- Yozgat Bozok University, Faculty of Veterinary Medicine, Dept. of Veterinary Genetics, Yozgat, Turkiye
| | - Mukaddes Barel
- Erciyes University, Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Kayseri, Turkiye
| | - Zafer Gonulalan
- Erciyes University, Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Kayseri, Turkiye
| |
Collapse
|
7
|
Anne S, McDonald MR, Lu Y, Peterson RL. Pseudogymnoascus destructans transcriptional response to chronic copper stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646060. [PMID: 40236230 PMCID: PMC11996344 DOI: 10.1101/2025.03.28.646060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Copper (Cu) is an essential metal micronutrient, and a fungal pathogens' ability to thrive in diverse niches across a broad range of bioavailable copper levels is vital for host-colonization and fungal-propagation. Recent transcriptomic studies have implemented that trace metal acquisition is important for the propagation of the white nose syndrome (WNS) causing fungus, Pseudogymnoascus destructans , on bat hosts. This report characterizes the P. destructans transcriptional response to Cu-withholding and Cu-overload stress. We identify 583 differently expressed genes (DEGs) that respond to Cu-withholding stress and 667 DEGs that respond to Cu-overload stress. We find that the P. destructans Cu-transporter genes CTR 1a and CTR1 b, as well as two homologs to Cryptococcus neoformans Cbi1/BIM1 VC83_03095 (BLP2) and VC83_07867 (BLP3) are highly regulated by Cu-withholding stress. We identify a cluster of genes, VC83_01834 - VC83_01837, that are regulated by copper bioavailability, which we identify as the Cu Responsive gene Cluster (CRC). We find that chronic exposure to elevated copper levels leads to an increase in genes associated with DNA repair and DNA replication fidelity. A comparison of our transcriptomic data sets with P. destructans at WNS fungal infection sites reveals several putative fungal virulence factors that respond to environmental copper stress.
Collapse
|
8
|
Yue D, Zheng D, Yang L, Bai Y, Song Z, Li D, Yu X, Li Y. Berberine disrupts the high-affinity iron transport system to reverse the fluconazole-resistance in Candida albicans. Microb Pathog 2025; 200:107370. [PMID: 39929396 DOI: 10.1016/j.micpath.2025.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Invasive fungal infection is usually caused by Candida albicans infection, which has a high incidence rate and mortality in critically ill patients. New drugs are needed to combat this pathogen since the limited treatment options currently available and increasing resistance to existing drugs. Berberine (BBR) is an active compound in Coptis chinensis, Phellodendron chinense and Radix berberidis, which is clinically used to treat inflammatory bowel disease, but its inhibitory effect on drug-resistant fungi has not been clarified. In this study, based on the evidence of BBR inhibiting the expression of azole-resistance genes, reducing cell adhesion and disrupting biofilm formation, transcriptome analysis revealed that the disruption of iron acquisition pathway may be the core link in BBR inhibiting drug-resistant fungi. Combined with the subsequent experimental results, including the reduction of intracellular ferrous ion content, the weakening of iron reductase activity and the overall downregulation of the coding gene of the high-affinity iron reduction system, it is speculated that the fungal growth defect under BBR treatment is the result of the interruption of the high-affinity iron acquisition pathway. Ftr1 plays a central role in the drug targeting of this transport system. Meanwhile, due to the iron deficiency within the cell, the biological function of mitochondria is impaired, ultimately leading to fungal death. This study not only reflects the application value of BBR in the clinical treatment of fungal infections, but also provides a potential strategy to address the current drug-resistance dilemma.
Collapse
Affiliation(s)
- Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China
| | - Linlan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Song
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongmei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoqin Yu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Gomez-Artiguez L, de la Cámara-Fuentes S, Sun Z, Hernáez ML, Borrajo A, Pitarch A, Molero G, Monteoliva L, Moritz RL, Deutsch EW, Gil C. Candida albicans: a comprehensive view of the proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.20.629377. [PMID: 39763837 PMCID: PMC11702768 DOI: 10.1101/2024.12.20.629377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
We describe a new release of the Candida albicans PeptideAtlas proteomics spectral resource (build 2024-03), providing a sequence coverage of 79.5% at the canonical protein level, matched mass spectrometry spectra, and experimental evidence identifying 3382 and 536 phosphorylated serine and threonine sites with false localization rates of 1% and 5.3%, respectively. We provide a tutorial on how to use the PeptideAtlas and associated tools to access this information. The C. albicans PeptideAtlas summary web page provides "Build overview", "PTM coverage", "Experiment contribution", and "Dataset contribution" information. The protein and peptide information can also be accessed via the Candida Genome Database via hyperlinks on each protein page. This allows users to peruse identified peptides, protein coverage, post-translational modifications (PTMs), and experiments identifying each protein. Given the value of understanding the PTM landscape in the sequence of each protein, a more detailed explanation of how to interpret and analyse PTM results is provided in the PeptideAtlas of this important pathogen. Candida albicans PeptideAtlas web page: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildDetails?atlas_build_id=578.
Collapse
Affiliation(s)
- Leticia Gomez-Artiguez
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | | | - Zhi Sun
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, USA. 98109
| | - María Luisa Hernáez
- Proteomics Unit, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Ana Borrajo
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Aída Pitarch
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Gloria Molero
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Lucía Monteoliva
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| | - Robert L. Moritz
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, USA. 98109
| | - Eric W. Deutsch
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, USA. 98109
| | - Concha Gil
- Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
- Proteomics Unit, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid
| |
Collapse
|
10
|
Cosio T, Romeo A, Pistoia ES, Pica F, Freni C, Iacovelli F, Orlandi A, Falconi M, Campione E, Gaziano R. Retinoids as Alternative Antifungal Agents Against Candida albicans: In Vitro and In Silico Evidence. Microorganisms 2025; 13:237. [PMID: 40005604 PMCID: PMC11857849 DOI: 10.3390/microorganisms13020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Candida albicans (C. albicans) is the most common pathogen responsible for a wide spectrum of human infections ranging from superficial mucocutaneous mycoses to systemic life-threatening diseases. Its main virulence factors are the morphological transition between yeast and hyphal forms and the ability to produce biofilm. Novel antifungal strategies are required given the severity of systemic candidiasis, especially in immunocompromised patients, and the lack of effective anti-biofilm treatments. We previously demonstrated that all-trans retinoic acid (ATRA), an active metabolite of vitamin A, exerted an inhibitory effect on Candida growth, yeast-hyphal transition and biofilm formation. Here, we further investigated the possible anti-Candida potential of trifarotene and tazarotene, which are the other two molecules belonging to the retinoid family, compared to ATRA. The results indicate that both drugs were able to suppress Candida growth, germination and biofilm production, although trifarotene was proven to be more effective than tazarotene, showing effectiveness comparable to ATRA. In silico studies suggest that all three retinoids may exert antifungal activity through their molecular interactions with the heat shock protein (Hsp) 90 and 14α-demethylase of C. albicans. Moreover, interactions between retinoids and ergosterol have been observed, suggesting that those compounds have great potential against C. albicans infections.
Collapse
Affiliation(s)
- Terenzio Cosio
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (E.S.P.); (F.P.)
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (C.F.); (F.I.); (M.F.)
| | - Enrico Salvatore Pistoia
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (E.S.P.); (F.P.)
| | - Francesca Pica
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (E.S.P.); (F.P.)
| | - Claudia Freni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (C.F.); (F.I.); (M.F.)
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (C.F.); (F.I.); (M.F.)
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (C.F.); (F.I.); (M.F.)
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (E.S.P.); (F.P.)
| |
Collapse
|
11
|
Nayak A, Khedri A, Chavarria A, Sanders KN, Ghalei H, Khoshnevis S. Sinefungin, a natural nucleoside analog of S-adenosyl methionine, impairs the pathogenicity of Candida albicans. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:23. [PMID: 39268078 PMCID: PMC11391927 DOI: 10.1038/s44259-024-00040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/19/2024] [Indexed: 09/15/2024]
Abstract
Candida albicans, an opportunistic fungal pathogen, causes life-threatening infections in immunocompromised patients. Current antifungals are limited by toxicity, drug-drug interactions, and emerging resistance, underscoring the importance of identifying novel treatment approaches. Here, we elucidate the impact of sinefungin, an analog of S-adenosyl methionine, on the virulence of C. albicans strain SC5314 and clinical isolates. Our data indicate that sinefungin impairs pathogenic traits of C. albicans including hyphal morphogenesis, biofilm formation, adhesion to epithelial cells, and virulence towards Galleria mellonella, highlighting sinefungin as an avenue for therapeutic intervention. We determine that sinefungin particularly disturbs N6-methyladenosine (m6A) formation. Transcriptome analysis of C. albicans hyphae upon sinefungin treatment reveals an increase in transcripts related to the yeast form and decrease in those associated with hyphae formation and virulence. Collectively, our data propose sinefungin as a potent molecule against C. albicans and emphasize further exploration of post-transcriptional control mechanisms of pathogenicity for antifungal design.
Collapse
Affiliation(s)
- Anushka Nayak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Azam Khedri
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Alejandro Chavarria
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Kyla N. Sanders
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Lash E, Maufrais C, Janbon G, Robbins N, Herzel L, Cowen LE. The spliceosome impacts morphogenesis in the human fungal pathogen Candida albicans. mBio 2024; 15:e0153524. [PMID: 38980041 PMCID: PMC11323467 DOI: 10.1128/mbio.01535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperatures remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild type and displayed globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.IMPORTANCEFungal pathogens such as Candida albicans can cause serious infections with high mortality rates in immunocompromised individuals. When C. albicans is grown at temperatures encountered during human febrile episodes, yeast cells undergo a transition to filamentous cells, and this process is key to its virulence. Here, we expanded our understanding of how C. albicans undergoes filamentation in response to elevated temperature and identified many genes involved in mRNA splicing that positively regulate filamentation. Through transcriptome analyses, we found that intron retention is a mechanism for fine-tuning gene expression in filaments, and perturbation of the spliceosome exacerbates intron retention and alters gene expression substantially, causing a block in filamentation. This work adds to the growing body of knowledge on the role of introns in fungi and provides new insights into the cellular processes that regulate a key virulence trait in C. albicans.
Collapse
Affiliation(s)
- Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Corinne Maufrais
- Unité Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Université Paris Cité, Paris, France
- HUB Bioinformatique et Biostatistique, Institut Pasteur, Université Paris Cité, Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lydia Herzel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Yiu B, Robbins N, Cowen LE. Interdisciplinary approaches for the discovery of novel antifungals. Trends Mol Med 2024; 30:723-735. [PMID: 38777733 PMCID: PMC11987087 DOI: 10.1016/j.molmed.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Pathogenic fungi are an increasing public health concern. The emergence of antifungal resistance coupled with the scarce antifungal arsenal highlights the need for novel therapeutics. Fortunately, the past few years have witnessed breakthroughs in antifungal development. Here, we discuss pivotal interdisciplinary approaches for the discovery of novel compounds with efficacy against diverse fungal pathogens. We highlight breakthroughs in improving current antifungal scaffolds, as well as the utility of compound combinations to extend the lifespan of antifungals. Finally, we describe efforts to refine candidate chemical scaffolds by leveraging structure-guided approaches, and the use of functional genomics to expand our knowledge of druggable antifungal targets. Overall, we emphasize the importance of interdisciplinary collaborations in the endeavor to develop innovative antifungal strategies.
Collapse
Affiliation(s)
- Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada.
| |
Collapse
|
14
|
Komath SS. To each its own: Mechanisms of cross-talk between GPI biosynthesis and cAMP-PKA signaling in Candida albicans versus Saccharomyces cerevisiae. J Biol Chem 2024; 300:107444. [PMID: 38838772 PMCID: PMC11294708 DOI: 10.1016/j.jbc.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.
Collapse
|
15
|
Zhou X, Hilk A, Solis NV, Pereira De Sa N, Hogan BM, Bierbaum TA, Del Poeta M, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes. PLoS Pathog 2024; 20:e1012389. [PMID: 39078851 PMCID: PMC11315318 DOI: 10.1371/journal.ppat.1012389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/09/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3β,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
16
|
da Silva CM, de Lima Neto RG, de Carvalho AMR, Macêdo DPC, de Azevedo Melo AS, Neves RP. Taxonomy of Candida parapsilosis complex isolated from neonates and the role of Hsp90 inhibitors to enhanced the antifungal activity of micafungin. Lett Appl Microbiol 2024; 77:ovae044. [PMID: 38658187 DOI: 10.1093/lambio/ovae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Species from Candida parapsilosis complex are frequently found in neonatal candidemia. The antifungal agents to treat this infection are limited and the occurrence of low in vitro susceptibility to echinocandins such as micafungin has been observed. In this context, the chaperone Hsp90 could be a target to reduce resistance. Thus, the objective of this research was to identify isolates from the C. parapsilosis complex and verify the action of Hsp90 inhibitors associated with micafungin. The fungal identification was based on genetic sequencing and mass spectrometry. Minimal inhibitory concentrations were determined by broth microdilution method according to Clinical Laboratory and Standards Institute. The evaluation of the interaction between micafungin with Hsp90 inhibitors was realized using the checkerboard methodology. According to the polyphasic taxonomy, C. parapsilosis sensu stricto was the most frequently identified, followed by C. orthopsilosis and C. metapsilosis, and one isolate of Lodderomyces elongisporus was identified by genetic sequencing. The Hsp90 inhibitor geladanamycin associated with micafungin showed a synergic effect in 31.25% of the isolates, a better result was observed with radicicol, which shows synergic effect in 56.25% tested yeasts. The results obtained demonstrate that blocking Hsp90 could be effective to reduce antifungal resistance to echinocandins.
Collapse
Affiliation(s)
| | | | | | | | | | - Rejane Pereira Neves
- Federal University of Pernambuco, Mycology Department, Recife-PE, 50670-90, Brazil
| |
Collapse
|
17
|
Basrani ST, Gavandi TC, Patil SB, Kadam NS, Yadav DV, Chougule SA, Karuppayil SM, Jadhav AK. Hydroxychloroquine an Antimalarial Drug, Exhibits Potent Antifungal Efficacy Against Candida albicans Through Multitargeting. J Microbiol 2024; 62:381-391. [PMID: 38587590 DOI: 10.1007/s12275-024-00111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 04/09/2024]
Abstract
Candida albicans is the primary etiological agent associated with candidiasis in humans. Unrestricted growth of C. albicans can progress to systemic infections in the worst situation. This study investigates the antifungal activity of Hydroxychloroquine (HCQ) and mode of action against C. albicans. HCQ inhibited the planktonic growth and yeast to hyphal form morphogenesis of C. albicans significantly at 0.5 mg/ml concentration. The minimum inhibitory concentrations (MIC50) of HCQ for C. albicans adhesion and biofilm formation on the polystyrene surface was at 2 mg/ml and 4 mg/ml respectively. Various methods, such as scanning electron microscopy, exploration of the ergosterol biosynthesis pathway, cell cycle analysis, and assessment of S oxygen species (ROS) generation, were employed to investigate HCQ exerting its antifungal effects. HCQ was observed to reduce ergosterol levels in the cell membranes of C. albicans in a dose-dependent manner. Furthermore, HCQ treatment caused a substantial arrest of the C. albicans cell cycle at the G0/G1 phase, which impeded normal cell growth. Gene expression analysis revealed upregulation of SOD2, SOD1, and CAT1 genes after HCQ treatment, while genes like HWP1, RAS1, TEC1, and CDC 35 were downregulated. The study also assessed the in vivo efficacy of HCQ in a mice model, revealing a reduction in the pathogenicity of C. albicans after HCQ treatment. These results indicate that HCQ holds for the development of novel antifungal therapies.
Collapse
Affiliation(s)
- Sargun Tushar Basrani
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Tanjila Chandsaheb Gavandi
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Shivani Balasaheb Patil
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Nandkumar Subhash Kadam
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
- iSERA Biological Pvt Ltd., MIDC Shirala, Dist., Sangli, Maharashtra, 41540, India
| | - Dhairyasheel Vasantrao Yadav
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
- iSERA Biological Pvt Ltd., MIDC Shirala, Dist., Sangli, Maharashtra, 41540, India
| | - Sayali Ashok Chougule
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Ashwini Khanderao Jadhav
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India.
| |
Collapse
|
18
|
Kohlmann P, Krylov SN, Marchand P, Jose J. FRET Assays for the Identification of C. albicans HSP90-Sba1 and Human HSP90α-p23 Binding Inhibitors. Pharmaceuticals (Basel) 2024; 17:516. [PMID: 38675476 PMCID: PMC11053944 DOI: 10.3390/ph17040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed in vitro Förster Resonance Energy Transfer (FRET) assays to characterize the binding of C. albicans HSP90 to its co-chaperone Sba1, as well as that of the homologous human HSP90α to p23. The assay for human HSP90α binding to p23 enables selectivity assessment for compounds aimed to inhibit the binding of C. albicans HSP90 to Sba1 without affecting the physiological activity of human HSP90α. The combination of the two assays is important for antifungal drug development, while the assay for human HSP90α can potentially be used on its own for anticancer drug discovery. Since ATP binding of HSP90 is a prerequisite for HSP90-Sba1/p23 binding, ATP-competitive inhibitors can be identified with the assays. The specificity of binding of fusion protein constructs-HSP90-mNeonGreen (donor) and Sba1-mScarlet-I (acceptor)-to each other in our assay was confirmed via competitive inhibition by both non-labeled Sba1 and known ATP-competitive inhibitors. We utilized the developed assays to characterize the stability of both HSP90-Sba1 and HSP90α-p23 affinity complexes quantitatively. Kd values were determined and assessed for their precision and accuracy using the 95.5% confidence level. For HSP90-Sba1, the precision confidence interval (PCI) was found to be 70-120 (100 ± 20) nM while the accuracy confidence interval (ACI) was 100-130 nM. For HSP90α-p23, PCI was 180-260 (220 ± 40) nM and ACI was 200-270 nM. The developed assays were used to screen a nucleoside-mimetics library of 320 compounds for inhibitory activity against both C. albicans HSP90-Sba1 and human HSP90α-p23 binding. No novel active compounds were identified. Overall, the developed assays exhibited low data variability and robust signal separation, achieving Z factors > 0.5.
Collapse
Affiliation(s)
- Philip Kohlmann
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, 48149 Münster, Germany;
| | - Sergey N. Krylov
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada;
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France;
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, 48149 Münster, Germany;
| |
Collapse
|
19
|
Sagini JPN, Ligabue-Braun R. Fungal heat shock proteins: molecular phylogenetic insights into the host takeover. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:16. [PMID: 38483597 DOI: 10.1007/s00114-024-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Heat shock proteins are constitutively expressed chaperones induced by cellular stress, such as changes in temperature, pH, and osmolarity. These proteins, present in all organisms, are highly conserved and are recruited for the assembly of protein complexes, transport, and compartmentalization of molecules. In fungi, these proteins are related to their adaptation to the environment, their evolutionary success in acquiring new hosts, and regulation of virulence and resistance factors. These characteristics are interesting for assessment of the host adaptability and ecological transitions, given the emergence of infections by these microorganisms. Based on phylogenetic inferences, we compared the sequences of HSP9, HSP12, HSP30, HSP40, HSP70, HSP90, and HSP110 to elucidate the evolutionary relationships of different fungal organisms to suggest evolutionary patterns employing the maximum likelihood method. By the different reconstructions, our inference supports the hypothesis that these classes of proteins are associated with pathogenic gains against endothermic hosts, as well as adaptations for phytopathogenic fungi.
Collapse
Affiliation(s)
- João Pedro Nunes Sagini
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
| |
Collapse
|
20
|
Zhou X, Hilk A, Solis NV, Hogan BM, Bierbaum TA, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on azole susceptibility, filamentation, and stress response phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583770. [PMID: 38496635 PMCID: PMC10942443 DOI: 10.1101/2024.03.06.583770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Dysfunction of ERG251 resulted in transcriptional upregulation of the alternate sterol biosynthesis pathway and ZRT2, a Zinc transporter. Notably, we determined that overexpression of ZRT2 is sufficient to increase azole tolerance in C. albicans. Our combined transcriptional and phenotypic analyses revealed the pleiotropic effects of ERG251 on stress responses including cell wall, osmotic and oxidative stress. Interestingly, while loss of either allele of ERG251 resulted in similar antifungal drug responses, we observed functional divergence in filamentation regulation between the two alleles of ERG251 (ERG251-A and ERG251-B) with ERG251-A exhibiting a dominant role in the SC5314 genetic background. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study provides extensive genetic, transcriptional and phenotypic analysis for the effects of ERG251 on drug susceptibility, fitness, filamentation and stress responses.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Qian W, Lu J, Gao C, Liu Q, Yao W, Wang T, Wang X, Wang Z. Isobavachalcone exhibits antifungal and antibiofilm effects against C. albicans by disrupting cell wall/membrane integrity and inducing apoptosis and autophagy. Front Cell Infect Microbiol 2024; 14:1336773. [PMID: 38322671 PMCID: PMC10845358 DOI: 10.3389/fcimb.2024.1336773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Isobavachalcone (IBC) is a natural flavonoid with multiple pharmacological properties. This study aimed to evaluate the efficacy of IBC against planktonic growth and biofilms of Candida albicans (C. albicans) and the mechanisms underlying its antifungal action. The cell membrane integrity, cell metabolic viability, and cell morphology of C. albicans treated with IBC were evaluated using CLSM and FESEM analyses. Crystal violet staining, CLSM, and FESEM were used to assess the inhibition of biofilm formation, as well as dispersal and killing effects of IBC on mature biofilms. RNA-seq combined with apoptosis and autophagy assays was used to examine the mechanisms underlying the antifungal action of IBC. IBC exhibited excellent antifungal activity with 8 μg/mL of MIC for C. albicans. IBC disrupted the cell membrane integrity, and inhibited biofilm formation. IBC dispersed mature biofilms and damaged biofilm cells of C. albicans at 32 μg/mL. Moreover, IBC induced apoptosis and autophagy-associated cell death of C. albicans. The RNA-seq analysis revealed upregulation or downregulation of key genes involved in cell wall synthesis (Wsc1 and Fks1), ergosterol biosynthesis (Erg3, and Erg11), apoptisis (Hsp90 and Aif1), as well as autophagy pathways (Atg8, Atg13, and Atg17), and so forth, in response to IBC, as evidenced by the experiment-based phenotypic analysis. These results suggest that IBC inhibits C. albicans growth by disrupting the cell wall/membrane, caused by the altered expression of genes associated with β-1,3-glucan and ergosterol biosynthesis. IBC induces apoptosis and autophagy-associated cell death by upregulating the expression of Hsp90, and altering autophagy-related genes involved in the formation of the Atg1 complex and the pre-autophagosomal structure. Together, our findings provide important insights into the potential multifunctional mechanism of action of IBC.
Collapse
Affiliation(s)
- Weidong Qian
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jiaxing Lu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Chang Gao
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Qiming Liu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Wendi Yao
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ting Wang
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xiaobin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
22
|
Liu C, Li L, Yang S, Wang M, Zhang H, Li S. Multi-omic insights into the cellular response of Phaeodactylum tricornutum (Bacillariophyta) strains under grazing pressure. FRONTIERS IN PLANT SCIENCE 2024; 14:1308085. [PMID: 38259919 PMCID: PMC10801743 DOI: 10.3389/fpls.2023.1308085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Background/Aims Phaeodactylum tricornutum, a model organism of diatoms, plays a crucial role in Earth's primary productivity. Investigating its cellular response to grazing pressure is highly significant for the marine ecological environment. Furthermore, the integration of multi-omics approaches has enhanced the understanding of its response mechanism. Methods To assess the molecular and cellular responses of P.tricornutum to grazer presence, we conducted transcriptomic, proteomic, and metabolomic analyses, combined with phenotypic data from previous studies. Sequencing data were obtained by Illumina RNA sequencing, TMT Labeled Quantitative Proteomics and Non-targeted Metabolomics, and WGCNA analysis and statistical analysis were performed. Results Among the differentially expressed genes, we observed complex expression patterns of the core genes involved in the phenotypic changes of P.tricornutum under grazing pressure across different strains and multi-omics datasets. These core genes primarily regulate the levels of various proteins and fatty acids, as well as the cellular response to diverse signals. Conclusion Our research reveals the association of multi-omics in four strains responses to grazing effects in P.tricornutum. Grazing pressure significantly impacted cell growth, fatty acid composition, stress response, and the core genes involved in phenotype transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - Si Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
23
|
Rapti V, Iliopoulou K, Poulakou G. The Gordian Knot of C. auris: If You Cannot Cut It, Prevent It. Pathogens 2023; 12:1444. [PMID: 38133327 PMCID: PMC10747958 DOI: 10.3390/pathogens12121444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Since its first description in 2009, Candida auris has, so far, resulted in large hospital outbreaks worldwide and is considered an emerging global public health threat. Exceptionally for yeast, it is gifted with a profoundly worrying invasive potential and high inter-patient transmissibility. At the same time, it is capable of colonizing and persisting in both patients and hospital settings for prolonged periods of time, thus creating a vicious cycle of acquisition, spreading, and infection. It exhibits various virulence qualities and thermotolerance, osmotolerance, filamentation, biofilm formation and hydrolytic enzyme production, which are mainly implicated in its pathogenesis. Owing to its unfavorable profile of resistance to diverse antifungal agents and the lack of effective treatment options, the implementation of robust infection prevention and control (IPC) practices is crucial for controlling and minimizing intra-hospital transmission of C. auris. Rapid and accurate microbiological identification, adherence to hand hygiene, use of adequate personal protective equipment (PPE), proper handling of catheters and implantable devices, contact isolation, periodical environmental decontamination, targeted screening, implementation of antimicrobial stewardship (AMS) programs and communication between healthcare facilities about residents' C. auris colonization status are recognized as coherent strategies for preventing its spread. Current knowledge on C. auris epidemiology, clinical characteristics, and its mechanisms of pathogenicity are summarized in the present review and a comprehensive overview of IPC practices ensuring yeast prevention is also provided.
Collapse
Affiliation(s)
- Vasiliki Rapti
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| | | | - Garyfallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| |
Collapse
|
24
|
Sah SK, Yadav A, Kruppa MD, Rustchenko E. Identification of 10 genes on Candida albicans chromosome 5 that control surface exposure of the immunogenic cell wall epitope β-glucan and cell wall remodeling in caspofungin-adapted mutants. Microbiol Spectr 2023; 11:e0329523. [PMID: 37966256 PMCID: PMC10714753 DOI: 10.1128/spectrum.03295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Candida infections are often fatal in immuno-compromised individuals, resulting in many thousands of deaths per year. Caspofungin has proven to be an excellent anti-Candida drug and is now the frontline treatment for infections. However, as expected, the number of resistant cases is increasing; therefore, new treatment modalities are needed. We are determining metabolic pathways leading to decreased drug susceptibility in order to identify mechanisms facilitating evolution of clinical resistance. This study expands the understanding of genes that modulate drug susceptibility and reveals new targets for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Sudisht K. Sah
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Anshuman Yadav
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael D. Kruppa
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|