1
|
Modeling HIV-1 nuclear entry with nucleoporin-gated DNA-origami channels. Nat Struct Mol Biol 2023; 30:425-435. [PMID: 36807645 PMCID: PMC10121901 DOI: 10.1038/s41594-023-00925-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023]
Abstract
Delivering the virus genome into the host nucleus through the nuclear pore complex (NPC) is pivotal in human immunodeficiency virus 1 (HIV-1) infection. The mechanism of this process remains mysterious owing to the NPC complexity and the labyrinth of molecular interactions involved. Here we built a suite of NPC mimics-DNA-origami-corralled nucleoporins with programmable arrangements-to model HIV-1 nuclear entry. Using this system, we determined that multiple cytoplasm-facing Nup358 molecules provide avid binding for capsid docking to the NPC. The nucleoplasm-facing Nup153 preferentially attaches to high-curvature regions of the capsid, positioning it for tip-leading NPC insertion. Differential capsid binding strengths of Nup358 and Nup153 constitute an affinity gradient that drives capsid penetration. Nup62 in the NPC central channel forms a barrier that viruses must overcome during nuclear import. Our study thus provides a wealth of mechanistic insight and a transformative toolset for elucidating how viruses like HIV-1 enter the nucleus.
Collapse
|
2
|
Shen Q, Wang YE, Palazzo AF. Crosstalk between nucleocytoplasmic trafficking and the innate immune response to viral infection. J Biol Chem 2021; 297:100856. [PMID: 34097873 PMCID: PMC8254040 DOI: 10.1016/j.jbc.2021.100856] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
The nuclear pore complex is the sole gateway connecting the nucleoplasm and cytoplasm. In humans, the nuclear pore complex is one of the largest multiprotein assemblies in the cell, with a molecular mass of ∼110 MDa and consisting of 8 to 64 copies of about 34 different nuclear pore proteins, termed nucleoporins, for a total of 1000 subunits per pore. Trafficking events across the nuclear pore are mediated by nuclear transport receptors and are highly regulated. The nuclear pore complex is also used by several RNA viruses and almost all DNA viruses to access the host cell nucleoplasm for replication. Viruses hijack the nuclear pore complex, and nuclear transport receptors, to access the nucleoplasm where they replicate. In addition, the nuclear pore complex is used by the cell innate immune system, a network of signal transduction pathways that coordinates the first response to foreign invaders, including viruses and other pathogens. Several branches of this response depend on dynamic signaling events that involve the nuclear translocation of downstream signal transducers. Mounting evidence has shown that these signaling cascades, especially those steps that involve nucleocytoplasmic trafficking events, are targeted by viruses so that they can evade the innate immune system. This review summarizes how nuclear pore proteins and nuclear transport receptors contribute to the innate immune response and highlights how viruses manipulate this cellular machinery to favor infection. A comprehensive understanding of nuclear pore proteins in antiviral innate immunity will likely contribute to the development of new antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Qingtang Shen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Yifan E Wang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Kimura I, Konno Y, Uriu K, Hopfensperger K, Sauter D, Nakagawa S, Sato K. Sarbecovirus ORF6 proteins hamper induction of interferon signaling. Cell Rep 2021; 34:108916. [PMID: 33765414 PMCID: PMC7953434 DOI: 10.1016/j.celrep.2021.108916] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/24/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The presence of an ORF6 gene distinguishes sarbecoviruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 from other betacoronaviruses. Here we show that ORF6 inhibits induction of innate immune signaling, including upregulation of type I interferon (IFN) upon viral infection as well as type I and III IFN signaling. Intriguingly, ORF6 proteins from SARS-CoV-2 lineages are more efficient antagonists of innate immunity than their orthologs from SARS-CoV lineages. Mutational analyses identified residues E46 and Q56 as important determinants of the antagonistic activity of SARS-CoV-2 ORF6. Moreover, we show that the anti-innate immune activity of ORF6 depends on its C-terminal region and that ORF6 inhibits nuclear translocation of IRF3. Finally, we identify naturally occurring frameshift/nonsense mutations that result in an inactivating truncation of ORF6 in approximately 0.2% of SARS-CoV-2 isolates. Our findings suggest that ORF6 contributes to the poor IFN activation observed in individuals with coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Izumi Kimura
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Yoriyuki Konno
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| | - Kristina Hopfensperger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
4
|
GTPase Activity of MxB Contributes to Its Nuclear Location, Interaction with Nucleoporins and Anti-HIV-1 Activity. Virol Sin 2020; 36:85-94. [PMID: 32632818 DOI: 10.1007/s12250-020-00249-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
The human myxovirus resistance 2 (Mx2/MxB) protein, a member of interferon (IFN)-inducible dynamin-like large GTPases, restricts a number of virus infections. Inhibition of these viruses occurs at poorly-defined steps after viral entry and has a common requirement for MxB oligomerization. However, the GTPase activity is essential for the anti-viral effects of MxB against herpesviruses and HBV but not HIV-1. To understand the role of MxB GTPase activity, including GTP binding and GTP hydrolysis, in restriction of HIV-1 infection, we genetically separated these two functions and evaluated their contributions to restriction. We found that both the GTP binding and hydrolysis function of MxB involved in the restriction of HIV-1 replication. The GTPase activity of MxB contributed to its nuclear location, interaction with nucleoporins (NUPs) and HIV-1 capsids. Furthermore, MxB disrupted the association between NUPs and HIV-1 cores dependently upon its GTPase activity. The function of GTPase activity was therefore multi-faceted, led to fundamentally distinct mechanisms employed by wild-type MxB and GTPase activity defective MxB mutations to restrict HIV-1 replication.
Collapse
|
5
|
Singh SP, Raja S, Mahalingam S. Viral protein X unlocks the nuclear pore complex through a human Nup153-dependent pathway to promote nuclear translocation of the lentiviral genome. Mol Biol Cell 2020; 31:304-317. [PMID: 31913756 PMCID: PMC7183765 DOI: 10.1091/mbc.e19-08-0438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Simian immunodeficiency virus (SIV) and human immunodeficiency virus 2 (HIV-2) display unique ability to infect nondividing target cells. Viral protein X (Vpx) of HIV-2/SIV is known to be involved in the nuclear import of viral genome in nondividing cells, but the mechanism remains poorly understood. In the present investigation for the first time we provide evidence that Vpx of SIVsmPBj1.9 physically interacts with human nucleoporin 153 (Nup153), which is known to provide a docking site for protein-cargo complexes at the nuclear pore complex (NPC). Results from superresolution-structured illumination microscopy studies reveal that Vpx interaction with NPC-associated Nup153 is critical for its efficient nuclear translocation. Virion-associated MAPK/ERK-2-mediated phosphorylation of Vpx plays a critical role in its interaction with human Nup153 and this interaction was found to be evolutionarily conserved in various SIV isolates and HIV-2. Interestingly, MAPK/ERK-2 packaging defective SIV failed to promote the efficient nuclear import of viral genome and suggests that MAPK/ERK-2-mediated Vpx phosphorylation is important for its interaction with Nup153, which is critical for lentiviruses to establish infection in nondividing target cells. Together, our data elucidate the mechanism by which Vpx orchestrates the challenging task of nuclear translocation of HIV-2/SIV genome in nondividing target cells.
Collapse
Affiliation(s)
- Satya Prakash Singh
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India.,National Cancer Tissue Biobank, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India
| |
Collapse
|
6
|
Dicks MDJ, Betancor G, Jimenez-Guardeño JM, Pessel-Vivares L, Apolonia L, Goujon C, Malim MH. Multiple components of the nuclear pore complex interact with the amino-terminus of MX2 to facilitate HIV-1 restriction. PLoS Pathog 2018; 14:e1007408. [PMID: 30496303 PMCID: PMC6264145 DOI: 10.1371/journal.ppat.1007408] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced post-entry inhibitor of human immunodeficiency virus type-1 (HIV-1) infection. While the precise mechanism of viral inhibition remains unclear, MX2 is localized to the nuclear envelope, and blocks the nuclear import of viral cDNAs. The amino-terminus of MX2 (N-MX2) is essential for anti-viral function, and mutation of a triple arginine motif at residues 11 to 13 abrogates anti-HIV-1 activity. In this study, we sought to investigate the role of N-MX2 in anti-viral activity by identifying functionally relevant host-encoded interaction partners through yeast-two-hybrid screening. Remarkably, five out of seven primary candidate interactors were nucleoporins or nucleoporin-like proteins, though none of these candidates were identified when screening with a mutant RRR11-13A N-MX2 fragment. Interactions were confirmed by co-immunoprecipitation, and RNA silencing experiments in cell lines and primary CD4+ T cells demonstrated that multiple components of the nuclear pore complex and nuclear import machinery can impact MX2 anti-viral activity. In particular, the phenylalanine-glycine (FG) repeat containing cytoplasmic filament nucleoporin NUP214, and transport receptor transportin-1 (TNPO1) were consistently required for full MX2, and interferon-mediated, anti-viral function. Both proteins were shown to interact with the triple arginine motif, and confocal fluorescence microscopy revealed that their simultaneous depletion resulted in diminished MX2 accumulation at the nuclear envelope. We therefore propose a model whereby multiple components of the nuclear import machinery and nuclear pore complex help position MX2 at the nuclear envelope to promote MX2-mediated restriction of HIV-1. The movement of large molecules into the cell nucleus is regulated at specific sites within the nuclear envelope termed nuclear pores. To infect cells productively, human immunodeficiency virus type-1 (HIV-1) must traverse the nuclear envelope to enable integration of the viral DNA into the genomic DNA of host cells. We, and others, have previously identified a cell-encoded protein, human myxovirus resistance 2 (MX2), which is expressed upon initiation of an innate immune response and prevents accumulation of HIV-1 DNA within the nucleus, thus imposing a block to infection. Here, we reveal that components of the nuclear pore complex, and nuclear import machinery, are required for MX2-dependent inhibition of HIV-1 infection. We show that MX2, which is localized at the cytoplasmic face of the nuclear envelope, interacts with multiple protein components of the nuclear pore complex, as well as transport receptor transportin-1, via a functionally required triple arginine motif at its amino-terminus. We speculate that these interactions facilitate MX2-mediated inhibition of HIV-1 nuclear import by situating the protein at the nuclear envelope.
Collapse
Affiliation(s)
- Matthew D. J. Dicks
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, United Kingdom
| | - Gilberto Betancor
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, United Kingdom
| | - Jose M. Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, United Kingdom
| | - Lucie Pessel-Vivares
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, United Kingdom
| | - Luis Apolonia
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, United Kingdom
| | - Caroline Goujon
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One 2018; 13:e0197246. [PMID: 29775471 PMCID: PMC5959063 DOI: 10.1371/journal.pone.0197246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus infections are important causes of morbidity and mortality worldwide, and currently available prevention and treatment methods are suboptimal. In recent years, genome-wide investigations have revealed numerous host factors that are required for influenza to successfully complete its life cycle. However, only a select, small number of influenza strains were evaluated using this platform, and there was considerable variation in the genes identified across different investigations. In an effort to develop a universally efficacious therapeutic strategy with limited potential for the emergence of resistance, this study was performed to investigate the effect of combinatorial RNA interference (RNAi) on inhibiting the replication of diverse influenza A virus subtypes and strains. Candidate genes were selected for targeting based on the results of multiple previous independent genome-wide studies. The effect of single and combinatorial RNAi on the replication of 12 diverse influenza A viruses, including three strains isolated from birds and one strain isolated from seals, was then evaluated in primary normal human bronchial epithelial cells. After excluding overly toxic siRNA, two siRNA combinations were identified that reduced mean viral replication by greater than 79 percent in all mammalian strains, and greater than 68 percent in all avian strains. Host-directed combinatorial RNAi effectively prevents growth of a broad range of influenza virus strains in vitro, and is a potential therapeutic candidate for further development and future in vivo studies.
Collapse
|
8
|
Capsid-CPSF6 Interaction Is Dispensable for HIV-1 Replication in Primary Cells but Is Selected during Virus Passage In Vivo. J Virol 2016; 90:6918-6935. [PMID: 27307565 DOI: 10.1128/jvi.00019-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/08/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a host factor that interacts with the HIV-1 capsid (CA) protein, is implicated in diverse functions during the early part of the HIV-1 life cycle, including uncoating, nuclear entry, and integration targeting. Preservation of CA binding to CPSF6 in vivo suggests that this interaction is fine-tuned for efficient HIV-1 replication in physiologically relevant settings. Nevertheless, this possibility has not been formally examined. To assess the requirement for optimal CPSF6-CA binding during infection of primary cells and in vivo, we utilized a novel CA mutation, A77V, that significantly reduced CA binding to CPSF6. The A77V mutation rendered HIV-1 largely independent from TNPO3, NUP358, and NUP153 for infection and altered the integration site preference of HIV-1 without any discernible effects during the late steps of the virus life cycle. Surprisingly, the A77V mutant virus maintained the ability to replicate in monocyte-derived macrophages, primary CD4(+) T cells, and humanized mice at a level comparable to that for the wild-type (WT) virus. Nonetheless, revertant viruses that restored the WT CA sequence and hence CA binding to CPSF6 emerged in three out of four A77V-infected animals. These results suggest that the optimal interaction of CA with CPSF6, though not absolutely essential for HIV-1 replication in physiologically relevant settings, confers a significant fitness advantage to the virus and thus is strictly conserved among naturally circulating HIV-1 strains. IMPORTANCE CPSF6 interacts with the HIV-1 capsid (CA) protein and has been implicated in nuclear entry and integration targeting. Preservation of CPSF6-CA binding across various HIV-1 strains suggested that the optimal interaction between CA and CPSF6 is critical during HIV-1 replication in vivo Here, we identified a novel HIV-1 capsid mutant that reduces binding to CPSF6, is largely independent from the known cofactors for nuclear entry, and alters integration site preference. Despite these changes, virus carrying this mutation replicated in humanized mice at levels indistinguishable from those of the wild-type virus. However, in the majority of the animals, the mutant virus reverted back to the wild-type sequence, hence restoring the wild-type level of CA-CPSF6 interactions. These results suggest that optimal binding of CA to CPSF6 is not absolutely essential for HIV-1 replication in vivo but provides a fitness advantage that leads to the widespread usage of CPSF6 by HIV-1 in vivo.
Collapse
|
9
|
Abstract
Long terminal repeat (LTR) retrotransposons constitute significant fractions of many eukaryotic genomes. Two ancient families are Ty1/Copia (Pseudoviridae) and Ty3/Gypsy (Metaviridae). The Ty3/Gypsy family probably gave rise to retroviruses based on the domain order, similarity of sequences, and the envelopes encoded by some members. The Ty3 element of Saccharomyces cerevisiae is one of the most completely characterized elements at the molecular level. Ty3 is induced in mating cells by pheromone stimulation of the mitogen-activated protein kinase pathway as cells accumulate in G1. The two Ty3 open reading frames are translated into Gag3 and Gag3-Pol3 polyprotein precursors. In haploid mating cells Gag3 and Gag3-Pol3 are assembled together with Ty3 genomic RNA into immature virus-like particles in cellular foci containing RNA processing body proteins. Virus-like particle Gag3 is then processed by Ty3 protease into capsid, spacer, and nucleocapsid, and Gag3-Pol3 into those proteins and additionally, protease, reverse transcriptase, and integrase. After haploid cells mate and become diploid, genomic RNA is reverse transcribed into cDNA. Ty3 integration complexes interact with components of the RNA polymerase III transcription complex resulting in Ty3 integration precisely at the transcription start site. Ty3 activation during mating enables proliferation of Ty3 between genomes and has intriguing parallels with metazoan retrotransposon activation in germ cell lineages. Identification of nuclear pore, DNA replication, transcription, and repair host factors that affect retrotransposition has provided insights into how hosts and retrotransposons interact to balance genome stability and plasticity.
Collapse
|
10
|
Bin Hamid F, Kim J, Shin CG. Cellular and viral determinants of retroviral nuclear entry. Can J Microbiol 2015; 62:1-15. [PMID: 26553381 DOI: 10.1139/cjm-2015-0350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviruses must integrate their cDNA into the host genome to generate proviruses. Viral DNA-protein complexes interact with cellular proteins and produce pre-integration complexes, which carry the viral genome and cross the nuclear pore channel to enter the nucleus and integrate viral DNA into host chromosomal DNA. If the reverse transcripts fail to integrate, linear or circular DNA species such as 1- and 2-long terminal repeats are generated. Such complexes encounter numerous cellular proteins in the cytoplasm, which restrict viral infection and protect the nucleus. To overcome host cell defenses, the pathogens have evolved several evasion strategies. Viral proteins often contain nuclear localization signals, allowing entry into the nucleus. Among more than 1000 proteins identified as required for HIV infection by RNA interference screening, karyopherins, cleavage and polyadenylation specific factor 6, and nucleoporins have been predominantly studied. This review discusses current opinions about the synergistic relationship between the viral and cellular factors involved in nuclear import, with focus on the unveiled mysteries of the host-pathogen interaction, and highlights novel approaches to pinpoint therapeutic targets.
Collapse
Affiliation(s)
- Faysal Bin Hamid
- Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea.,Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| | - Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea.,Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea.,Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| |
Collapse
|
11
|
Impact of Chromatin on HIV Replication. Genes (Basel) 2015; 6:957-76. [PMID: 26437430 PMCID: PMC4690024 DOI: 10.3390/genes6040957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
Chromatin influences Human Immunodeficiency Virus (HIV) integration and replication. This review highlights critical host factors that influence chromatin structure and organization and that also impact HIV integration, transcriptional regulation and latency. Furthermore, recent attempts to target chromatin associated factors to reduce the HIV proviral load are discussed.
Collapse
|
12
|
Chromatin organization at the nuclear pore favours HIV replication. Nat Commun 2015; 6:6483. [PMID: 25744187 PMCID: PMC4366494 DOI: 10.1038/ncomms7483] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/02/2015] [Indexed: 11/08/2022] Open
Abstract
The molecular mechanisms that allow HIV to integrate into particular sites of the host genome are poorly understood. Here we tested if the nuclear pore complex (NPC) facilitates the targeting of HIV integration by acting on chromatin topology. We show that the integrity of the nuclear side of the NPC, which is mainly composed of Tpr, is not required for HIV nuclear import, but that Nup153 is essential. Depletion of Tpr markedly reduces HIV infectivity, but not the level of integration. HIV integration sites in Tpr-depleted cells are less associated with marks of active genes, consistent with the state of chromatin proximal to the NPC, as analysed by super-resolution microscopy. LEDGF/p75, which promotes viral integration into active genes, stabilizes Tpr at the nuclear periphery and vice versa. Our data support a model in which HIV nuclear import and integration are concerted steps, and where Tpr maintains a chromatin environment favourable for HIV replication.
Collapse
|
13
|
Haffar O, Bukrinsky M. Nuclear translocation as a novel target for anti-HIV drugs. Expert Rev Anti Infect Ther 2014; 3:41-50. [PMID: 15757456 DOI: 10.1586/14787210.3.1.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During recent years, remarkable progress has been achieved in the treatment of patients infected with HIV. This progress involves not only the improvement of previously known drugs but also the introduction of new classes of anti-HIV agents. Currently, drugs targeting virus entry, reverse transcription, integration and maturation are either in clinical use or in the late stages of clinical development. Nonetheless, the high mutation rate of the virus and toxicity of the drugs, which become problematic during prolonged treatment regimens characteristic of anti-HIV therapy, drive the necessity to produce new drugs that will allow physicians to keep the virus at bay in patients on lifelong anti-HIV therapy. Ideally, such drugs would target a new step in the HIV life cycle, thus avoiding crossresistance with older compounds. One such new target for anti-HIV therapy is nuclear translocation--a process critical for HIV replication. In this article, the authors will review recent literature on the mechanisms of HIV nuclear import and will describe compounds that inhibit this step of HIV replication.
Collapse
Affiliation(s)
- Omar Haffar
- International Therapeutics, Inc., 600 Broadway Medical Center, Suite 510, Seattle, WA 98122, USA.
| | | |
Collapse
|
14
|
Matreyek KA, Yücel SS, Li X, Engelman A. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog 2013; 9:e1003693. [PMID: 24130490 PMCID: PMC3795039 DOI: 10.1371/journal.ppat.1003693] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/24/2013] [Indexed: 12/13/2022] Open
Abstract
Lentiviruses can infect non-dividing cells, and various cellular transport proteins provide crucial functions for lentiviral nuclear entry and integration. We previously showed that the viral capsid (CA) protein mediated the dependency on cellular nucleoporin (NUP) 153 during HIV-1 infection, and now demonstrate a direct interaction between the CA N-terminal domain and the phenylalanine-glycine (FG)-repeat enriched NUP153 C-terminal domain (NUP153C). NUP153C fused to the effector domains of the rhesus Trim5α restriction factor (Trim-NUP153C) potently restricted HIV-1, providing an intracellular readout for the NUP153C-CA interaction during retroviral infection. Primate lentiviruses and equine infectious anemia virus (EIAV) bound NUP153C under these conditions, results that correlated with direct binding between purified proteins in vitro. These binding phenotypes moreover correlated with the requirement for endogenous NUP153 protein during virus infection. Mutagenesis experiments concordantly identified NUP153C and CA residues important for binding and lentiviral infectivity. Different FG motifs within NUP153C mediated binding to HIV-1 versus EIAV capsids. HIV-1 CA binding mapped to residues that line the common alpha helix 3/4 hydrophobic pocket that also mediates binding to the small molecule PF-3450074 (PF74) inhibitor and cleavage and polyadenylation specific factor 6 (CPSF6) protein, with Asn57 (Asp58 in EIAV) playing a particularly important role. PF74 and CPSF6 accordingly each competed with NUP153C for binding to the HIV-1 CA pocket, and significantly higher concentrations of PF74 were needed to inhibit HIV-1 infection in the face of Trim-NUP153C expression or NUP153 knockdown. Correlation between CA mutant viral cell cycle and NUP153 dependencies moreover indicates that the NUP153C-CA interaction underlies the ability of HIV-1 to infect non-dividing cells. Our results highlight similar mechanisms of binding for disparate host factors to the same region of HIV-1 CA during viral ingress. We conclude that a subset of lentiviral CA proteins directly engage FG-motifs present on NUP153 to affect viral nuclear import. Lentiviruses such as HIV-1 possess mechanisms to bypass the nuclear envelope and reach the nuclear interior for viral DNA integration. Numerous nuclear transport proteins are important for HIV-1 infection, suggesting the viral nucleoprotein complex enters the nucleus by passing through nuclear pore complexes. HIV-1 was previously found to utilize cellular nucleoporin (NUP) 153 protein in a manner determined by the viral capsid protein. Here, we show HIV-1 capsid directly binds NUP153 in a phenylalanine-glycine motif-dependent manner; such motifs form the general selectivity barrier that restricts transport through the nuclear pore. We find that NUP153 binds a hydrophobic pocket found on capsid proteins from both primate and equine lentiviruses, suggesting an evolutionary predilection for this interaction. The pocket on HIV-1 capsid also binds phenylalanine moieties present in a small molecule inhibitor of HIV-1 infection, as well as a separate host factor implicated in the nuclear import pathway. We found that these molecules compete for NUP153 binding, providing insight into their mechanisms of action during HIV-1 infection. These results demonstrate a previously unknown interaction important for HIV-1 nuclear trafficking, and posit direct binding of viral capsids with phenylalanine-glycine motifs as a novel example of viral hijacking of a fundamental cellular process.
Collapse
Affiliation(s)
- Kenneth A. Matreyek
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara S. Yücel
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiang Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
New insights in the role of nucleoporins: a bridge leading to concerted steps from HIV-1 nuclear entry until integration. Virus Res 2013; 178:187-96. [PMID: 24051001 DOI: 10.1016/j.virusres.2013.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/01/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022]
Abstract
Human Immunodeficiency virus type 1 (HIV-1), as well as many other viruses that depend on nuclear entry for replication, has developed an evolutionary strategy to dock and translocate through the nuclear pore complex (NPC). In particular, the nuclear pore is not a static window but it is a dynamic structure involved in many vital cellular functions, as nuclear import/export, gene regulation, chromatin organization and genome stability. This review aims to shed light on viral mechanisms developed by HIV-1 to usurp cellular machinery to favor viral gene expression and their replication. In particular, it will be reviewed both what is known and what is speculated about the link between HIV translocation through the nuclear pore and the proviral integration in the host chromatin.
Collapse
|
16
|
Boso G, Tasaki T, Kwon YT, Somia NV. The N-end rule and retroviral infection: no effect on integrase. Virol J 2013; 10:233. [PMID: 23849394 PMCID: PMC3716682 DOI: 10.1186/1743-422x-10-233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/05/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Integration of double stranded viral DNA is a key step in the retroviral life cycle. Virally encoded enzyme, integrase, plays a central role in this reaction. Mature forms of integrase of several retroviruses (i.e. HIV-1 and MLV) bear conserved destabilizing N-terminal residues of the N-end rule pathway - a ubiquitin dependent proteolytic system in which the N-terminal residue of a protein determines its half life. Substrates of the N-end rule pathway are recognized by E3 ubiquitin ligases called N-recognins. We have previously shown that the inactivation of three of these N-recognins, namely UBR1, UBR2 and UBR4 in mouse embryonic fibroblasts (MEFs) leads to increased stability of ectopically expressed HIV-1 integrase. These findings have prompted us to investigate the involvement of the N-end rule pathway in the HIV-1 life cycle. RESULTS The infectivity of HIV-1 but not MLV was decreased in N-recognin deficient cells in which three N-recognins (UBR1, UBR2 and UBR4) were depleted. HIV-1 integrase mutants of N-terminal amino acids (coding for stabilizing or destabilizing residues) were severely impaired in their infectivity in both human and mouse cells. Quantitative PCR analysis revealed that this inhibition was mainly caused by a defect in reverse transcription. The decreased infectivity was independent of the N-end rule since cells deficient in N-recognins were equally refractory to infection by the integrase mutants. MLV integrase mutants showed no difference in their infectivity or intravirion processing of integrase. CONCLUSIONS The N-end rule pathway impacts the early phase of the HIV-1 life cycle; however this effect is not the result of the direct action of the N-end rule pathway on the viral integrase. The N-terminal amino acid residue of integrase is highly conserved and cannot be altered without causing a substantial decrease in viral infectivity.
Collapse
Affiliation(s)
- Guney Boso
- Developmental Biology and Genetics Graduate Program, Molecular, Cellular, University of Minnesota, Minneapolis, MN, USA
| | | | | | | |
Collapse
|
17
|
Light WH, Freaney J, Sood V, Thompson A, D'Urso A, Horvath CM, Brickner JH. A conserved role for human Nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol 2013; 11:e1001524. [PMID: 23555195 PMCID: PMC3608542 DOI: 10.1371/journal.pbio.1001524] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/14/2013] [Indexed: 11/29/2022] Open
Abstract
In yeast and humans, interaction of a nuclear pore protein with promoters alters chromatin structure and allows RNA polymerase II to bind, poising them for faster reactivation for several generations. The interaction of nuclear pore proteins (Nups) with active genes can promote their transcription. In yeast, some inducible genes interact with the nuclear pore complex both when active and for several generations after being repressed, a phenomenon called epigenetic transcriptional memory. This interaction promotes future reactivation and requires Nup100, a homologue of human Nup98. A similar phenomenon occurs in human cells; for at least four generations after treatment with interferon gamma (IFN-γ), many IFN-γ-inducible genes are induced more rapidly and more strongly than in cells that have not previously been exposed to IFN-γ. In both yeast and human cells, the recently expressed promoters of genes with memory exhibit persistent dimethylation of histone H3 lysine 4 (H3K4me2) and physically interact with Nups and a poised form of RNA polymerase II. However, in human cells, unlike yeast, these interactions occur in the nucleoplasm. In human cells transiently depleted of Nup98 or yeast cells lacking Nup100, transcriptional memory is lost; RNA polymerase II does not remain associated with promoters, H3K4me2 is lost, and the rate of transcriptional reactivation is reduced. These results suggest that Nup100/Nup98 binding to recently expressed promoters plays a conserved role in promoting epigenetic transcriptional memory. Cells respond to changes in nutrients or signaling molecules by altering the expression of genes. The rate at which genes are turned on is not uniform; some genes are induced rapidly and others are induced slowly. In brewer's yeast, previous experience can enhance the rate at which genes are turned on again, a phenomenon called “transcriptional memory.” After repression, such genes physically interact with the nuclear pore complex, leading to altered chromatin structure and binding of a poised RNA polymerase II. Human genes that are induced by interferon gamma show a similar behavior. In both cases, the phenomenon persists through several cell divisions, suggesting that it is epigenetically inherited. Here, we find that yeast and human cells utilize a similar molecular mechanism to prime genes for reactivation. In both species, the nuclear pore protein Nup100/Nup98 binds to the promoters of genes that exhibit transcriptional memory. This leads to an altered chromatin state in the promoter and binding of RNA polymerase II, poising genes for future expression. We conclude that both unicellular and multicellular organisms use nuclear pore proteins in a novel way to alter transcription based on previous experiences.
Collapse
Affiliation(s)
- William H. Light
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Jonathan Freaney
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Abbey Thompson
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Curt M. Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Jason H. Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 2013; 440:8-18. [PMID: 23523133 DOI: 10.1016/j.virol.2013.02.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 12/13/2022]
Abstract
The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration.
Collapse
|
19
|
Schweitzer CJ, Jagadish T, Haverland N, Ciborowski P, Belshan M. Proteomic analysis of early HIV-1 nucleoprotein complexes. J Proteome Res 2013; 12:559-72. [PMID: 23282062 PMCID: PMC3564510 DOI: 10.1021/pr300869h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
After entry into the cell, the early steps of the human immunodeficiency virus type 1 (HIV-1) replication cycle are mediated by two functionally distinct nucleoprotein complexes, the reverse transcription complex (RTC) and preintegration complex (PIC). These two unique viral complexes are responsible for the conversion of the single-stranded RNA genome into double-stranded DNA, transport of the DNA into the nucleus, and integration of the viral DNA into the host cell chromosome. Prior biochemical analyses suggest that these complexes are large and contain multiple undiscovered host cell factors. In this study, functional HIV-1 RTCs and PICs were partially purified by velocity gradient centrifugation and fractionation, concentrated, trypsin digested, and analyzed by LC-MS/MS. A total of seven parallel infected and control biological replicates were completed. Database searches were performed with Proteome Discoverer and a comparison of the HIV-1 samples to parallel uninfected control samples was used to identify unique cellular factors. The analysis produced a total data set of 11055 proteins. Several previously characterized HIV-1 factors were identified, including XRCC6, TFRC, and HSP70. The presence of XRCC6 was confirmed in infected fractions and shown to be associated with HIV-1 DNA by immunoprecipitation-PCR experiments. Overall, the analysis identified 94 proteins unique in the infected fractions and 121 proteins unique to the control fractions with ≥ 2 protein assignments. An additional 54 and 52 were classified as enriched in the infected and control samples, respectively, based on a 3-fold difference in total Proteome Discoverer probability score. The differential expression of several candidate proteins was validated by Western blot analysis. This study contributes additional novel candidate proteins to the growing published bioinformatic data sets of proteins that contribute to HIV-1 replication.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Centrifugation, Density Gradient
- Chromatography, Liquid
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Profiling
- HIV-1/genetics
- HIV-1/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Host-Pathogen Interactions
- Humans
- Ku Autoantigen
- Lymphocytes/metabolism
- Lymphocytes/virology
- Nucleoproteins/genetics
- Nucleoproteins/metabolism
- Protein Binding
- Proteome/genetics
- Proteome/metabolism
- Receptors, Transferrin/genetics
- Receptors, Transferrin/metabolism
- Reverse Transcription
- Tandem Mass Spectrometry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Integration
Collapse
Affiliation(s)
| | - Teena Jagadish
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Nicole Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| |
Collapse
|
20
|
Di Nunzio F, Danckaert A, Fricke T, Perez P, Fernandez J, Perret E, Roux P, Shorte S, Charneau P, Diaz-Griffero F, Arhel NJ. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration. PLoS One 2012; 7:e46037. [PMID: 23049930 PMCID: PMC3457934 DOI: 10.1371/journal.pone.0046037] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022] Open
Abstract
The nuclear pore complex (NPC) mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV) has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.
Collapse
Affiliation(s)
- Francesca Di Nunzio
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | | | - Thomas Fricke
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Patricio Perez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juliette Fernandez
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | | | | | | | - Pierre Charneau
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nathalie J. Arhel
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Cellular cofactors of lentiviral integrase: from target validation to drug discovery. Mol Biol Int 2012; 2012:863405. [PMID: 22928108 PMCID: PMC3420096 DOI: 10.1155/2012/863405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/03/2012] [Accepted: 06/27/2012] [Indexed: 01/30/2023] Open
Abstract
To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs).
Collapse
|
22
|
Woodward CL, Chow SA. The nuclear pore complex: a new dynamic in HIV-1 replication. Nucleus 2012; 1:18-22. [PMID: 21327100 DOI: 10.4161/nucl.1.1.10571] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 01/08/2023] Open
Abstract
The ability to traverse an intact nuclear envelope and productively infect non-dividing cells is a salient feature of human immunodeficiency virus type 1 (HIV-1) and other lentiviruses, but the viral factors and mechanism of nuclear entry have not been defined. We have recently reported a functional role for the nucleoporin NUP153 in the nuclear import of the HIV-1 preintegration complex (PIC). Our findings suggest that HIV-1 sub-viral particles gain access to the nucleus by interacting directly with the nuclear pore complex (NPC) via the binding of PIC-associated integrase (IN) to the C-terminal domain of NUP153. This article discusses how NPC conformation and constitution might influence nuclear import of the PIC, and the subsequent integration of the viral cDNA into actively transcribed genes.
Collapse
Affiliation(s)
- Cora L Woodward
- Department of Molecular and Medical Pharmacology, and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
23
|
Ao Z, Jayappa KD, Wang B, Zheng Y, Wang X, Peng J, Yao X. Contribution of host nucleoporin 62 in HIV-1 integrase chromatin association and viral DNA integration. J Biol Chem 2012; 287:10544-10555. [PMID: 22308026 DOI: 10.1074/jbc.m111.317057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HIV-1 integration is promoted by viral integrase (IN) and its cellular cofactors. The lens epithelium-derived growth factor (LEDGF/p75), an IN interacting cellular cofactor, has been shown to play an important role in HIV-1 chromatin targeting and integration. However, whether other cellular cofactors are also involved in viral replication steps is still elusive. Here, we show that nucleoporin 62 (Nup62) is a chromatin-bound protein and can specifically interact with HIV-1 IN in both soluble nuclear extract and chromatin-bound fractions. The knockdown of Nup62 by shRNA reduced the association of IN with host chromatin and significantly impaired viral integration and replication in HIV-1-susceptible cells. Furthermore, the expression of the IN-binding region of Nup62 in CD4(+) T cells significantly inhibited HIV-1 infection. Taken together, these results indicate that the cellular Nup62 is specifically recruited by HIV-1 IN and contribute to an efficient viral DNA integration.
Collapse
Affiliation(s)
- Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Kallesh Danappa Jayappa
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Binchen Wang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Yingfeng Zheng
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Xiaoxia Wang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Jinyu Peng
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
24
|
Cribier A, Ségéral E, Delelis O, Parissi V, Simon A, Ruff M, Benarous R, Emiliani S. Mutations affecting interaction of integrase with TNPO3 do not prevent HIV-1 cDNA nuclear import. Retrovirology 2011; 8:104. [PMID: 22176773 PMCID: PMC3286403 DOI: 10.1186/1742-4690-8-104] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/16/2011] [Indexed: 12/23/2022] Open
Abstract
Background Integration of human immunodeficiency virus type 1 (HIV-1) into a host cell chromosome is an essential step under the control of the viral integrase (IN). Although this enzyme is necessary and sufficient to catalyze the integration reaction in vitro, cellular cofactors are involved in the process in vivo. The chromatin-associated factor LEDGF/p75 interacts with IN and promotes integration to transcription units of the host genome. HIV-1 IN also binds the karyopherin TNPO3, however the significance of this interaction during viral replication remains to be explored. Results Here we present a functional analysis of IN mutants impaired for LEDGF/p75 and TNPO3 interaction. Among them, IN W131A and IN Q168L, that were previously identified to be deficient for LEDGF/p75 interaction, were also partially impaired for TNPO3 binding. We observed that mutations abolishing IN ability to form tetramers resulted in a severe reduction in LEDGF/p75 binding. In sharp contrast, no correlation could be found between the ability of IN to multimerize and TNPO3 interaction. Most of the mutant viruses were essentially impaired for the integration step whereas the amount of 2-LTR circles, reflecting the nuclear import of the viral DNA, was not significantly affected. Conclusion Our functional analysis of HIV-1 IN mutants reveals distinct structural basis for TNPO3 interaction and suggests that the interaction between IN and TNPO3 is not a major determinant of nuclear import but could take place at a nuclear step prior to integration.
Collapse
|
25
|
Abstract
HIV-1 infection of host cells leads to significant reorganization and redistribution of components of the nuclear envelope and nuclear pore complex. Human immunodeficiency virus type 1 (HIV-1) commandeers host cell proteins and machineries for its replication. Our earlier work showed that HIV-1 induced the cytoplasmic retention of nucleocytoplasmic shuttling and ribonucleic acid (RNA)–binding proteins. This retention is dependent on nuclear export of the viral genomic RNA and on changes in the localization and expression level of the nucleoporin (Nup) p62 (Nup62). To further characterize the extent of perturbation induced by HIV-1, we performed proteomics analyses of nuclear envelopes (NEs) isolated from infected T cells. Infection induced extensive changes in the composition of the NE and its associated proteins, including a remarkable decrease in the abundance of Nups. Immunogold electron microscopy revealed the translocation of Nups into the cytoplasm. Nup62 was identified as a component of purified virus, and small interfering RNA depletion studies revealed an important role for this Nup in virus gene expression and infectivity. This detailed analysis highlights the profound effects on NE composition induced by HIV-1 infection, providing further evidence of the magnitude of viral control over the cell biology of its host.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | | | |
Collapse
|
26
|
The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol 2011; 85:7818-27. [PMID: 21593146 DOI: 10.1128/jvi.00325-11] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lentiviruses likely infect nondividing cells by commandeering host nuclear transport factors to facilitate the passage of their preintegration complexes (PICs) through nuclear pore complexes (NPCs) within nuclear envelopes. Genome-wide small interfering RNA screens previously identified karyopherin β transportin-3 (TNPO3) and NPC component nucleoporin 153 (NUP153) as being important for infection by human immunodeficiency virus type 1 (HIV-1). The knockdown of either protein significantly inhibited HIV-1 infectivity, while infection by the gammaretrovirus Moloney murine leukemia virus (MLV) was unaffected. Here, we establish that primate lentiviruses are particularly sensitive to NUP153 knockdown and investigate HIV-1-encoded elements that contribute to this dependency. Mutants lacking functional Vpr or the central DNA flap remained sensitive to NUP153 depletion, while MLV/HIV-1 chimera viruses carrying MLV matrix, capsid, or integrase became less sensitive when the latter two elements were substituted. Two capsid missense mutant viruses, N74D and P90A, were largely insensitive to NUP153 depletion, as was wild-type HIV-1 when cyclophilin A was depleted simultaneously or when infection was conducted in the presence of cyclosporine A. The codepletion of NUP153 and TNPO3 yielded synergistic effects that outweighed those calculated based on individual knockdowns, indicating potential interdependent roles for these factors during HIV-1 infection. Quantitative PCR revealed normal levels of late reverse transcripts, a moderate reduction of 2-long terminal repeat (2-LTR) circles, and a relatively large reduction in integrated proviruses upon NUP153 knockdown. These results suggest that capsid, likely by the qualities of its uncoating, determines whether HIV-1 requires cellular NUP153 for PIC nuclear import.
Collapse
|
27
|
Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, James LC, Towers GJ, Young JAT, Chanda SK, König R, Malani N, Berry CC, Bushman FD. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog 2011; 7:e1001313. [PMID: 21423673 PMCID: PMC3053352 DOI: 10.1371/journal.ppat.1001313] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 02/03/2011] [Indexed: 12/22/2022] Open
Abstract
Genome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration. We found that depletion of Transportin-3 and RanBP2 altered integration targeting for HIV. These knockdowns reduced HIV integration frequency in gene-dense regions and near gene-associated features, a pattern that differed from that reported for depletion of the HIV integrase binding cofactor Psip1/Ledgf/p75. MLV integration was not affected by the Transportin-3 knockdown. Using siRNA knockdowns and integration targeting analysis, we also implicated several additional nuclear proteins in proper target site selection. To map viral determinants of integration targeting, we analyzed a chimeric HIV derivative containing MLV gag, and found that the gag replacement phenocopied the Transportin-3 and RanBP2 knockdowns. Thus, our data support a model in which Gag-dependent engagement of the proper transport and nuclear pore machinery mediate trafficking of HIV complexes to sites of integration. HIV continues to be responsible for approximately two million deaths worldwide each year. As part of the viral replication cycle, the viral cDNA is transported through the nuclear pore into the nucleus where it integrates into the host cell genome. HIV integrates non-randomly, likely choosing integration sites within the host chromosomes that best enable the viral genes to be expressed and, ultimately, progeny virus to be produced. HIV uses host factors to guide its selection of integration sites. Here we demonstrate that components of the nuclear trafficking and nuclear pore machinery are required for HIV to achieve its normal pattern of integration sites. This finding suggests that passage of the virus through the nuclear pore into the nucleus is coupled to downstream integration events and enables the virus to achieve its final position within the host genome. Our study provides new insights into two important steps of the HIV replication cycle and suggests possible new targets for anti-retroviral drugs.
Collapse
Affiliation(s)
- Karen E. Ocwieja
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Troy L. Brady
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Keshet Ronen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alyssa Huegel
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shoshannah L. Roth
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Torsten Schaller
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Leo C. James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Greg J. Towers
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - John A. T. Young
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Sumit K. Chanda
- Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Renate König
- Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles C. Berry
- Department of Family/Preventive Medicine, University of California, San Diego School of Medicine, San Diego, California, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Lever AML, Jeang KT. Insights into cellular factors that regulate HIV-1 replication in human cells. Biochemistry 2011; 50:920-31. [PMID: 21218853 DOI: 10.1021/bi101805f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Retroviruses integrate into the host cell's chromosome. Accordingly, many aspects of the life cycle of retroviruses like HIV-1 are intimately linked to the functions of cellular proteins and RNAs. In this review, we discuss in brief recent genomewide screens for the identification of cellular proteins that assist HIV-1 replication in human cells. We also review findings for other cellular moieties that help or restrict the viral life cycle.
Collapse
Affiliation(s)
- Andrew M L Lever
- Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, U.K
| | | |
Collapse
|
29
|
Cohen S, Au S, Panté N. How viruses access the nucleus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1634-45. [PMID: 21167871 DOI: 10.1016/j.bbamcr.2010.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/24/2010] [Accepted: 12/08/2010] [Indexed: 10/25/2022]
Abstract
Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Sarah Cohen
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
30
|
Zhang R, Mehla R, Chauhan A. Perturbation of host nuclear membrane component RanBP2 impairs the nuclear import of human immunodeficiency virus -1 preintegration complex (DNA). PLoS One 2010; 5:e15620. [PMID: 21179483 PMCID: PMC3001881 DOI: 10.1371/journal.pone.0015620] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 11/15/2010] [Indexed: 12/12/2022] Open
Abstract
HIV-1 is a RNA virus that requires an intermediate DNA phase via reverse transcription (RT) step in order to establish productive infection in the host cell. The nascent viral DNA synthesized via RT step and the preformed viral proteins are assembled into pre-integration complex (PIC) in the cell cytoplasm. To integrate the viral DNA into the host genome, the PIC must cross cell nuclear membrane through the nuclear pore complex (NPC). RanBP2, also known as Nup358, is a major component of the cytoplasmic filaments that emanates from the nuclear pore complex and has been implicated in various nucleo-cytoplasmic transport pathways including those for HIV Rev-protein. We sought to investigate the role of RanBP2 in HIV-1 replication. In our investigations, we found that RanBP2 depletion via RNAi resulted in profound inhibition of HIV-1 infection and played a pivotal role in the nuclear entry of HIV DNA. More precisely, there was a profound decline in 2-LTR DNA copies (marker for nuclear entry of HIV DNA) and an unchanged level of viral reverse transcription in RanBP2-ablated HIV-infected cells compared to RanBP3-depleted or non-specific siRNA controls. We further demonstrated that the function of Rev was unaffected in RanBP2-depleted latently HIV infected cells (reactivated). We also serendipitously found that RanBP2 depletion inhibited the global ectopic gene expression. In conclusion, RanBP2 is a host factor that is involved in the nuclear import of HIV-1 PIC (DNA), but is not critical to the nuclear export of the viral mRNAs or nucleo-cytoplasmic shuttling of Rev. RanBP2 could be a potential target for efficient inhibition of HIV.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | | | | |
Collapse
|
31
|
Chafe SC, Mangroo D. Scyl1 facilitates nuclear tRNA export in mammalian cells by acting at the nuclear pore complex. Mol Biol Cell 2010; 21:2483-99. [PMID: 20505071 PMCID: PMC2903676 DOI: 10.1091/mbc.e10-03-0176] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We provide evidence that Scyl1 is also a cytoplasmic component of the nuclear aminoacylation-dependent tRNA export pathway. Scyl1, like the Saccharomyces cerevisiae Cex1p, may collect aminoacyl-tRNAs from the nuclear tRNA export receptors at the cytoplasmic side of the NPC and channel them to eEF-1A for use in protein synthesis. Scyl1 is an evolutionarily conserved N-terminal protein kinase-like domain protein that plays a role in COP1-mediated retrograde protein trafficking in mammalian cells. Furthermore, loss of Scyl1 function has been shown to result in neurodegenerative disorders in mice. Here, we report that Scyl1 is also a cytoplasmic component of the mammalian nuclear tRNA export machinery. Like exportin-t, overexpression of Scyl1 restored export of a nuclear export-defective serine amber suppressor tRNA mutant in COS-7 cells. Scyl1 binds tRNA saturably, and associates with the nuclear pore complex by interacting, in part, with Nup98. Scyl1 copurifies with the nuclear tRNA export receptors exportin-t and exportin-5, the RanGTPase, and the eukaryotic elongation factor eEF-1A, which transports aminoacyl-tRNAs to the ribosomes. Scyl1 interacts directly with exportin-t and RanGTP but not with eEF-1A or RanGDP in vitro. Moreover, exportin-t containing tRNA, Scyl1, and RanGTP form a quaternary complex in vitro. Biochemical characterization also suggests that the nuclear aminoacylation-dependent pathway is primarily responsible for tRNA export in mammalian cells. These findings together suggest that Scyl1 participates in the nuclear aminoacylation-dependent tRNA export pathway and may unload aminoacyl-tRNAs from the nuclear tRNA export receptor at the cytoplasmic side of the nuclear pore complex and channels them to eEF-1A.
Collapse
Affiliation(s)
- Shawn C Chafe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
32
|
Crampton N, Kodiha M, Shrivastava S, Umar R, Stochaj U. Oxidative stress inhibits nuclear protein export by multiple mechanisms that target FG nucleoporins and Crm1. Mol Biol Cell 2009; 20:5106-16. [PMID: 19828735 PMCID: PMC2793288 DOI: 10.1091/mbc.e09-05-0397] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/01/2009] [Accepted: 10/06/2009] [Indexed: 12/25/2022] Open
Abstract
Nuclear transport of macromolecules is regulated by the physiological state of the cell and thus sensitive to stress. To define the molecular mechanisms that control nuclear export upon stress, cells were exposed to nonlethal concentrations of the oxidant diethyl maleate (DEM). These stress conditions inhibited chromosome region maintenance-1 (Crm1)-dependent nuclear export and increased the association between Crm1 and Ran. In addition, we identified several repeat-containing nucleoporins implicated in nuclear export as targets of oxidative stress. As such, DEM treatment reduced Nup358 levels at the nuclear envelope and redistributed Nup98. Furthermore, oxidative stress led to an increase in the apparent molecular masses of Nup98, Nup214, and Nup62. Incubation with phosphatase or beta-N-acetyl-hexosaminidase showed that oxidative stress caused the phosphorylation of Nup98, Nup62, and Nup214 as well as O-linked N-acetylglucosamine modification of Nup62 and Nup214. These oxidant-induced changes in nucleoporin modification correlated first with the increased binding of Nup62 to the exporter Crm1 and second with the reduced interaction of Nup62 with other FxFG-containing nucleoporins. Together, oxidative stress up-regulated the binding of Crm1 to Ran and affected multiple repeat-containing nucleoporins by changing their localization, phosphorylation, O-glycosylation, or interaction with other transport components. We propose that the combination of these events contributes to the stress-dependent regulation of Crm1-mediated protein export.
Collapse
Affiliation(s)
- Noah Crampton
- Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6
| | - Mohamed Kodiha
- Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6
| | | | - Rehan Umar
- Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6
| |
Collapse
|
33
|
Abstract
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.
Collapse
|
34
|
Ty3 nuclear entry is initiated by viruslike particle docking on GLFG nucleoporins. J Virol 2009; 83:11914-25. [PMID: 19759143 DOI: 10.1128/jvi.01192-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Yeast retrotransposons form intracellular particles within which replication occurs. Because fungal nuclear membranes do not break down during mitosis, similar to retroviruses infecting nondividing cells, the cDNA produced must be translocated through nuclear pore complexes. The Saccharomyces cerevisiae long terminal repeat retrotransposon Ty3 assembles its Gag3 and Gag3-Pol3 precursor polyproteins into viruslike particles in association with perinuclear P-body foci. These perinuclear clusters of Ty3 viruslike particles localized to sites of clustered nuclear pore complexes (NPCs) in a nup120Delta mutant, indicating that Ty3 particles and NPCs interact physically. The NPC channels are lined with nucleoporins (Nups) with extended FG (Phe-Gly) motif repeat domains, further classified as FG, FxFG, or GLFG repeat types. These domains mediate partitioning of proteins between the cytoplasm and the nucleus. Here we have systematically examined the requirements for FG repeat domains in Ty3 nuclear transport. The GLFG domains interacted in vitro with virus-like particle Gag3, and this interaction was disrupted by mutations in the amino-terminal domain of Gag3, which is predicted to lie on the external surface of the particles. Accordingly, Ty3 transposition was decreased in strains with the GLFG repeats deleted. The spacer-nucleocapsid domain of Gag3, which is predicted to be internal to the particle, interacted with GLFG repeats and nucleocapsid localized to the nucleus. We conclude that Ty3 particle docking on nuclear pores is facilitated by interactions between Gag3 and GLFG Nups and that nuclear entry of the preintegration complex is further promoted by nuclear localization signals within the nucleocapsid and integrase.
Collapse
|
35
|
Shinoda Y, Hieda K, Koyanagi Y, Suzuki Y. Efficient transduction of cytotoxic and anti-HIV-1 genes by a gene-regulatable lentiviral vector. Virus Genes 2009; 39:165-75. [DOI: 10.1007/s11262-009-0382-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/12/2009] [Indexed: 01/25/2023]
|
36
|
|
37
|
Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol 2009; 83:6522-33. [PMID: 19369352 DOI: 10.1128/jvi.02061-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to traverse an intact nuclear envelope and productively infect nondividing cells is a salient feature of human immunodeficiency virus type 1 (HIV-1) and other lentiviruses, but the viral factors and mechanism of nuclear entry have not been defined. HIV-1 integrase (IN) is implicated to play a role in the nuclear import of the virus, but the cellular pathway for IN trafficking and the role of IN in mediating the nuclear import of viral particles are unknown. Using a semipermeabilized cell assay, we observed that the nuclear import of IN was not the result of passive diffusion but occurred independently of cytosolic factors, metabolic energy, and the classical receptor-mediated, Ran-dependent import pathways. To determine if IN enters the nucleus by interacting with the nucleopore complex (NPC), we found that IN bound directly with the FxFG-rich C-terminal domain of nucleoporin 153 (NUP153C). When added in excess to the import assay, NUP153C inhibited the nuclear import of IN. Known binding partners of NUP153C competed with IN for binding with NUP153 and also inhibited the nuclear import of IN. In cultured cells, overexpression of NUP153C reduced the infectivity of an HIV-derived vector by interfering with the nuclear translocation of the viral cDNA. These results support a functional role for the IN-NUP153 interaction in HIV-1 replication and suggest that HIV-1 subviral particles gain access to the nucleus by interacting directly with the NPC via the binding of particle-associated IN to NUP153C.
Collapse
|
38
|
Zaitseva L, Cherepanov P, Leyens L, Wilson SJ, Rasaiyaah J, Fassati A. HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome. Retrovirology 2009; 6:11. [PMID: 19193229 PMCID: PMC2660290 DOI: 10.1186/1742-4690-6-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/04/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nuclear import of the HIV-1 reverse transcription complex (RTC) is critical for infection of non dividing cells, and importin 7 (imp7) has been implicated in this process. To further characterize the function of imp7 in HIV-1 replication we generated cell lines stably depleted for imp7 and used them in conjunction with infection, cellular fractionation and pull-down assays. RESULTS Imp7 depletion impaired HIV-1 infection but did not significantly affect HIV-2, simian immunodeficiency virus (SIVmac), or equine infectious anemia virus (EIAV). The lentiviral dependence on imp7 closely correlated with binding of the respective integrase proteins to imp7. HIV-1 RTC associated with nuclei of infected cells with remarkable speed and knock down of imp7 reduced HIV-1 DNA nuclear accumulation, delaying infection. Using an HIV-1 mutant deficient for reverse transcription, we found that viral RNA accumulated within nuclei of infected cells, indicating that reverse transcription is not absolutely required for nuclear import. Depletion of imp7 impacted on HIV-1 DNA but not RNA nuclear import and also inhibited DNA transfection efficiency. CONCLUSION Although imp7 may not be essential for HIV-1 infection, our results suggest that imp7 facilitates nuclear trafficking of DNA and that HIV-1 exploits imp7 to maximize nuclear import of its DNA genome. Lentiviruses other than HIV-1 may have evolved to use alternative nuclear import receptors to the same end.
Collapse
Affiliation(s)
- Lyubov Zaitseva
- Wohl Virion Centre, Division of Infection and Immunity, University College London (UCL), London, UK
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
| | - Peter Cherepanov
- Division of Medicine, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Lada Leyens
- Wohl Virion Centre, Division of Infection and Immunity, University College London (UCL), London, UK
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
| | - Sam J Wilson
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
- Centre for Post-genomic Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London, W1T 4JF, UK
| | - Jane Rasaiyaah
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
- Centre for Post-genomic Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London, W1T 4JF, UK
| | - Ariberto Fassati
- Wohl Virion Centre, Division of Infection and Immunity, University College London (UCL), London, UK
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
| |
Collapse
|
39
|
Anderson JL, Hope TJ. APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells. Virology 2008; 375:1-12. [PMID: 18308358 DOI: 10.1016/j.virol.2008.01.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/03/2007] [Accepted: 01/29/2008] [Indexed: 02/08/2023]
Abstract
Cellular APOBEC3G (A3G) protein is packaged into human immunodeficiency virus type 1 (HIV-1) virions in producer cells yet restricts viral replication in target cells. To characterize this restriction in target cells, the effect of A3G on generating various HIV-1 cDNA products was measured by quantitative real-time PCR. A3G decreased cDNA products from Vif-deficient HIV-1, with minor effects on early reverse transcripts and larger declines in late reverse transcripts. However, the greatest decline was typically observed in nuclear 2-LTR circles. Moreover, the magnitude of these declines varied with A3G dose. Adding integration inhibitor did not stop the A3G-mediated loss in 2-LTR circles. Moreover, obstructing HIV-1 nuclear entry using vesicular stomatitis virus matrix protein did not stop the A3G-mediated decline in late reverse transcripts. Collectively, these data suggest that A3G has important restriction activity in the cytoplasm and progressively diminishes viral cytoplasmic and nuclear cDNA forms with increasing magnitude during restriction.
Collapse
Affiliation(s)
- Jenny L Anderson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
40
|
Zhang J, Wu YO, Xiao L, Li K, Chen LL, Sirois P. Therapeutic potential of RNA interference against cellular targets of HIV infection. Mol Biotechnol 2007; 37:225-36. [PMID: 17952669 PMCID: PMC7091338 DOI: 10.1007/s12033-007-9000-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/09/2007] [Indexed: 12/11/2022]
Abstract
RNA interference is not only very promising in identifying new targets for drug development, siRNA/shRNA themselves may be directly used as therapeutic agents. In inhibiting viral infections by RNA interference, both viral targets and cellular proteins have been evaluated. Most of the early studies in this field had chosen viral targets for RNA interference. However, recent efforts are mainly focusing on cellular proteins for RNA silencing due to the realization that a variety of viral responses substantially minimize siRNA effects. With the application of siRNA approaching, many new cellular targets relevant to HIV infection have been identified. The value of siRNA/shRNA in the treatment of AIDS is largely dependent on better understanding of the biology of HIV replication. Efforts in the identification of cellular processes with the employment of siRNA/shRNA have shed some new lights on our understanding of how HIV infection occurs. Furthermore, the relative specific effects and simplicity of design makes siRNA/shRNA themselves to be favorable drug leads.
Collapse
Affiliation(s)
- Jia Zhang
- Gene Core, The Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
41
|
De Rijck J, Vandekerckhove L, Christ F, Debyser Z. Lentiviral nuclear import: a complex interplay between virus and host. Bioessays 2007; 29:441-51. [PMID: 17450594 DOI: 10.1002/bies.20561] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the capacity to infect non-dividing cells is a hallmark of lentiviruses, nuclear import is still barely understood. More than 100 research papers have been dedicated to this topic during the last 15 years, yet, more questions have been raised than answers. The signal-facilitating translocation of the viral preintegration complex (PIC) through the nuclear pore complex (NPC) remains unknown. It is clear, however, that nuclear import is the result of a complex interplay between viral and cellular components. In this review, we discuss the current knowledge on nuclear import. We focus on the controversies and pitfalls and discuss the interplay between virus and host.
Collapse
Affiliation(s)
- Jan De Rijck
- Laboratory for Molecular Virology and Gene Therapy, KULeuven and IRC KULAK, Leuven, Belgium
| | | | | | | |
Collapse
|
42
|
Abstract
Human immunodeficiency virus 1 (HIV-1) and other retroviruses synthesize a DNA copy of their genome after entry into the host cell. Integration of this DNA into the host cell's genome is an essential step in the viral replication cycle. The viral DNA is synthesized in the cytoplasm and is associated with viral and cellular proteins in a large nucleoprotein complex. Before integration into the host genome can occur, this complex must be transported to the nucleus and must cross the nuclear envelope. This Review summarizes our current knowledge of how this journey is accomplished.
Collapse
Affiliation(s)
- Youichi Suzuki
- Laboratory for Host Factors, Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
43
|
Abstract
Retroviruses make a long and complex journey from outside the cell to the nucleus in the early stages of infection, and then an equally long journey back out again in the late stages of infection. Ongoing efforts are identifying an enormous array of cellular proteins that are used by the viruses in the course of their travels. These host factors are potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute HHSC 1310c, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
44
|
Masuda T. [Host factors that regulate the intercellular dynamics of HIV-1 genome during the early phase of infection]. Uirusu 2006; 56:41-50. [PMID: 17038811 DOI: 10.2222/jsv.56.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An interplay or battle between virus and its host has been observed within a single cell. Upon an infection with retroviruses including human immunodeficiency virus type 1 (HIV-1), the viral genome is subjected to several processes that include uncoating, reverse transcription of the viral genomic RNA into a cDNA copy, transport of this cDNA into the nucleus, and integration of the cDNA into the host chromosome. Antiretroviral restriction factors such as TRIM5 alpha and APOBEC3G have been recently identified. In addition, nuclear membrane protect host chromosomal DNA against incoming viral genome. For successful retroviral infection, viral genome must overcome these cellular barriers to establish proviral state, in which viral cDNA was stably integrated into host chromosomal DNA. In this review, I would summarize the host factors that regulate the intercellular dynamics of HIV-1 genome during the early phase of infection, especially focusing on factors interacting with HIV-1 integrase and the preintegration complex.
Collapse
Affiliation(s)
- Takao Masuda
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
45
|
Abstract
Retroviruses are efficient vehicles for delivering transgenes in vivo. Their ability to integrate into the host genome, providing a permanent imprint of their genes in the host, is a key asset for gene therapy. Furthermore, the lentivirus subset of retroviruses can infect nondividing as well as dividing cells. This expands the cell types capable of gene therapy, driving the development of lentiviral vectors. However, the precise mechanisms used by different retroviruses to efficiently deliver their genes into cell nuclei remains largely unclear. Understanding these molecular mechanisms may reveal features to improve the efficacy of current retroviral vectors. Moreover, this knowledge may expose elements pliable to other gene therapy vehicles to improve their in vivo performance and circumvent the biosafety concerns of using retroviral vectors. Therefore, the mechanisms underlying the early trafficking of retroviral vectors in host cells are reviewed here, as understood from studying the native retroviruses. Events after virus entry up to nuclear delivery of the viral cDNA are discussed. Cellular obstacles faced by these retroviral vectors and how they advance beyond these barriers is emphasized.
Collapse
Affiliation(s)
- J L Anderson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3093, USA
| | | |
Collapse
|
46
|
Kendirgi F, Rexer DJ, Alcázar-Román AR, Onishko HM, Wente SR. Interaction between the shuttling mRNA export factor Gle1 and the nucleoporin hCG1: a conserved mechanism in the export of Hsp70 mRNA. Mol Biol Cell 2005; 16:4304-15. [PMID: 16000379 PMCID: PMC1196339 DOI: 10.1091/mbc.e04-11-0998] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Translocation of messenger RNAs through the nuclear pore complex (NPC) requires coordinated physical interactions between stable NPC components, shuttling transport factors, and mRNA-binding proteins. In budding yeast (y) and human (h) cells, Gle1 is an essential mRNA export factor. Nucleocytoplasmic shuttling of hGle1 is required for mRNA export; however, the mechanism by which hGle1 associates with the NPC is unknown. We have previously shown that the interaction of hGle1 with the nucleoporin hNup155 is necessary but not sufficient for targeting hGle1 to NPCs. Here, we report that the unique C-terminal 43 amino acid region of the hGle1B isoform mediates binding to the C-terminal non-FG region of the nucleoporin hCG1/NPL1. Moreover, hNup155, hGle1B, and hCG1 formed a heterotrimeric complex in vitro. This suggested that these two nucleoporins were required for the NPC localization of hGle1. Using an siRNA-based approach, decreased levels of hCG1 resulted in hGle1 accumulation in cytoplasmic foci. This was coincident with inhibition of heat shock-induced production of Hsp70 protein and export of the Hsp70 mRNA in HeLa cells. Because this closely parallels the role of the hCG1 orthologue yNup42/Rip1, we speculate that hGle1-hCG1 function in the mRNA export mechanism is highly conserved.
Collapse
Affiliation(s)
- Frederic Kendirgi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
47
|
Scheifele LZ, Ryan EP, Parent LJ. Detailed mapping of the nuclear export signal in the Rous sarcoma virus Gag protein. J Virol 2005; 79:8732-41. [PMID: 15994767 PMCID: PMC1168749 DOI: 10.1128/jvi.79.14.8732-8741.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/26/2005] [Indexed: 11/20/2022] Open
Abstract
The Rous sarcoma virus (RSV) Gag polyprotein undergoes transient nuclear trafficking as an intrinsic part of the virus assembly pathway. Nuclear export of Gag is crucial for the efficient production of viral particles and is accomplished through the action of a leptomycin B (LMB)-dependent nuclear export signal (NES) in the p10 domain (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc. Natl. Acad. Sci. USA 99:3944-3949, 2002). We have now mapped the nuclear export activity to the C-terminal portion of the p10 sequence and identified the four hydrophobic amino acids within this region that comprise a leucine-rich NES. Alteration of these hydrophobic residues resulted in the accumulation of Gag proteins within the nucleus and a budding defect greater than that obtained with LMB treatment of cells expressing the wild-type Gag protein (Scheifele et al., Proc. Natl. Acad. Sci. USA 99:3944-3949, 2002). In addition, export of Gag from the nucleus was found to be a rate-limiting step in virus-like particle production. Consistent with a role for the NES sequence in viral replication, this cluster of hydrophobic residues in p10 is conserved across a wide range of avian retroviruses. Furthermore, naturally occurring substitutions within this region in related viruses maintained nuclear export activity and remained sensitive to the activity of LMB. Using gain-of-function approaches, we found that the hydrophobic motif in p10 was sufficient to promote the nuclear export of a heterologous protein and was positionally independent within the Gag polyprotein. Finally, the export pathway was further defined by the ability of specific nucleoporin inhibitors to prevent the egress of Gag from the nucleus, thereby identifying additional cellular mediators of RSV replication.
Collapse
Affiliation(s)
- Lisa Z Scheifele
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|