1
|
Wang H, Li K, Cui B, Yan H, Wu S, Wang K, Yang G, Jiang J, Li Y. Tribbles pseudokinase 3 promotes enterovirus A71 infection via dual mechanisms. Emerg Microbes Infect 2024; 13:2307514. [PMID: 38240287 PMCID: PMC10829831 DOI: 10.1080/22221751.2024.2307514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Enterovirus A71 (EV-A71) is the main pathogen causing hand, foot and mouth disease (HFMD) in children and occasionally associated with neurological diseases such as aseptic meningitis, brainstem encephalitis (BE) and acute flaccid paralysis. We report here that cellular pseudokinase tribbles 3 (TRIB3) facilitates the infection of EV-A71 via dual mechanisms. In one hand, TRIB3 maintains the metabolic stability of scavenger receptor class B member 2 (SCARB2), the bona fide receptor of EV-A71, to enhance the infectious entry and spreading of the virus. On the other hand, TRIB3 facilitates the replication of EV-A71 RNA in a SCARB2-independent manner. The critical role of TRIB3 in EV-A71 infection and pathogenesis was further demonstrated in vivo in mice. In comparison to wild-type C57BL/6 mice, EV-A71 infection in TRIB3 knockdown mice (Trib3+/-) resulted in significantly lower viral loads in muscular tissues and reduced lethality and severity of clinical scores and tissue pathology. In addition, TRIB3 also promoted the replication of coxsackievirus B3 (CVB3) and coxsackievirus A16 (CVA16) in vitro. In conclusion, our results suggest that TRIB3 is one of key host cellular proteins required for the infection and pathogenesis of EV-A71 and some other human enteroviruses and may thus be a potential therapeutic target for combating the infection of those viruses.
Collapse
Affiliation(s)
- Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ke Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Boming Cui
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Xie J, Idris A, Feng R. The complex interplay between encephalomyocarditis virus and the host defence system. Virulence 2024; 15:2383559. [PMID: 39066684 PMCID: PMC11285270 DOI: 10.1080/21505594.2024.2383559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
A variety of animals can be infected by encephalomyocarditis virus (EMCV). EMCV is the established causative agent of myocarditis and encephalitis in some animals. EMCV causes high fatality in suckling and weaning piglets, making pigs the most susceptible domestic animal species. Importantly, EMCV has zoonotic potential to infect the human population. The ability of the pathogen to avoid and undermine the initial defence mechanism of the host contributes to its virulence and pathogenicity. A large body of literature highlights the intricate strategies employed by EMCV to escape the innate immune machinery to suit its "pathogenic needs." Here, we also provide examples on how EMCV interacts with certain host proteins to dampen the infection process. Hence, this concise review aims to summarize these findings in a compendium of decades of research on this exciting yet underappreciated topic.
Collapse
Affiliation(s)
- Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
3
|
Feng R, Li D, Yan Z, Li X, Xie J. EMCV VP2 degrades IFI16 through Caspase-dependent apoptosis to evade IFI16-STING pathway. Virol J 2024; 21:296. [PMID: 39551733 PMCID: PMC11571899 DOI: 10.1186/s12985-024-02568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
Interferon (IFN)-γ inducible protein 16 (IFI16), a key DNA sensor, triggers downstream STING-dependent type I interferon (IFN-I) production and antiviral immunity. However, how the IFI16-STING signaling pathway is regulated by EMCV infection is still not well elucidated. In this study, we investigated the interaction between IFI16 and EMCV. Results indicated EMCV infection suppressed IFI16 expression in A549 cells. This study reveals that IFI16 plays an active role in combating EMCV. Screening viral proteins in conjunction with IFI16, we found that the EMCV VP2 protein hinders the antiviral response mediated by IFI16 by causing degradation of the IFI16 protein via the caspase-dependent apoptosis pathway. Our study communicates the antiviral role of the IFI16-STING pathway during EMCV infection. Importantly, this study unveils the novel mechanism by which VP2 counteracts the innate immune signaling activated by foreign DNA.
Collapse
Affiliation(s)
- Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, No. 1 Xibeixincun, Lanzhou, 730030, China
| | - Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, No. 1 Xibeixincun, Lanzhou, 730030, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
- College of Life Science and Engineering, Northwest Minzu University, No. 1 Xibeixincun, Lanzhou, 730030, China.
| |
Collapse
|
4
|
Park IW, Fiadjoe HK, Chaudhary P. Impact of Annexin A2 on virus life cycles. Virus Res 2024; 345:199384. [PMID: 38702018 PMCID: PMC11091703 DOI: 10.1016/j.virusres.2024.199384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Due to the limited size of viral genomes, hijacking host machinery by the viruses taking place throughout the virus life cycle is inevitable for the survival and proliferation of the virus in the infected hosts. Recent reports indicated that Annexin A2 (AnxA2), a calcium- and lipid-binding cellular protein, plays an important role as a critical regulator in various steps of the virus life cycle. The multifarious AnxA2 functions in cells, such as adhesion, adsorption, endocytosis, exocytosis, cell proliferation and division, inflammation, cancer metastasis, angiogenesis, etc., are intimately related to the various clinical courses of viral infection. Ubiquitous expression of AnxA2 across multiple cell types indicates the broad range of susceptibility of diverse species of the virus to induce disparate viral disease in various tissues, and intracellular expression of AnxA2 in the cytoplasmic membrane, cytosol, and nucleus suggests the involvement of AnxA2 in the regulation of the different stages of various virus life cycles within host cells. However, it is yet unclear as to the molecular processes on how AnxA2 and the infected virus interplay to regulate virus life cycles and thereby the virus-associated disease courses, and hence elucidation of the molecular mechanisms on AnxA2-mediated virus life cycle will provide essential clues to develop therapeutics deterring viral disease.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Hope K Fiadjoe
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
5
|
Chen Y, Li X, Han F, Ji B, Li Y, Yan J, Wang M, Fan J, Zhang S, Lu L, Zou P. The nucleoside analog 4'-fluorouridine suppresses the replication of multiple enteroviruses by targeting 3D polymerase. Antimicrob Agents Chemother 2024; 68:e0005424. [PMID: 38687016 PMCID: PMC11620493 DOI: 10.1128/aac.00054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Human enteroviruses are the major pathogens causing hand-foot-and-mouth disease in infants and young children throughout the world, and infection with enterovirus is also associated with severe complications, such as aseptic meningitis and myocarditis. However, there are no antiviral drugs available to treat enteroviruses infection at present. In this study, we found that 4'-fluorouridine (4'-FlU), a nucleoside analog with low cytotoxicity, exhibited broad-spectrum activity against infections of multiple enteroviruses with EC50 values at low micromolar levels, including coxsackievirus A10 (CV-A10), CV-A16, CV-A6, CV-A7, CV-B3, enterovirus A71 (EV-A71), EV-A89, EV-D68, and echovirus 6. With further investigation, the results indicated that 4'-FlU directly interacted with the RNA-dependent RNA polymerase of enterovirus, the 3D pol, and impaired the polymerase activity of 3D pol, hence inhibiting viral RNA synthesis and significantly suppressing viral replication. Our findings suggest that 4'-FlU could be promisingly developed as a broad-spectrum direct-acting antiviral agent for anti-enteroviruses therapy.
Collapse
Affiliation(s)
- Yongkang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohong Li
- Clinical Center for BioTherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fengyang Han
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingjing Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Fan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Clinical Center for BioTherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Chuang YT, Lin YL, Lin JY. Licochalcone A regulates viral IRES activity to inhibit enterovirus replication. Antiviral Res 2024; 221:105755. [PMID: 37984566 DOI: 10.1016/j.antiviral.2023.105755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Enterovirus D68 (EV-D68), belonging to the genus Enterovirus of the Picornavirus family, is an emerging pathogen that can cause neurological and respiratory diseases in children. However, there is little understanding of the pathogenesis of EV-D68, and no effective vaccine or drug for the prevention or treatment of the diseases caused by this virus is available. Autophagy is a cellular process that targets cytoplasmic proteins or organelles to the lysosomes for degradation. Enteroviruses strategically harness the host autophagy pathway to facilitate the completion of their life cycle. Therefore, we selected an autophagy compound library to screen for autophagy-related compounds that may affect viral growth. By using the neutralization screening assay, we identified a compound, 'licochalcone A' that significantly inhibited EV-D68 replication. To investigate the mechanism by which licochalcone A inhibits EV-D68 replication and to identify the viral life cycle stage it inhibits, the time-of-addition, viral attachment, viral entry, and dual-luciferase reporter assays were performed. The results of the time-of-addition assay showed that licochalcone A, a characteristic chalcone found in liquorice roots and widely used in traditional Chinese medicine, inhibits EV-D68 replication during the early stages of the viral life cycle, while those of the dual-luciferase reporter assay showed that licochalcone A does not regulate viral attachment and entry, but inhibits EV-D68 IRES-dependent translation. Licochalcone A also inhibited enterovirus A71 and coxsackievirus B3 but did not significantly inhibit dengue virus 2 or human coronavirus 229E replication. Licochalcone A regulates IRES translation to inhibit EV-D68 viral replication.
Collapse
Affiliation(s)
- Yu-Ting Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei City, Taiwan
| | - Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei City, Taiwan.
| |
Collapse
|
7
|
Zhang J, Fu H, Chen C, Jiang J, Lin Y, Jiang B, Lin L, Hu Q, Wan C. Rapid detection of pigeon Megrivirus using TaqMan real-time PCR technology. Poult Sci 2023; 102:103027. [PMID: 37651775 PMCID: PMC10480624 DOI: 10.1016/j.psj.2023.103027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Megriviruses have been identified from fecal samples in wild pigeons in Hong Kong (China) and Hungary. In this study, the genomic sequences of pigeon Megriviruses (PiMeVs) were downloaded from GenBank and compared. Based on the genetic comparison results, a pair of primers and TaqMan probe were designed based on the conserved sequences of the 3C gene (located in the P3 gene coding region), and a TaqMan real-time PCR method (TaqMan-qPCR) was established. The standard curve of the TaqMan-qPCR had an axial intercept of 39.74 and a slope of -3.2475 with a linear correlation (R2) of 1.00 and an efficiency of 103.2%. No cross-amplification signal was found from other pigeon viruses (such as avian influenza virus, pigeon paramyxovirus type I, pigeon torque teno virus, pigeon adenovirus, and pigeon circovirus). The limit of detection concentration was 53.6 copies/μL. The intra- and interassay results were less than 1.0% based on the reproducibility test. Furthermore, field samples investigation by the established TaqMan-qPCR method showed that positive signals can be found from racing pigeon fecal samples and embryos. Thus, our data suggested that this visible TaqMan-qPCR method is sensitive, specific, and reproducible. Moreover, we first confirmed the presence of pigeon Megrivirus infection in racing pigeon embryos, indicating that the virus may be vertically transmitted. This study provides a reference basis for further understanding the epidemiology of PiMeVs.
Collapse
Affiliation(s)
- Jinpeng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Huanru Fu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinxiu Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yusheng Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Bin Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Lin Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qilin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Key Laboratory of Animal Genetics and Breeding/Fujian Animal Diseases Control Technology Development Centre, Fuzhou 350013, China.
| |
Collapse
|
8
|
Pierce DM, Hayward C, Rowlands DJ, Stonehouse NJ, Herod MR. Insights into Polyprotein Processing and RNA-Protein Interactions in Foot-and-Mouth Disease Virus Genome Replication. J Virol 2023; 97:e0017123. [PMID: 37154761 DOI: 10.1128/jvi.00171-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a picornavirus, which infects cloven-hoofed animals to cause foot-and-mouth disease (FMD). The positive-sense RNA genome contains a single open reading frame, which is translated as a polyprotein that is cleaved by viral proteases to produce the viral structural and nonstructural proteins. Initial processing occurs at three main junctions to generate four primary precursors; Lpro and P1, P2, and P3 (also termed 1ABCD, 2BC, and 3AB1,2,3CD). The 2BC and 3AB1,2,3CD precursors undergo subsequent proteolysis to generate the proteins required for viral replication, including the enzymes 2C, 3Cpro, and 3Dpol. These precursors can be processed through both cis and trans (i.e., intra- and intermolecular proteolysis) pathways, which are thought to be important for controlling virus replication. Our previous studies suggested that a single residue in the 3B3-3C junction has an important role in controlling 3AB1,2,3CD processing. Here, we use in vitro based assays to show that a single amino acid substitution at the 3B3-3C boundary increases the rate of proteolysis to generate a novel 2C-containing precursor. Complementation assays showed that while this amino acid substitution enhanced production of some nonenzymatic nonstructural proteins, those with enzymatic functions were inhibited. Interestingly, replication could only be supported by complementation with mutations in cis acting RNA elements, providing genetic evidence for a functional interaction between replication enzymes and RNA elements. IMPORTANCE Foot-and-mouth disease virus (FMDV) is responsible for foot-and-mouth disease (FMD), an important disease of farmed animals, which is endemic in many parts of the world and can results in major economic losses. Replication of the virus occurs within membrane-associated compartments in infected cells and requires highly coordinated processing events to produce an array of nonstructural proteins. These are initially produced as a polyprotein that undergoes proteolysis likely through both cis and trans alternative pathways (i.e., intra- and intermolecular proteolysis). The role of alternative processing pathways may help coordination of viral replication by providing temporal control of protein production and here we analyze the consequences of amino acid substitutions that change these pathways in FMDV. Our data suggest that correct processing is required to produce key enzymes for replication in an environment in which they can interact with essential viral RNA elements. These data further the understanding of RNA genome replication.
Collapse
Affiliation(s)
- Danielle M Pierce
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Connor Hayward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - David J Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
First Discovery of Phenuiviruses within Diverse RNA Viromes of Asiatic Toad (Bufo gargarizans) by Metagenomics Sequencing. Viruses 2023; 15:v15030750. [PMID: 36992458 PMCID: PMC10056474 DOI: 10.3390/v15030750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of lower vertebrates that played a momentous role in animal evolution. To elucidate the diversity of RNA viruses in one important species of amphibians, the Asiatic toad (Bufo gargarizans), we obtained 44 samples including lung, gut, liver, and kidney tissues from Asiatic toads in Sichuan and Jilin provinces, China, for viral metagenomics sequencing. More than 20 novel RNA viruses derived from the order Bunyavirales and 7 families of Astroviridae, Dicistroviridae, Leviviridae, Partitiviridae, Picornaviridae, Rhabdoviridae, and Virgaviridae were discovered, which were distinct from previously described viruses and formed new clusters, as revealed by phylogenetic analyses. Notably, a novel bastrovirus, AtBastV/GCCDC11/2022, of the family Astroviridae was identified from the gut library, the genome of which contains three open reading frames, with the RNA-dependent RNA polymerase (RdRp) coded by ORF1 closely related to that of hepeviruses, and ORF2 encoding an astrovirus-related capsid protein. Notably, phenuiviruses were discovered for the first time in amphibians. AtPhenV1/GCCDC12/2022 and AtPhenV2/GCCDC13/2022 clustered together and formed a clade with the group of phenuiviruses identified from rodents. Picornaviruses and several invertebrate RNA viruses were also detected. These findings improve our understanding of the high RNA viral diversity in the Asiatic toad and provide new insights in the evolution of RNA viruses in amphibians.
Collapse
|
10
|
Koh JX, Masomian M, Anasir MI, Ong SK, Poh CL. Insights into In Vitro Adaptation of EV71 and Analysis of Reduced Virulence by In Silico Predictions. Vaccines (Basel) 2023; 11:vaccines11030629. [PMID: 36992213 DOI: 10.3390/vaccines11030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
EV-A71 is a common viral pathogen that causes hand, foot and mouth disease. It is a single-stranded RNA virus that has a low fidelity RNA polymerase and, as a result, spontaneous mutations frequently occur in the EV-A71 genome. The mutations within the genome give rise to quasispecies within the viral population that could be further defined by haplotypes. In vitro virulence of EV-A71 was shown by plaque size in Rhabdomyosarcoma (RD) cells, which was substantiated by in vitro characterizations of growth, RNA replication, binding, attachment and host cell internalization. Viruses could exhibit different host cell adaptations in different cell lines during viral passaging. The EV-A71/WT (derived from EV-A71 subgenotype B4) was shown to comprise six haplotypes through next-generation sequencing, where only EV-A71/Hap2 was found to be cultivable in RD cells, while EV-A71/Hap4 was the only cultivable haplotype in Vero cells. The EV-A71/WT produced plaques of four different sizes (small, medium, big, huge) in RD cells, while only two plaque variants (small, medium) were present in Vero cells. The small plaque variant isolated from RD cells displayed lower RNA replication rates, slower in vitro growth kinetics, higher TCID50 and lower attachment, binding and entry ability when compared against EV-A71/WT due to the mutation at 3D-S228P that disrupted the active site of the RNA polymerase, resulting in low replication and growth of the variant.
Collapse
Affiliation(s)
- Jia Xuen Koh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Malihe Masomian
- Research and Development Department, Pure Biologics SA, Duńska 11, 54-427 Wroclaw, Poland
| | - Mohd Ishtiaq Anasir
- Virology Unit, Infectious Disease Research Center, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| |
Collapse
|
11
|
Zhao X, Li C, Chiu MC, Qiao R, Jiang S, Wang P, Zhou J. Rock1 is a novel host dependency factor of human enterovirus A71: Implication as a drug target. J Med Virol 2022; 94:5415-5424. [PMID: 35791459 DOI: 10.1002/jmv.27975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022]
Abstract
Human enterovirus A71 (EV-A71) is the major causative agent of hand-foot-and-mouth disease (HFMD) commonly associated with severe neurological diseases, particularly in children under 5 years of age. Several investigational therapeutic agents and vaccine candidates are being developed. However, no approved drug against EV-A71 infection is available, and no proven drug target has been identified. Since host kinases are key regulators of multiple signaling pathways in response to viral infections, here we screened a kinase inhibitor library and identified potent inhibitors against EV-A71 infection. Among the hits, GSK269962A, a Rho Associated Coiled-Coil Containing Protein Kinase (Rock) inhibitor with potent antiviral activity, was selected for further analysis. We found that this Rock inhibitor not only efficiently suppressed the replication of EV-A71 in RD cells, but also in human intestinal organoids, in a dose-dependent manner. Interestingly, small interfering RNA depletion of Rock1, but not Rock2, significantly restricted viral replication in RD cells, indicating that Rock1 is a novel host dependency factor for EV-A71 replication and can serve as a target for the development of anti-EV-A71 therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai, China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cun Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Chun Chiu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rui Qiao
- State Key Laboratory of Genetic Engineering, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pengfei Wang
- State Key Laboratory of Genetic Engineering, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Le TTV, Do PC. Molecular docking study of various Enterovirus—A71 3C protease proteins and their potential inhibitors. Front Microbiol 2022; 13:987801. [PMID: 36246267 PMCID: PMC9563145 DOI: 10.3389/fmicb.2022.987801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common infection that primarily affects children in preschool and kindergarten; however, there is yet no vaccination or therapy available. Despite the fact that current research is only focused on numerous strains of Enterovirus—A71 (EV-A71) 3C protease (3Cpro), these investigations are entirely separate and unrelated. Antiviral agents must therefore be tested on several EV strains or mutations. In total, 21 previously reported inhibitors were evaluated for inhibitory effects on eight EV-A71 3Cpro, including wild-type and mutant proteins in this study, and another 29 powerful candidates with inhibitory effects on EV-A71 were investigated using the molecular docking approach. This method is to determine the broad-spectrum of the antiviral agents on a range of strains or mutants because the virus frequently has mutations. Even though Rupintrivir is reported to pass phase I clinical trial, 4-iminooxazolidin-2-one moiety (FIOMC) was shown to have a broader anti-3Cpro spectrum than Rupintrivir. Meanwhile, Hesperidin possessed a better 3Cpro inhibitory capability than FIOMC. Thus, it could be considered the most promising candidate for inhibiting various strains of EV-A71 3Cpro proteins in the newly anti-EV compounds group. Furthermore, the mutation at E71A has the most significant impact on the docking results of all ligands evaluated. Future in vitro experiments on Hesperidin’s ability to inhibit 3Cpro activity should be conducted to compare with FIOMC’s in vitro results and validate the current in silico work.
Collapse
Affiliation(s)
- Tran Thao Vy Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc-Chau Do
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- *Correspondence: Phuc-Chau Do,
| |
Collapse
|
13
|
Chen T, Grauffel C, Yang WZ, Chen YP, Yuan HS, Lim C. Efficient Strategy to Design Protease Inhibitors: Application to Enterovirus 71 2A Protease. ACS BIO & MED CHEM AU 2022; 2:437-449. [PMID: 37102167 PMCID: PMC10125330 DOI: 10.1021/acsbiomedchemau.2c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
One strategy to counter viruses that persistently cause outbreaks is to design molecules that can specifically inhibit an essential multifunctional viral protease. Herein, we present such a strategy using well-established methods to first identify a region present only in viral (but not human) proteases and find peptides that can bind specifically to this "unique" region by maximizing the protease-peptide binding free energy iteratively using single-point mutations starting with the substrate peptide. We applied this strategy to discover pseudosubstrate peptide inhibitors for the multifunctional 2A protease of enterovirus 71 (EV71), a key causative pathogen for hand-foot-and-mouth disease affecting young children, along with coxsackievirus A16. Four peptide candidates predicted to bind EV71 2A protease more tightly than the natural substrate were experimentally validated and found to inhibit protease activity. Furthermore, the crystal structure of the best pseudosubstrate peptide bound to the EV71 2A protease was determined to provide a molecular basis for the observed inhibition. Since the 2A proteases of EV71 and coxsackievirus A16 share nearly identical sequences and structures, our pseudosubstrate peptide inhibitor may prove useful in inhibiting the two key pathogens of hand-foot-and-mouth disease.
Collapse
Affiliation(s)
- Ting Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Zen Yang
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ping Chen
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300 Taiwan
| |
Collapse
|
14
|
Fang CY, Liu CC. Novel strategies for the development of hand, foot, and mouth disease vaccines and antiviral therapies. Expert Opin Drug Discov 2022; 17:27-39. [PMID: 34382876 DOI: 10.1080/17460441.2021.1965987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) poses a great threat to young children in the Asia-Pacific region. HFMD is usually caused by enterovirus A, and infection with enterovirus A71 (EV-A71) is particularly associated with severe complications. However, coxsackievirus CV-A16, CV-A6, and CV-A10 pandemics have been observed in recent HFMD outbreaks. Inactivated monovalent EV-A71 vaccines are available to prevent EV-A71 infection; however, they cannot prevent infections by non-EV-A71 enteroviruses. Anti-enteroviral drugs are still in the developmental stage. Application of novel strategies will facilitate the development of new therapies against these emerging HFMD-associated enteroviruses. AREAS COVERED The authors highlight the current approaches for anti-enterovirus therapeutic development and discuss the application of these novel strategies for the discovery of vaccines and antiviral drugs for enteroviruses. EXPERT OPINION The maturation of DNA/RNA vaccine technology could be applied for rapid and robust development of multivalent enterovirus vaccines. Structure biology and neutralization antibody studies decipher the immunodominant sites of enteroviruses for vaccine design. Nucleotide aptamer library screening is a novel, fast, and cost-effective strategy for the development of antiviral agents. Animal models carrying viral receptors and attachment factors are required for enterovirus study and vaccine/antiviral development. Currently developed antivirals require effectiveness evaluation in clinical trials.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
15
|
Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Valderrama C, Granados M, Cortina JL, Saurina J. Polyphenols and their potential role to fight viral diseases: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149719. [PMID: 34438146 PMCID: PMC8373592 DOI: 10.1016/j.scitotenv.2021.149719] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
Fruits, vegetables, spices, and herbs are a potential source of phenolic acids and polyphenols. These compounds are known as natural by-products or secondary metabolites of plants, which are present in the daily diet and provide important benefits to the human body such as antioxidant, anti-inflammatory, anticancer, anti-allergic, antihypertensive and antiviral properties, among others. Plentiful evidence has been provided on the great potential of polyphenols against different viruses that cause widespread health problems. As a result, this review focuses on the potential antiviral properties of some polyphenols and their action mechanism against various types of viruses such as coronaviruses, influenza, herpes simplex, dengue fever, and rotavirus, among others. Also, it is important to highlight the relationship between antiviral and antioxidant activities that can contribute to the protection of cells and tissues of the human body. The wide variety of action mechanisms of antiviral agents, such as polyphenols, against viral infections could be applied as a treatment or prevention strategy; but at the same time, antiviral polyphenols could be used to produce natural antiviral drugs. A recent example of an antiviral polyphenol application deals with the use of hesperidin extracted from Citrus sinensis. The action mechanism of hesperidin relies on its binding to the key entry or spike protein of SARS-CoV-2. Finally, the extraction, purification and recovery of polyphenols with potential antiviral activity, which are essential for virus replication and infection without side-effects, have been critically reviewed.
Collapse
Affiliation(s)
- María Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Chemical Engineering Department, School of Industrial Engineering-CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - César Valderrama
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; CETAQUA, Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain.
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Li L, Chenna BC, Yang KS, Cole TR, Goodall ZT, Giardini M, Moghadamchargari Z, Hernandez EA, Gomez J, Calvet CM, Bernatchez JA, Mellott DM, Zhu J, Rademacher A, Thomas D, Blankenship LR, Drelich A, Laganowsky A, Tseng CTK, Liu WR, Wand AJ, Cruz-Reyes J, Siqueira-Neto JL, Meek TD. Self-Masked Aldehyde Inhibitors: A Novel Strategy for Inhibiting Cysteine Proteases. J Med Chem 2021; 64:11267-11287. [PMID: 34288674 PMCID: PMC10504874 DOI: 10.1021/acs.jmedchem.1c00628] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Bala C Chenna
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Kai S Yang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Taylor R Cole
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Zachary T Goodall
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Miriam Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Zahra Moghadamchargari
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Elizabeth A Hernandez
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jana Gomez
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Claudia M Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Drake M Mellott
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jiyun Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Andrew Rademacher
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Lauren R Blankenship
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555, United States
| | - Wenshe R Liu
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - A Joshua Wand
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Secretory Carrier Membrane Protein 3 Interacts with 3A Viral Protein of Enterovirus and Participates in Viral Replication. Microbiol Spectr 2021; 9:e0047521. [PMID: 34378951 PMCID: PMC8552740 DOI: 10.1128/spectrum.00475-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Picornaviruses are a diverse and major cause of human disease, and their genomes replicate with intracellular membranes. The functionality of these replication organelles depends on the activities of both viral nonstructural proteins and co-opted host proteins. The mechanism by which viral-host interactions generate viral replication organelles and regulate viral RNA synthesis is unclear. To elucidate this mechanism, enterovirus A71 (EV-A71) was used here as a virus model to investigate how these replication organelles are formed and to identify the cellular components that are critical in this process. An immunoprecipitation assay was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify 172 cellular proteins and four viral proteins associating with viral 3A protein. Secretory carrier membrane protein 3 (SCAMP3) was one of the host proteins we selected for further investigation. Here, we demonstrate by immunoprecipitation assay that SCAMP3 associates with 3A protein and colocalizes with 3A protein during virus infection. SCAMP3 knockdown or knockout in infected cells decreases synthesis of EV-A71 viral RNA, viral proteins, and viral growth. Furthermore, the viral 3A protein associates with SCAMP3 and phosphatidylinositol-4-kinase type III β (PI4KIIIβ) as shown by immunoprecipitation assay and colocalizes to the replication complex. Upon infection of cells with a SCAMP3 knockout construct, PI4KIIIβ and phosphatidylinositol-4-phosphate (PI4P) colocalization with EV-A71 3A protein decreases; viral RNA synthesis also decreases. SCAMP3 is also involved in the extracellular signal-regulated kinase (ERK) signaling pathway to regulate viral replication. The 3A and SCAMP3 interaction is also important for the replication of coxsackievirus B3 (CVB3). SCAMP3 also associates with 3A protein of CVB3 and enhances viral replication but does not regulate dengue virus 2 (DENV2) replication. Taken together, the results suggest that enterovirus 3A protein, SCAMP3, PI4KIIIβ, and PI4P form a replication complex and positively regulate enterovirus replication. IMPORTANCE Virus-host interaction plays an important role in viral replication. 3A protein of enterovirus A71 (EV-A71) recruits other viral and host factors to form a replication complex, which is important for viral replication. In this investigation, we utilized immunoprecipitation combined with proteomics approaches to identify 3A-interacting factors. Our results demonstrate that secretory carrier membrane protein 3 (SCAMP3) is a novel host factor that associates with enterovirus 3A protein, phosphatidylinositol-4-kinase type III β (PI4KIIIβ), and phosphatidylinositol-4-phosphate (PI4P) to form a replication complex and positively regulates viral replication. SCAMP3 is also involved in the extracellular signal-regulated kinase (ERK) signaling pathway to regulate viral replication.
Collapse
|
18
|
Han Y, Xie J, Xu S, Bi Y, Li X, Zhang H, Idris A, Bai J, Feng R. Encephalomyocarditis Virus Abrogates the Interferon Beta Signaling Pathway via Its Structural Protein VP2. J Virol 2021; 95:e01590-20. [PMID: 33328314 PMCID: PMC8094936 DOI: 10.1128/jvi.01590-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Type I interferon (IFN)-mediated antiviral responses are critical for modulating host-virus responses, and indeed, viruses have evolved strategies to antagonize this pathway. Encephalomyocarditis virus (EMCV) is an important zoonotic pathogen, which causes myocarditis, encephalitis, neurological disease, reproductive disorders, and diabetes in pigs. This study aims to understand how EMCV interacts with the IFN pathway. EMCV circumvents the type I IFN response by expressing proteins that antagonize cellular innate immunity. Here, we show that EMCV VP2 is a negative regulator of the IFN-β pathway. This occurs via the degradation of the MDA5-mediated cytoplasmic double-stranded RNA (dsRNA) antiviral sensing RIG-I-like receptor (RLR) pathway. We show that structural protein VP2 of EMCV interacts with MDA5, MAVS, and TBK1 through its C terminus. In addition, we found that EMCV VP2 could significantly degrade RLRs by the proteasomal and lysosomal pathways. For the first time, EMCV VP2 was shown to play an important role in EMCV evasion of the type I IFN signaling pathway. This study expands our understanding that EMCV utilizes its capsid protein VP2 to evade the host antiviral response.IMPORTANCE Encephalomyocarditis virus is an important pathogen that can cause encephalitis, myocarditis, neurological diseases, and reproductive disorders. It also causes huge economic losses for the swine industry worldwide. Innate immunity plays an important role in defending the host from pathogen infection. Understanding pathogen microorganisms evading the host immune system is of great importance. Currently, whether EMCV evades cytosolic RNA sensing and signaling is still poorly understood. In the present study, we found that viral protein VP2 antagonized the RLR signaling pathway by degrading MDA5, MAVS, and TBK1 protein expression to facilitate viral replication in HEK293 cells. The findings in this study identify a new mechanism for EMCV evading the host's innate immune response, which provide new insights into the virus-host interaction and help develop new antiviral approaches against EMCV.
Collapse
Affiliation(s)
- Yumei Han
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shujuan Xu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yingjie Bi
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Haixia Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jialin Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
19
|
Transcriptomic Responses of the Honey Bee Brain to Infection with Deformed Wing Virus. Viruses 2021; 13:v13020287. [PMID: 33673139 PMCID: PMC7918736 DOI: 10.3390/v13020287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Managed colonies of European honey bees (Apis mellifera) are under threat from Varroa destructor mite infestation and infection with viruses vectored by mites. In particular, deformed wing virus (DWV) is a common viral pathogen infecting honey bees worldwide that has been shown to induce behavioral changes including precocious foraging and reduced associative learning. We investigated how DWV infection of bees affects the transcriptomic response of the brain. The transcriptomes of individual brains were analyzed using RNA-Seq after experimental infection of newly emerged adult bees with DWV. Two analytical methods were used to identify differentially expressed genes from the ~15,000 genes in the Apis mellifera genome. The 269 genes that had increased expression in DWV infected brains included genes involved in innate immunity such as antimicrobial peptides (AMPs), Ago2, and Dicer. Single bee brain NMR metabolomics methodology was developed for this work and indicates that proline is strongly elevated in DWV infected brains, consistent with the increased presence of the AMPs abaecin and apidaecin. The 1361 genes with reduced expression levels includes genes involved in cellular communication including G-protein coupled, tyrosine kinase, and ion-channel regulated signaling pathways. The number and function of the downregulated genes suggest that DWV has a major impact on neuron signaling that could explain DWV related behavioral changes.
Collapse
|
20
|
Molecular characterization of the complete genome sequence of human Parechovirus 1 in Pakistan. Virus Res 2020; 290:198178. [PMID: 33010373 DOI: 10.1016/j.virusres.2020.198178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Human parechoviruses (HPeVs) are highly common pathogens in children under 2 years of age. Of the 19 distinct HPeV genotypes identified worldwide, HPeV1 is still the most prevalent type associated with respiratory and gastrointestinal symptoms in infants and young children. Pakistan's previous studies have focused only on the detection and partial sequencing of HPeV genotypes. In the present study, we have obtained the complete genomes of 2 HPeV1 strains (PAK419 and PAK663) from children using NGS method on Illumina Hiseq Platform. These samples were collected from children suffering from acute gastroenteritis in Rawalpindi, Pakistan during 2016. The near complete genome sequences obtained for two HPeV1 strains (PAK419 and PAK663) consist of total 6877 nucleotides with a single, large open reading frame (ORF) encoding a polyprotein gene. Phylogenetic analysis showed that both HPeV1 strains exhibited maximum amino acid similarity (97 %) to HPeV1 strains from The Nederlands (2007-863, GQ183034) and clustered closely with this and with other HPeV1 strains isolated from other countries in the world (Ethiopia, Taiwan, Russia and Brazil). A motif of arginine-glycine-aspartic acid (RGD) in the VP1 (Outer capsid protein) C-terminus region that is suggested to help virus entry into the host cell also identified in PAK419 and PAK663. SimPlot analysis revealed that intergenotypic recombination events may have take place in the non-structural region between both HPeV1 strains (PAK419, PAK663), two major strains of HPeV1 (GQ183034 and MG873157) and four minor strains of HPeV4 (AM235750), HPeV7 (EU556224), HPeV15 (MN265386) and HPeV18 (KT879915). The full genome of HPeV1 strains characterized in the current study will provide complete information on these newly isolated strains for further preventive or treatment measures.
Collapse
|
21
|
Shen CR, Chen YS, Hwang YS, Chen HJ, Liu CL. Differential bicistronic gene translation mediated by the internal ribosome entry site element of encephalomyocarditis virus. Biomed J 2020; 44:S54-S62. [PMID: 35747995 PMCID: PMC9038940 DOI: 10.1016/j.bj.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
Background Internal ribosome entry sites (IRESs) allow the translation of a transcript independent of its cap structure. They are distributed in some viruses and cellular RNA. The element is applied in dual gene expression in a single vector. Although it appears the lower efficiency of IRES-mediated translation than that of cap-dependent translation, it is with the crucial needs to know the precise differences in translational efficacy between upstream cistrons (cap-dependent) and downstream cistrons (IRES-mediate, cap-independent) before applying the bicistronic vector in biomedical applications. Methods This study aimed to provide real examples and showed the precise differences for translational efficiency dependent upon target gene locations. We generated various bicistronic constructs with quantifiable reporter genes as upstream and downstream cistrons of the encephalomyocarditis virus (EMCV) IRES to precisely evaluate the efficacy of IRES-mediated translation in mammalian cells. Results There was no significant difference in protein production when the reporter gene was cloned as an upstream cistron. However, lower levels of protein production were obtained when the reporter gene was located downstream of the IRES. Moreover, in the presence of an upstream cistron, a markedly reduced level of protein production was observed. Conclusion Our findings demonstrate the version of the EMCV IRES that is provided in many commercial vectors is relatively less efficient than cap-dependent translation and provide valuable information regarding the utilization of IRES to facilitate the expression of more than one protein from a transcript.
Collapse
Affiliation(s)
- Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Ya-Shan Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Jien Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Wei Y, Wang H, Xi C, Li N, Li D, Yao C, Sun G, Ge H, Hu K, Zhang Q. Antiviral Effects of Novel 2-Benzoxyl-Phenylpyridine Derivatives. Molecules 2020; 25:E1409. [PMID: 32204528 PMCID: PMC7144376 DOI: 10.3390/molecules25061409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is the most common cause of acute and chronic viral myocarditis, primarily in children, while human adenovirus infections represent a significant cause of morbidity and mortality worldwide, in people of all ages. A series of novel 2-benzoxyl-phenylpyridine derivatives were evaluated for their potential antiviral activities against CVB3 and adenovirus type 7 (ADV7). Preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on both CVB3 and ADV7 viruses; they could effectively inhibit virus-induced cytopathic effects, reduce viral progeny yields, and had similar or superior antiviral activities compared with the control drug, ribavirin. Further, these compounds targeted the early stages of CVB3 replication in cells, including viral RNA replication and protein synthesis, rather than inactivating the virus directly, inhibiting virus adsorption/entry, or affecting viral release from cells. Our data demonstrate that the tested 2-benzoxyl-phenylpyridine derivatives are effective inhibitors of CVB3 and ADV7, raising the possibility that these compounds might be feasible candidates for anti-viral agents.
Collapse
Affiliation(s)
- Yanhong Wei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Haijie Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Caili Xi
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Ni Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Dong Li
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Chenguang Yao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Ge Sun
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Hongmei Ge
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Kanghong Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Qian Zhang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| |
Collapse
|
23
|
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26:65. [PMID: 31481071 PMCID: PMC6720414 DOI: 10.1186/s12929-019-0560-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
24
|
McCarthy C, Jayawardena N, Burga LN, Bostina M. Developing Picornaviruses for Cancer Therapy. Cancers (Basel) 2019; 11:E685. [PMID: 31100962 PMCID: PMC6562951 DOI: 10.3390/cancers11050685] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) form a group of novel anticancer therapeutic agents which selectively infect and lyse cancer cells. Members of several viral families, including Picornaviridae, have been shown to have anticancer activity. Picornaviruses are small icosahedral non-enveloped, positive-sense, single-stranded RNA viruses infecting a wide range of hosts. They possess several advantages for development for cancer therapy: Their genomes do not integrate into host chromosomes, do not encode oncogenes, and are easily manipulated as cDNA. This review focuses on the picornaviruses investigated for anticancer potential and the mechanisms that underpin this specificity.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
- Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
25
|
Staufen1 Protein Participates Positively in the Viral RNA Replication of Enterovirus 71. Viruses 2019; 11:v11020142. [PMID: 30744035 PMCID: PMC6409738 DOI: 10.3390/v11020142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
The double-stranded RNA-binding protein Staufen1 (Stau1) has multiple functions during RNA virus infection. In this study, we investigated the role of Stau1 in viral translation by using a combination of enterovirus 71 (EV-A71) infection, RNA reporter transfection, and in vitro functional and biochemical assays. We demonstrated that Stau1 specifically binds to the 5′-untranslated region of EV-A71 viral RNA. The RNA-binding domain 2-3 of Stau1 is responsible for this binding ability. Subsequently, we created a Stau1 knockout cell line using the CRISPR/Cas9 approach to further characterize the functional role of Stau1’s interaction with viral RNA in the EV-A71-infected cells. Both the viral RNA accumulation and viral protein expression were downregulated in the Stau1 knockout cells compared with the wild-type naïve cells. Moreover, dysregulation of viral RNA translation was observed in the Stau1 knockout cells using ribosome fractionation assay, and a reduced RNA stability of 5′-UTR of the EV-A71 was also identified using an RNA stability assay, which indicated that Stau1 has a role in facilitating viral translation during EV-A71 infection. In conclusion, we determined the functional relevance of Stau1 in the EV-A71 infection cycle and herein describe the mechanism of Stau1 participation in viral RNA translation through its interaction with viral RNA. Our results suggest that Stau1 is an important host factor involved in viral translation and influential early in the EV-A71 replication cycle.
Collapse
|
26
|
Wang H, Li Y. Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin 2018; 34:9-21. [PMID: 30552635 DOI: 10.1007/s12250-018-0071-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main pathogens that causes hand-foot-and-mouth disease (HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 non-coding regions (5' UTR and 3' UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
27
|
Lulla V, Dinan AM, Hosmillo M, Chaudhry Y, Sherry L, Irigoyen N, Nayak KM, Stonehouse NJ, Zilbauer M, Goodfellow I, Firth AE. An upstream protein-coding region in enteroviruses modulates virus infection in gut epithelial cells. Nat Microbiol 2018; 4:280-292. [PMID: 30478287 DOI: 10.1038/s41564-018-0297-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/19/2018] [Indexed: 11/09/2022]
Abstract
Enteroviruses comprise a large group of mammalian pathogens that includes poliovirus. Pathology in humans ranges from sub-clinical to acute flaccid paralysis, myocarditis and meningitis. Until now, all of the enteroviral proteins were thought to derive from the proteolytic processing of a polyprotein encoded in a single open reading frame. Here we report that many enterovirus genomes also harbour an upstream open reading frame (uORF) that is subject to strong purifying selection. Using echovirus 7 and poliovirus 1, we confirmed the expression of uORF protein in infected cells. Through ribosome profiling (a technique for the global footprinting of translating ribosomes), we also demonstrated translation of the uORF in representative members of the predominant human enterovirus species, namely Enterovirus A, B and C. In differentiated human intestinal organoids, uORF protein-knockout echoviruses are attenuated compared to the wild-type at late stages of infection where membrane-associated uORF protein facilitates virus release. Thus, we have identified a previously unknown enterovirus protein that facilitates virus growth in gut epithelial cells-the site of initial viral invasion into susceptible hosts. These findings overturn the 50-year-old dogma that enteroviruses use a single-polyprotein gene expression strategy and have important implications for the understanding of enterovirus pathogenesis.
Collapse
Affiliation(s)
- Valeria Lulla
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Adam M Dinan
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Lee Sherry
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Komal M Nayak
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Matthias Zilbauer
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
De Nova-Ocampo M, Soliman MC, Espinosa-Hernández W, Velez-Del Valle C, Salas-Benito J, Valdés-Flores J, García-Morales L. Human astroviruses: in silico analysis of the untranslated region and putative binding sites of cellular proteins. Mol Biol Rep 2018; 46:1413-1424. [PMID: 30448895 PMCID: PMC7089336 DOI: 10.1007/s11033-018-4498-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Human astrovirus (HAstV) constitutes a major cause of acute gastroenteritis in children. The viral 5' and 3' untranslated regions (UTR) have been involved in the regulation of several molecular mechanisms. However, in astrovirues have been less characterized. Here, we analyzed the secondary structures of the 5' and 3' UTR of HAstV, as well as their putative target sites that might be recognized by cellular factors. To our knowledge, this is the first bioinformatic analysis that predicts the HAstV 5' UTR secondary structure. The analysis showed that both the UTR sequence and secondary structure are highly conserved in all HAstVs analyzed, suggesting their regulatory role of viral activities. Notably, the UTRs of HAstVs contain putative binding sites for the serine/arginine-rich factors SRSF2, SRSF5, SRSF6, SRSF3, and the multifunctional hnRNPE2 protein. More importantly, putative binding sites for PTB were localized in single-stranded RNA sequences, while hnRNPE2 sites were localized in double-stranded sequence of the HAstV 5' and 3' UTR structures. These analyses suggest that the combination of SRSF proteins, hnRNPE2 and PTB described here could be involved in the maintenance of the secondary structure of the HAstVs, possibly allowing the recruitment of the replication complex that selects and recruits viral RNA replication templates.
Collapse
Affiliation(s)
- Mónica De Nova-Ocampo
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico.
| | - Mayra Cristina Soliman
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| | - Wendy Espinosa-Hernández
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| | - Cristina Velez-Del Valle
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN 2508 Col. San Pedro Zacatenco, 07360, Ciudad de Mexico, Mexico
| | - Juan Salas-Benito
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| | - Jesús Valdés-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN 2508 Col. San Pedro Zacatenco, 07360, Ciudad de Mexico, Mexico
| | - Lorena García-Morales
- ENMH, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, 07320, Ciudad de Mexico, Mexico
| |
Collapse
|
29
|
Flather D, Nguyen JHC, Semler BL, Gershon PD. Exploitation of nuclear functions by human rhinovirus, a cytoplasmic RNA virus. PLoS Pathog 2018; 14:e1007277. [PMID: 30142213 PMCID: PMC6126879 DOI: 10.1371/journal.ppat.1007277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 08/11/2018] [Indexed: 12/17/2022] Open
Abstract
Protein production, genomic RNA replication, and virion assembly during infection by picornaviruses like human rhinovirus and poliovirus take place in the cytoplasm of infected human cells, making them the quintessential cytoplasmic pathogens. However, a growing body of evidence suggests that picornavirus replication is promoted by a number of host proteins localized normally within the host cell nucleus. To systematically identify such nuclear proteins, we focused on those that appear to re-equilibrate from the nucleus to the cytoplasm during infection of HeLa cells with human rhinovirus via quantitative protein mass spectrometry. Our analysis revealed a highly selective re-equilibration of proteins with known mRNA splicing and transport-related functions over nuclear proteins of all other functional classes. The multifunctional splicing factor proline and glutamine rich (SFPQ) was identified as one such protein. We found that SFPQ is targeted for proteolysis within the nucleus by viral proteinase 3CD/3C, and a fragment of SFPQ was shown to migrate to the cytoplasm at mid-to-late times of infection. Cells knocked down for SFPQ expression showed significantly reduced rhinovirus titers, viral protein production, and viral RNA accumulation, consistent with SFPQ being a pro-viral factor. The SFPQ fragment that moved into the cytoplasm was able to bind rhinovirus RNA either directly or indirectly. We propose that the truncated form of SFPQ promotes viral RNA stability or replication, or virion morphogenesis. More broadly, our findings reveal dramatic changes in protein compartmentalization during human rhinovirus infection, allowing the virus to systematically hijack the functions of proteins not normally found at its cytoplasmic site of replication. We explored the dynamics of host cell protein relocalization from the nucleus to the cytoplasm during an infection by human rhinovirus using quantitative mass spectrometry, confocal imaging, and Western blot analysis. We discovered a highly selective re-equilibration of proteins with known mRNA splicing and transport-related functions, including splicing factor proline and glutamine rich (SFPQ). Using RNAi experiments and viral replication assays, we demonstrated that SFPQ is a pro-viral factor required for rhinovirus growth. Our studies provide new insights into how this cytoplasmic RNA virus is able to alter and hijack the functions of host proteins that normally reside in the nucleus.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
| | - Joseph H. C. Nguyen
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
| | - Bert L. Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
- * E-mail: (BLS); (PDG)
| | - Paul D. Gershon
- Center for Virus Research, University of California, Irvine, California, United States of America
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
- * E-mail: (BLS); (PDG)
| |
Collapse
|
30
|
Carmody M, Zimmer JT, Cushman CH, Nguyen T, Lawson TG. The ubiquitin-protein ligase E6AP/UBE3A supports early encephalomyocarditis virus replication. Virus Res 2018; 252:48-57. [PMID: 29782878 DOI: 10.1016/j.virusres.2018.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022]
Abstract
Many viruses make use of, and even direct, the ubiquitin-proteasome system to facilitate the generation of a cellular environment favorable for virus replication, while host cells use selected protein ubiquitylation pathways for antiviral defense. Relatively little information has been acquired, however, regarding the extent to which protein ubiquitylation determines the replication success of picornaviruses. Here we report that the ubiquitin-protein ligase E6AP/UBE3A, recently shown to be a participant in encephalomyocarditis virus (EMCV) 3C protease concentration regulation, also facilitates the early stages of EMCV replication, probably by a mechanism that does not involve 3C protease ubiquitylation. Using stably transfected E6AP knockdown cells, we found that reduced E6AP concentration extends the time required for infected cells to undergo the morphological changes caused by virally induced pathogenesis and to begin the production of infectious virions. This lag in virion production is accompanied by a corresponding delay in the appearance of detectable levels of viral proteins and RNA. We also found, by using both immunofluorescence microscopy and cell fractionation, that E6AP is partially redistributed from the nucleus to the cytoplasm in EMCV-infected cells, thereby increasing its availability to participate in cytoplasmic virus replication processes.
Collapse
Affiliation(s)
- Marybeth Carmody
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, 04240, USA
| | - Joshua T Zimmer
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, 04240, USA
| | - Camille H Cushman
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, 04240, USA
| | - Thao Nguyen
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, 04240, USA
| | - T Glen Lawson
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, 04240, USA.
| |
Collapse
|
31
|
Dzananovic E, McKenna SA, Patel TR. Viral proteins targeting host protein kinase R to evade an innate immune response: a mini review. Biotechnol Genet Eng Rev 2018; 34:33-59. [PMID: 29716441 DOI: 10.1080/02648725.2018.1467151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The innate immune system offers a first line of defense by neutralizing foreign pathogens such as bacteria, fungi, and viruses. These pathogens express molecules (RNA and proteins) that have discrete structures, known as the pathogen-associated molecular patterns that are recognized by a highly specialized class of host proteins called pattern recognition receptors to facilitate the host's immune response against infection. The RNA-dependent Protein Kinase R (PKR) is one of the host's pattern recognition receptors that is a key component of an innate immune system. PKR recognizes imperfectly double-stranded non-coding viral RNA molecules via its N-terminal double-stranded RNA binding motifs, undergoes phosphorylation of the C-terminal kinase domain, ultimately resulting in inhibition of viral protein translation by inhibiting the guanine nucleotide exchange activity of eukaryotic initiation factor 2α. Not surprisingly, viruses have evolved mechanisms by which viral non-coding RNA or protein molecules inhibit PKR's activation and/or its downstream activity to allow viral replication. In this review, we will highlight the role of viral proteins in inhibiting PKR's activity and summarize currently known mechanisms by which viral proteins execute such inhibitory activity.
Collapse
Affiliation(s)
- Edis Dzananovic
- a Plant Pathology, Plant Protection and Molecular Biology , Agriculture and Agri-Food Canada , Saskatoon , Canada
| | - Sean A McKenna
- b Department of Chemistry, Manitoba Institute for Materials, Department of Biochemistry and Medical Genetics , University of Manitoba , Winnipeg , Canada
| | - Trushar R Patel
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , Canada.,d DiscoveryLab, Faculty of Medicine & Dentistry , University of Alberta , Edmonton , Canada.,e Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada
| |
Collapse
|
32
|
Chang CK, Wu SR, Chen YC, Lee KJ, Chung NH, Lu YJ, Yu SL, Liu CC, Chow YH. Mutations in VP1 and 5'-UTR affect enterovirus 71 virulence. Sci Rep 2018; 8:6688. [PMID: 29703921 PMCID: PMC5923339 DOI: 10.1038/s41598-018-25091-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/16/2018] [Indexed: 11/27/2022] Open
Abstract
Enterovirus 71 (EV71) is a major cause of hand, foot and mouth disease (HFMD). The current EV71 propagating in Vero (EV-V) or sub-passaged in RD (EV-R) cells was used as a pathogen. Interestingly, EV-R exhibited differential virulence; challenging human scavenger receptor class B2-expressing (hSCARB2-Tg) mice with EV71 revealed that EV-V was more virulent than EV-R: 100% of mice that received lethal amounts of EV-V died, while all the mice that received EV-R survived. Severe pathogenesis correlated with viral burdens and proinflammatory cytokine levels were observed in EV-V-challenged mice, but controversy in EV-R-challenged mice. Consensus sequence analysis revealed EV-R rapidly acquired complete mutations at E145G and S241L and partial mutations at V146I of VP1, and acquired a T to C substitution at nucleotide 494 of the 5'-UTR. EV-R exhibited higher binding affinity for another EV71 receptor, human P-selectin glycoprotein ligand-1 (hPSGL-1), than EV-V. Both EV71s exhibited no significant difference in binding to hSCARB2. The molecular modelling indicate that these mutations might influence EV71 engagement with PSGL-1 and in vivo virulence.
Collapse
Affiliation(s)
- Ching-Kun Chang
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chin Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Kuen-Jin Lee
- Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Nai-Hsiang Chung
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ju Lu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Shu-Ling Yu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan.
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
33
|
Yuan J, Shen L, Wu J, Zou X, Gu J, Chen J, Mao L. Enterovirus A71 Proteins: Structure and Function. Front Microbiol 2018; 9:286. [PMID: 29515559 PMCID: PMC5826392 DOI: 10.3389/fmicb.2018.00286] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/07/2018] [Indexed: 01/02/2023] Open
Abstract
Enterovirus A71 (EV-A71) infection has grown to become a serious threat to global public health. It is one of the major causes of hand, foot, and mouth disease (HFMD) in infants and young children. EV-A71 can also infect the central nervous system (CNS) and induce diverse neurological complications, such as brainstem encephalitis, aseptic meningitis, and acute flaccid paralysis, or even death. Viral proteins play a crucial role in EV-A71 infection. Many recent studies have discussed the structure and function of EV-A71 proteins, and the findings reported will definitely aid the development of vaccines and therapeutic approaches. This article reviews the progress in the research on the structure and function of EV-A71 proteins. Available literature can provide a basis for studying the pathogenesis of EV-A71 infection in detail.
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Clinical Laboratory, Danyang People's Hospital, Jiangsu, China
| | - Li Shen
- Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Jing Wu
- Institute of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinran Zou
- Institute of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Institute of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianguo Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
35
|
Bohm K, Filomena A, Schneiderhan-Marra N, Krause G, Sievers C. Validation of HAV biomarker 2A for differential diagnostic of hepatitis A infected and vaccinated individuals using multiplex serology. Vaccine 2017; 35:5883-5889. [DOI: 10.1016/j.vaccine.2017.08.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
|
36
|
Sun H, Huang X, Lin K, Huang K, Chu J, Yang Z, Ma S. Molecular evolution of two asymptomatic echovirus 6 strains that constitute a novel branch of recently epidemic echovirus 6 in China. Virol J 2017; 14:140. [PMID: 28743260 PMCID: PMC5526271 DOI: 10.1186/s12985-017-0809-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/19/2017] [Indexed: 11/23/2022] Open
Abstract
Background Echovirus 6 (E6) infections are associated with aseptic meningitis and acute flaccid paralysis (AFP). But some infections, sometimes most of them, are asymptomatic. The mechanism of E6 virulence is unknown. Analyses of the molecular evolution of asymptomatic E6 may help understand why the infections show different manifestations. Methods Ninety-six stool samples of healthy children in Yunnan, China were collected and two E6 strains were isolated from them. The whole genomes of these two E6 strains were sequenced, and their molecular evolution was analyzed. Results The results showed that the two E6 strains may be derived from KJ7724XX strains, which were predominant in AFP patients in Shangdong in 2011. The evolution was accelerated when the two E6 strains formed, although no positive selection site was found. The 11 exclusive mutations on which selection force significantly changed were found in the 2C, 3AB and 3C genes. Conclusion There are some E6 strains which did not cause the disease in the children of Yunnan. These E6 strains maybe come from a recombinant E6 strain which was associated with the outbreak of AFP in Shangdong in 2011. However, some new mutations were found in the 2C, 3AB and 3C genes of these asymptomatic strains, and these mutations may be constraint by the natural selection and could be potentially responsible for clinical presentations. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0809-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Sun
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Xiaoqin Huang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Keqin Lin
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Kai Huang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Jiayou Chu
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zhaoqing Yang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| | - Shaohui Ma
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| |
Collapse
|
37
|
Evaluation of a rapid detection for Coxsackievirus B3 using one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 2017; 246:27-33. [PMID: 28435073 PMCID: PMC7113869 DOI: 10.1016/j.jviromet.2017.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 02/23/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022]
Abstract
Coxsackievirus B3 (CVB3) is a member of the genus Enterovirus within the family Picornaviridae and is an important pathogen of viral myocarditis, which accounts for more than 50% viral myocarditis cases. VP1 is major capsid protein that this region has a low homology in both amino acid and nucleotide sequences among Enteroviruses. Therefore we have chosen this region for designed a set of RT-LAMP primers for CVB3 detection. For this the total RNA was extracted from 24-h post infected-HeLa cells with complete cytopathic effect (CPE), and applied to a one-step reverse transcription loop-mediated isothermal amplification reaction (RT-LAMP) using CVB3-specific primers. The optimization of RT-LAMP reaction was carried out with three variables factors including MgSO4 concentration, temperature and time of incubation. Amplification was analyzed by using 2% agarose gel electrophoresis and ethidium bromide and SYBR Green staining. Our results were shown the ladder-like pattern of the VP1 gene amplification. The LAMP reaction mix was optimized and the best result observed at 4mM MgSO4 and 60°C for 90min incubation. RT-LAMP had high sensitivity and specificity for detection of CVB3 infection. This method can be used as a rapid and easy diagnostic test for detection of CVB3 in clinical laboratories.
Collapse
|
38
|
Antiviral screen identifies EV71 inhibitors and reveals camptothecin-target, DNA topoisomerase 1 as a novel EV71 host factor. Antiviral Res 2017; 143:122-133. [PMID: 28427827 DOI: 10.1016/j.antiviral.2017.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 11/23/2022]
Abstract
Enterovirus 71 (EV71) is one of the causative agents of hand, foot and mouth disease (HFMD) associated with severe neurological disease. EV71's pathogenesis remains poorly understood and the lack of approved antiviral has led to its emergence as a clinically important neurotropic virus. The goals of this study were to: (i) identify novel anti-EV71 compounds that may serve as lead molecules for therapeutics; and (ii) investigate their targets in downstream studies. We screened a 502-compound library of highly purified natural products for anti-EV71 activities in a cell-based immunofluorescence assay that were then confirmed in viral plaque reduction assays. Along with known antivirals, novel inhibitors of EV71 were also identified. We selected camptothecin for downstream studies and found that it is a limited spectrum enterovirus inhibitor that inhibits coxsackievirus A16 but not ECHOvirus 7. Camptothecin, a DNA topoisomerase 1 (TOP1) inhibitor, inhibits both viral RNA replication and translation based on luciferase replicon studies. Depletion of TOP1 using siRNA was then able to rescue EV71 infection from camptothecin inhibition. Interestingly, EV71 viral RNA replication and translation were also in TOP1 depleted cells. We found that nuclear TOP1 was relocalized to cytoplasmic replication vesicles during EV71 infection and localized with viral 3CD using confocal microscopy and proximity-ligation assays. Our findings reveal camptothecin to be a limited spectrum antiviral against enteroviruses that functions in a TOP1-dependent but cytotoxicity-independent manner. TOP1 is in turn needed for maximal EV71 viral RNA replication and viral protein synthesis.
Collapse
|
39
|
Gunaseelan S, Chu JJH. Identifying novel antiviral targets against enterovirus 71: where are we? Future Virol 2017. [DOI: 10.2217/fvl-2016-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human enterovirus 71 (HEV71) has been considered as an essential human pathogen, which causes hand, foot and mouth disease in young children. Several HEV71 outbreaks have been observed in many Asia-Pacific countries for the past two decades with significant fatalities. However, there are no competent vaccines or antivirals against HEV71 infection to date. Thus, it is of critical priority to delve into the search for anti-HEV71 agents. Prior to this, there is a need to gain knowledge about the distinct targets of HEV71 that are available and that have been exploited for antiviral therapy. This review aims to provide a better understanding of HEV71 virology and feature potential antivirals for progressive clinical development with respect to their elucidated mechanistic actions.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06–05, Singapore 138673
| |
Collapse
|
40
|
Chan YM, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein. Structure 2016; 24:509-517. [PMID: 27050688 DOI: 10.1016/j.str.2016.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The 3C protein is a master regulator of the picornaviral infection cycle, responsible for both cleaving viral and host proteins, and interacting with genomic RNA replication elements. Here we use nuclear magnetic resonance spectroscopy and molecular dynamics simulations to show that 3C is conformationally dynamic across multiple timescales. Binding of peptide and RNA lead to structural dynamics changes at both the protease active site and the RNA-binding site, consistent with these sites being dynamically coupled. Indeed, binding of RNA influences protease activity, and likewise, interactions at the active site affect RNA binding. We propose that RNA and peptide binding re-shapes the conformational energy landscape of 3C to regulate subsequent functions, including formation of complexes with other viral proteins. The observed channeling of the 3C energy landscape may be important for regulation of the viral infection cycle.
Collapse
Affiliation(s)
- Yan M Chan
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
41
|
The Transcriptome of Rhabdomyosarcoma Cells Infected with Cytolytic and Non-Cytolytic Variants of Coxsackievirus B2 Ohio-1. PLoS One 2016; 11:e0164548. [PMID: 27760161 PMCID: PMC5070843 DOI: 10.1371/journal.pone.0164548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
The transcriptomes of cells infected with lytic and non-lytic variants of coxsackievirus B2 Ohio-1 (CVB2O) were analyzed using next generation sequencing. This approach was selected with the purpose of elucidating the effects of lytic and non-lytic viruses on host cell transcription. Total RNA was extracted from infected cells and sequenced. The resulting reads were subsequently mapped against the human and CVB2O genomes. The amount of intracellular RNA was measured, indicating lower proportions of human RNA in the cells infected with the lytic virus compared to the non-lytic virus after 48 hours. This may be explained by reduced activity of the cellular transcription/translation machinery in lytic enteroviral replication due to activities of the enteroviral proteases 2A and/or 3C. Furthermore, differential expression in the cells infected with the two virus variants was identified and a number of transcripts were singled out as possible answers to the question of how the viruses interact with the host cells, resulting in lytic or non-lytic infections.
Collapse
|
42
|
Ross C, Upfold N, Luke GA, Bishop ÖT, Knox C. Subcellular localisation of Theiler's murine encephalomyelitis virus (TMEV) capsid subunit VP1 vis-á-vis host protein Hsp90. Virus Res 2016; 222:53-63. [PMID: 27269472 DOI: 10.1016/j.virusres.2016.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 01/25/2023]
Abstract
The VP1 subunit of the picornavirus capsid is the major antigenic determinant and mediates host cell attachment and virus entry. To investigate the localisation of Theiler's murine encephalomyelitis virus (TMEV) VP1 during infection, a bioinformatics approach was used to predict a surface-exposed, linear epitope region of the protein for subsequent expression and purification. This region, comprising the N-terminal 112 amino acids of the protein, was then used for rabbit immunisation, and the resultant polyclonal antibodies were able to recognise full length VP1 in infected cell lysates by Western blot. Following optimisation, the antibodies were used to investigate the localisation of VP1 in relation to Hsp90 in infected cells by indirect immunofluorescence and confocal microscopy. At 5h post infection, VP1 was distributed diffusely in the cytoplasm with strong perinuclear staining but was absent from the nucleus of all cells analysed. Dual-label immunofluorescence using anti-TMEV VP1 and anti-Hsp90 antibodies indicated that the distribution of both proteins colocalised in the cytoplasm and perinuclear region of infected cells. This is the first report describing the localisation of TMEV VP1 in infected cells, and the antibodies produced provide a valuable tool for investigating the poorly understood mechanisms underlying the early steps of picornavirus assembly.
Collapse
Affiliation(s)
- Caroline Ross
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Nicole Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St. Andrews, North Haugh, St. Andrews, Scotland KY16 9ST, UK
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
43
|
Hou HY, Lu WW, Wu KY, Lin CW, Kung SH. Idarubicin is a broad-spectrum enterovirus replication inhibitor that selectively targets the virus internal ribosomal entry site. J Gen Virol 2016; 97:1122-1133. [DOI: 10.1099/jgv.0.000431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hsin-Yu Hou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wen-Wen Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taiwan, ROC
| | - Kuan-Yin Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, ROC
| | - Szu-Hao Kung
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
44
|
Li Z, Liu X, Wang S, Li J, Hou M, Liu G, Zhang W, Yu XF. Identification of a nucleotide in 5' untranslated region contributing to virus replication and virulence of Coxsackievirus A16. Sci Rep 2016; 6:20839. [PMID: 26861413 PMCID: PMC4748407 DOI: 10.1038/srep20839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A16 (CA16) and enterovirus 71 (EV71) are two main causative pathogens of hand, foot and mouth disease (HFMD). Unlike EV71, virulence determinants of CA16, particularly within 5' untranslated region (5'UTR), have not been investigated until now. Here, a series of nucleotides present in 5'UTR of lethal but not in non-lethal CA16 strains were screened by aligning nucleotide sequences of lethal circulating Changchun CA16 and the prototype G10 as well as non-lethal SHZH05 strains. A representative infectious clone based on a lethal Changchun024 sequence and infectious mutants with various nucleotide alterations in 5'UTR were constructed and further investigated by assessing virus replication in vitro and virulence in neonatal mice. Compared to the lethal infectious clone, the M2 mutant with a change from cytosine to uracil at nucleotide 104 showed weaker virulence and lower replication capacity. The predicted secondary structure of the 5'UTR of CA16 RNA showed that M2 mutant located between the cloverleaf and stem-loop II, affected interactions between the 5'UTR and the heterogeneous nuclear ribonucleoprotein K (hnRNP K) and A1 (hnRNP A1) that are important for translational activity. Thus, our research determined a virulence-associated site in the 5'UTR of CA16, providing a crucial molecular target for antiviral drug development.
Collapse
Affiliation(s)
- Zhaolong Li
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China.,College of Life Science, Jilin University, Changchun, Jilin Province, China
| | - Xin Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Shaohua Wang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Jingliang Li
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Min Hou
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Guanchen Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China.,College of Life Science, Jilin University, Changchun, Jilin Province, China
| | - Wenyan Zhang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Xiao-Fang Yu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| |
Collapse
|
45
|
Resveratrol inhibits rhinovirus replication and expression of inflammatory mediators in nasal epithelia. Antiviral Res 2015; 123:15-21. [PMID: 26296578 DOI: 10.1016/j.antiviral.2015.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022]
Abstract
Human rhinoviruses (HRV), the cause of common colds, are the most frequent precipitants of acute exacerbation of asthma and chronic obstructive pulmonary disease, as well as causes of other serious respiratory diseases. No vaccine or antiviral agents are available for the prevention or treatment of HRV infection. Resveratrol exerts antiviral effect against different DNA and RNA viruses. The antiviral effect of a new resveratrol formulation containing carboxymethylated glucan was analyzed in H1HeLa cell monolayers and ex vivo nasal epithelia infected with HRV-16. Virus yield was evaluated by plaque assay and expression of viral capsid proteins by Western blot. IL-10, IFN-β, IL-6, IL-8 and RANTES levels were evaluated by ELISA assay. ICAM-1 was assessed by Western blot and immunofluorescence. Resveratrol exerted a high, dose-dependent, antiviral activity against HRV-16 replication and reduced virus-induced secretion of IL-6, IL-8 and RANTES to levels similar to that of uninfected nasal epithelia. Basal levels of IL-6 and RANTES were also significantly reduced in uninfected epithelia confirming an anti-inflammatory effect of the compound. HRV-induced expression of ICAM-1 was reversed by resveratrol. Resveratrol may be useful for a therapeutic approach to reduce HRV replication and virus-induced cytokine/chemokine production.
Collapse
|
46
|
Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation. J Virol 2015. [PMID: 26202240 DOI: 10.1128/jvi.01677-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5' untranslated region (5'UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. IMPORTANCE The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection and could potentially enhance the translation of virus protein. To our knowledge, this is the first report that describes Sam68 actively participating in the life cycle of EV71 at a molecular level. These studies will not only improve our understanding of the replication of EV71 but also have the potential for aiding in developing a therapeutic strategy against EV71 infection.
Collapse
|
47
|
Garmaroudi FS, Marchant D, Hendry R, Luo H, Yang D, Ye X, Shi J, McManus BM. Coxsackievirus B3 replication and pathogenesis. Future Microbiol 2015; 10:629-53. [DOI: 10.2217/fmb.15.5] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Viruses such as coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.
Collapse
Affiliation(s)
- Farshid S Garmaroudi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - David Marchant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Reid Hendry
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Honglin Luo
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Decheng Yang
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Xin Ye
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Junyan Shi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Bruce M McManus
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
- Centre of Excellence for Prevention of Organ Failure, Vancouver, BC, Canada
| |
Collapse
|
48
|
Substance P receptor antagonism: a potential novel treatment option for viral-myocarditis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:645153. [PMID: 25821814 PMCID: PMC4363507 DOI: 10.1155/2015/645153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/14/2014] [Accepted: 12/30/2014] [Indexed: 01/16/2023]
Abstract
Viral-myocarditis is an important cause of heart failure for which no specific treatment is available. We previously showed the neuropeptide substance P (SP) is associated with the pathogenesis of murine myocarditis caused by encephalomyocarditis virus (EMCV). The current studies determined if pharmacological inhibition of SP-signaling via its high affinity receptor, NK1R and downstream G-protein, Ras homolog gene family, member-A (RhoA), will be beneficial in viral-myocarditis. Aprepitant (1.2 mg/kg), a SP-receptor antagonist, or fasudil (10 mg/kg), a RhoA inhibitor, or saline control was administered daily to mice orally for 3 days, prior to, or 5 days following, intraperitoneal infection with and without 50 PFU of EMCV, following which disease assessment studies, including echocardiogram and cardiac Doppler were performed in day 14 after infection. Pretreatment and posttreatment with aprepitant significantly reduced mortality, heart and cardiomyocyte size, and cardiac viral RNA levels (P < 0.05 all, ANOVA). Only aprepitant pretreatment improved heart functions; it significantly decreased end systolic diameter, improved fractional shortening, and increased peak aortic flow velocity (P < 0.05 all, ANOVA). Pre- or posttreatment with fasudil did not significantly impact disease manifestations. These findings indicate that SP contributes to cardiac-remodeling and dysfunction following ECMV infection via its high affinity receptor, but not through the Rho-A pathway. These studies suggest that SP-receptor antagonism may be a novel therapeutic-option for patients with viral-myocarditis.
Collapse
|
49
|
Leong SY, Ong BKT, Chu JJH. The role of Misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71. PLoS Pathog 2015; 11:e1004686. [PMID: 25747578 PMCID: PMC4352056 DOI: 10.1371/journal.ppat.1004686] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022] Open
Abstract
Human Enterovirus 71 (EV71) commonly causes Hand, Foot and Mouth Disease in young children, and occasional occurrences of neurological complications can be fatal. In this study, a high-throughput cell-based screening on the serine/threonine kinase siRNA library was performed to identify potential antiviral agents against EV71 replication. Among the hits, Misshapen/NIKs-related kinase (MINK) was selected for detailed analysis due to its strong inhibitory profile and novelty. In the investigation of the stage at which MINK is involved in EV71 replication, virus RNA transfection in MINK siRNA-treated cells continued to cause virus inhibition despite bypassing the normal entry pathway, suggesting its involvement at the post-entry stage. We have also shown that viral RNA and protein expression level was significantly reduced upon MINK silencing, suggesting its involvement in viral protein synthesis which feeds into viral RNA replication process. Through proteomic analysis and infection inhibition assay, we found that the activation of MINK was triggered by early replication events, instead of the binding and entry of the virus. Proteomic analysis on the activation profile of p38 Mitogen-activated Protein Kinase (MAPK) indicated that the phosphorylation of p38 MAPK was stimulated by EV71 infection upon MINK activation. Luciferase reporter assay further revealed that the translation efficiency of the EV71 internal ribosomal entry site (IRES) was reduced after blocking the MINK/p38 MAPK pathway. Further investigation on the effect of MINK silencing on heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) localisation demonstrated that cytoplasmic relocalisation of hnRNP A1 upon EV71 infection may be facilitated via the MINK/p38 MAPK pathway which then positively regulates the translation of viral RNA transcripts. These novel findings hence suggest that MINK plays a functional role in the IRES-mediated translation of EV71 viral RNA and may provide a potential target for the development of specific antiviral strategies against EV71 infection.
Collapse
Affiliation(s)
- Shi Yun Leong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Kit Teck Ong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
50
|
Jonsson N, Sävneby A, Gullberg M, Evertsson K, Klingel K, Lindberg AM. Efficient replication of recombinant Enterovirus B types, carrying different P1 genes in the coxsackievirus B5 replicative backbone. Virus Genes 2015; 50:351-7. [PMID: 25663145 DOI: 10.1007/s11262-015-1177-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022]
Abstract
Recombination is an important feature in the evolution of the Enterovirus genus. Phylogenetic studies of enteroviruses have revealed that the capsid genomic region (P1) is type specific, while the parts of the genome coding for the non-structural proteins (P2-P3) are species specific. Hence, the genome may be regarded as consisting of two modules that evolve independently. In this study, it was investigated whether the non-structural coding part of the genome in one type could support replication of a virus with a P1 region from another type of the same species. A cassette vector (pCas) containing a full-length cDNA copy of coxsackievirus B5 (CVB5) was used as a replicative backbone. The P1 region of pCas was replaced with the corresponding part from coxsackievirus B3 Nancy (CVB3N), coxsackievirus B6 Schmitt (CVB6S), and echovirus 7 Wallace (E7W), all members of the Enterovirus B species. The replication efficiency after transfection with clone-derived in vitro transcribed RNA was studied and compared with that of pCas. All the recombinant viruses replicated with similar efficiencies and showed threshold cycle (Ct) values, tissue culture infectivity dose 50 %, and plaque-forming unit titers comparable to viruses generated from the pCas construct. In addition to this, a clone without the P1 region was also constructed, and Western Blot and immunofluorescence staining analysis showed that the viral genome could be translated and replicated despite the lack of the structural protein-coding region. To conclude, the replicative backbone of the CVB5 cassette vector supports replication of intraspecies constructs with P1 regions derived from other members of the Enterovirus B species. In addition to this, the replicative backbone can be both translated and replicated without the presence of a P1 region.
Collapse
Affiliation(s)
- Nina Jonsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | | | | | | | | |
Collapse
|