1
|
Chen Y, Chen M, Duan X, Cui J. Ancient origin and complex evolution of porcine endogenous retroviruses. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
2
|
Hirata M, Wittayarat M, Hirano T, Nguyen NT, Le QA, Namula Z, Fahrudin M, Tanihara F, Otoi T. The Relationship between Embryonic Development and the Efficiency of Target Mutations in Porcine Endogenous Retroviruses (PERVs) Pol Genes in Porcine Embryos. Animals (Basel) 2019; 9:ani9090593. [PMID: 31443357 PMCID: PMC6770129 DOI: 10.3390/ani9090593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Porcine endogenous retrovirus (PERV) is a provirus found in the pig genome that may act as an infectious pathogen in humans who receive pig organ xenotransplantation. Inactivation of the PERV pol gene in porcine cells reportedly affects cell growth. Therefore, the mutation of PERV pol gene in porcine embryos using genome editing may affect the embryonic development. The present study was carried out to investigate the relationship between the mutation of the PERV pol gene in porcine embryos and their development. We introduced, either alone or in combination, three different gRNAs (gRNA1, 2, and 3) into porcine zygotes by genome editing using electroporation of the Cas9 protein (GEEP) system. All three gRNAs targeted the PERV pol gene, and we assessed their effects on porcine embryonic development. Our results showed that the blastocyst formation rates of zygotes electroporated with gRNA3-alone and in combination-were significantly lower (p < 0.05) than those of zygotes electroporated with gRNA1. The mutation rates assessed by the PERV pol gene target site sequencing in individual blastocysts and pooled embryos at the 2-to-8-cell stage did not differ among the three gRNAs. However, the frequency of indel mutations in mutant embryos at the 2-to-8-cell stage trended higher in the embryos electroporated with gRNA3 alone and in combination. Embryonic development may be affected by gRNAs that induce high-frequency indel mutations.
Collapse
Affiliation(s)
- Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Takayuki Hirano
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| | - Nhien Thi Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| | - Quynh Anh Le
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| | - Zhao Namula
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, Guangdong 524005, China
| | - Mokhamad Fahrudin
- Faculty of Veterinary Science, Bogor Agricultural University, Dramaga, Bogor 16680, Indonesia
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan.
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Myozai-gun, Tokushima 7793233, Japan
| |
Collapse
|
3
|
Łopata K, Wojdas E, Nowak R, Łopata P, Mazurek U. Porcine Endogenous Retrovirus (PERV) - Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells. Front Microbiol 2018; 9:730. [PMID: 29755422 PMCID: PMC5932395 DOI: 10.3389/fmicb.2018.00730] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/28/2018] [Indexed: 12/28/2022] Open
Abstract
The xenotransplantation of porcine tissues may help overcome the shortage of human organs for transplantation. However, there are some concerns about recipient safety because the risk of porcine endogenous retrovirus (PERV) transmission to human cells remains unknown. Although, to date, no PERV infections have been noted in vivo, the possibility of such infections has been confirmed in vitro. Better understanding of the structure and replication cycle of PERVs is a prerequisite for determining the risk of infection and planning PERV-detection strategies. This review presents the current state of knowledge about the structure and replication cycle of PERVs in the context of retroviral infection risk.
Collapse
Affiliation(s)
- Krzysztof Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Emilia Wojdas
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.,Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Roman Nowak
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Paweł Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Nakaya Y, Miyazawa T. The Roles of Syncytin-Like Proteins in Ruminant Placentation. Viruses 2015; 7:2928-42. [PMID: 26057168 PMCID: PMC4488720 DOI: 10.3390/v7062753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/20/2015] [Accepted: 05/29/2015] [Indexed: 01/02/2023] Open
Abstract
Recent developments in genome sequencing techniques have led to the identification of huge numbers of endogenous retroviruses (ERV) in various mammals. ERVs, which occupy 8%–13% of mammalian genomes, are believed to affect mammalian evolution and biological diversity. Although the functional significance of most ERVs remains to be elucidated, several ERVs are thought to have pivotal roles in host physiology. We and other groups recently identified ERV envelope proteins (e.g., Fematrin-1, Syncytin-Rum1, endogenous Jaagsiekte sheep retrovirus Env) that may determine the morphogenesis of the unique fused trophoblast cells, termed trinucleate cells and syncytial plaques, found in ruminant placentas; however, there are still a number of outstanding issues with regard to the role of ERVs that remain to be resolved. Here, we review what is known about how these ERVs have contributed to the development of ruminant-specific trophoblast cells.
Collapse
Affiliation(s)
- Yuki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kawaramachi-hirokoji-Kajiicho, Kamigyo-ku, Kyoto 602-8566, Japan.
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
5
|
Dysfunction of bovine endogenous retrovirus K2 envelope glycoprotein is related to unsuccessful intracellular trafficking. J Virol 2014; 88:6896-905. [PMID: 24696495 DOI: 10.1128/jvi.00288-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) are the remnants of retroviral infection of ancestral germ cells. Mutations introduced into ERVs halt the production of infectious agents, but their effects on the function of retroviral proteins are not fully understood. Retroviral envelope glycoproteins (Envs) are utilized in membrane fusion during viral entry, and we recently identified intact coding sequences for bovine endogenous retrovirus K1 (BERV-K1) and BERV-K2 Envs. Amino acid sequences of BERV-K1 Env (also called Fematrin-1) and BERV-K2 Env are similar, and both viruses are classified in the genus Betaretrovirus. While Fematrin-1 plays an important role in cell-to-cell fusion in bovine placenta, the BERV-K2 envelope gene is marginally expressed in vivo, and its recombinant Env protein is defective in membrane fusion due to inefficient cleavage of surface (SU) and transmembrane subunits. Here, we conducted chimeric analyses of Fematrin-1 and BERV-K2 Envs and revealed that defective maturation of BERV-K2 Env contributed to failed intracellular trafficking. Fluorescence microscopy and flow cytometric analysis suggested that in contrast to Fematrin-1 Env, BERV-K2 Env could not be transported from the endoplasmic reticulum to the trans-Golgi network, where cellular proteases required for processing retroviral Envs are localized. We also identified that one of the responsive regions of this phenomenon resided within a 65-amino-acid region of BERV-K2 SU. This is the first report to identify that retroviral Env SU is involved in the regulation of intracellular trafficking, and it may help to elucidate the maturation process of Fematrin-1 and other related Envs. IMPORTANCE Retroviruses utilize envelope glycoproteins (Envs) to enter host target cells. Mature retroviral Env is a heterodimer, which consists of surface (SU) and transmembrane (TM) subunits that are generated by the cleavage of an Env precursor protein in the trans-Golgi network. SU and TM mediate the recognition of the entry receptor and virus-host membrane fusion, respectively. However, unexplained issues remain for the maturation process of retroviral Env. We previously reported that bovine endogenous retrovirus K2 (BERV-K2) Env lost fusogenicity due to a defect in the cleavage of SU and TM. In this study, we identified that mutations residing in BERV-K2 SU disturbed intracellular trafficking of BERV-K2 Env and resulted its inefficient cleavage. Because SU is not known to play an important role in this process, our study may provide novel insights into the maturation mechanism of retroviral Envs.
Collapse
|
6
|
Nakaya Y, Hoshino S, Yasuda J, Miyazawa T. Mapping of a neutralizing epitope in the surface envelope protein of porcine endogenous retrovirus subgroup B. J Gen Virol 2011; 92:940-4. [PMID: 21228129 DOI: 10.1099/vir.0.029322-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pigs are thought to be the most suitable donor animal for xenotransplantation. However, pigs harbour potentially hazardous infectious agents, termed porcine endogenous retroviruses (PERVs), in their genome. In this study, we generated a mAb against PERV-B surface (SU) envelope protein (Env), designated KRT1. KRT1 binding was detected by an indirect immunofluorescence assay and flow cytometric analysis on cells infected with PERV-B. KRT1 neutralized PERV-B pseudotype virus and specifically recognized PERV-B SU Env, but not PERV-A SU Env by immunoblotting analysis. The peptide-ELISA revealed that KRT1 recognized a linear peptide sequence (ALEPPHNLPVP) residing in a proline-rich region that is one of the subdomains of SU Env. In conclusion, the KRT1 antibody will serve as a useful tool for the study of PERV-B and, more importantly, it may provide new protective strategies against PERV-B infection in xenotransplantation.
Collapse
Affiliation(s)
- Yuki Nakaya
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
7
|
Nakaya Y, Shojima T, Yasuda J, Imakawa K, Miyazawa T. Epigenetic regulation on the 5'-proximal CpG island of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B. Microbes Infect 2010; 13:49-57. [PMID: 20951222 DOI: 10.1016/j.micinf.2010.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 11/19/2022]
Abstract
Porcine endogenous retroviruses (PERVs) have been considered one of the major risks of xenotransplantation from pigs to humans. PERV-A efficiently utilizes human PERV-A receptor 2 (HuPAR-2)/GPR172B to infect human cells; however, there has been no study on the regulation mechanisms of HuPAR-2/GPR172B expression. In this study, we examined the expression of HuPAR-2/GPR172B from the standpoint of epigenetic regulation and discussed the risks of PERV-A infection in xenotransplantation. Quantitative real-time RT-PCR revealed that HuPAR-2 mRNA was preferentially expressed in placental tissue, whereas it was highly suppressed in BeWo cells (a human choriocarcinoma cell line) and HEK293 cells. A CpG island containing the HuPAR-2 transcription starting site was identified by in silico analysis. The DNA methylation ratio (the relative quantity of methylcytosine to total cytosine) and histone modification (H3K9me3) levels in the CpG island measured by bisulfite genomic sequencing and ChIP assay, respectively, were inversely correlated with the mRNA levels. Both HuPAR-2 mRNA and HuPAR-2 protein were up-regulated in HEK293 cells by inhibiting DNA methylation and histone deacetylation. Additionally, promoter/enhancer activities within the CpG island were suppressed by in vitro DNA methylation. Our results demonstrated that epigenetic modification regulates HuPAR-2 expression.
Collapse
Affiliation(s)
- Yuki Nakaya
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
8
|
[Receptors for animal retroviruses]. Uirusu 2010; 59:223-42. [PMID: 20218331 DOI: 10.2222/jsv.59.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diseases caused by animal retroviruses have been recognized since 19th century in veterinary field. Most livestock and companion animals have own retroviruses. To disclose the receptors for these retroviruses will be useful for understanding retroviral pathogenesis, developments of anti-retroviral drugs and vectors for human and animal gene therapies. Of retroviruses in veterinary field, receptors for the following viruses have been identified; equine infectious anemia virus, feline immunodeficiency virus, feline leukemia virus subgroups A, B, C, and T, Jaagsiekte sheep retrovirus, enzootic nasal tumor virus, avian leukosis virus subgroups A, B, C, D, E, and J, reticuloendotheliosis virus, RD-114 virus (a feline endogenous retrovirus), and porcine endogenous retrovirus subgroup A. Primate lentiviruses require two molecules (CD4 and chemokine receptors such as CXCR4) as receptors. Likewise, feline immunodeficiency virus also requires two molecules, i.e., CD134 (an activation marker of CD4 T cells) and CXCR4 in infection. Gammaretroviruses utilize multi-spanning transmembrane proteins, most of which are transporters of amino acids, vitamins and inorganic ions. Betaretroviruses and alpharetroviruses utilize transmembrane and/or GPI-anchored proteins as receptors. In this review, I overviewed receptors for animal retroviruses in veterinary field.
Collapse
|
9
|
Yamamoto A, Nakatsu S, Kondo A, Asato T, Okabe M, Fukuzawa M, Miyagawa S. A newly cloned pig dolichyl-phosphate mannosyl-transferase for preventing the transmission of porcine endogenous retrovirus to human cells. Transpl Int 2009; 23:424-31. [PMID: 19912589 DOI: 10.1111/j.1432-2277.2009.00999.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porcine endogenous retrovirus (PERV) is a major problem associated with successful clinical xenotransplantation. In our previous study, reducing the high mannose type of N-glycan content proved to be very effective in downregulating PERV infectivity. In this study, dolichyl-phosphate mannosyltransferase (D-P-M), an enzyme related to the early stages of N-linked sugar synthesis was studied. The pig cDNA of the encoding D-P-M was newly isolated. The RNA interference (siRNA) for the D-P-M was applied and transfected to PEC(Z)/PB cells, a pig endothelial cell line with the Lac Z gene and PERV-B, to reduce the levels of high mannose type N-glycans. Compared with the mock line, the temporary PEC(Z)/PB lines showed a decreased mRNA expression for pig D-P-M, and each line then showed a clear destruction of PERV infectivity to human cells in the Lac Z pseudotype assay. The PEC(Z)/PB was next transfected with pSXGH-siRNA, H1-RNA gene promoter. The established PEC(Z)/PB clones with pSXGH-siRNA clearly led to the downregulation of PERV infectivity, as evidenced by the decreased levels of the mRNA for pig D-P-M. Reducing D-P-M enzyme activity represents a potentially useful approach to address the problem of PERV infections in clinical xenotransplantations.
Collapse
Affiliation(s)
- Aki Yamamoto
- Division of Organ Transplantation, Department of Surgery, and Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Mazari PM, Linder-Basso D, Sarangi A, Chang Y, Roth MJ. Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor. Proc Natl Acad Sci U S A 2009; 106:5848-53. [PMID: 19307586 PMCID: PMC2667028 DOI: 10.1073/pnas.0809741106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Indexed: 01/06/2023] Open
Abstract
The recognition by a viral envelope of its cognate host-cell receptor is the initial critical step in defining the viral host-range and tissue specificity. This study combines a single-round of selection of a random envelope library with a parallel cDNA screen for receptor function to identify a distinct retroviral envelope/receptor pair. The 11-aa targeting domain of the modified feline leukemia virus envelope consists of a constrained peptide. Critical to the binding of the constrained peptide envelope to its cellular receptor are a pair of internal cysteines and an essential Trp required for maintenance of titers >10(5) lacZ staining units per milliliter. The receptor used for viral entry is the human GPR172A protein, a G-protein-coupled receptor isolated from osteosarcoma cells. The ability to generate unique envelopes capable of using tissue- or disease-specific receptors marks an advance in the development of efficient gene-therapy vectors.
Collapse
Affiliation(s)
- Peter M. Mazari
- University of Medicine and Dentistry of New Jersey–The Robert Wood Johnson Medical School, Department of Biochemistry, Piscataway, NJ 08854
| | - Daniela Linder-Basso
- University of Medicine and Dentistry of New Jersey–The Robert Wood Johnson Medical School, Department of Biochemistry, Piscataway, NJ 08854
| | - Anindita Sarangi
- University of Medicine and Dentistry of New Jersey–The Robert Wood Johnson Medical School, Department of Biochemistry, Piscataway, NJ 08854
| | - Yehchung Chang
- University of Medicine and Dentistry of New Jersey–The Robert Wood Johnson Medical School, Department of Biochemistry, Piscataway, NJ 08854
| | - Monica J. Roth
- University of Medicine and Dentistry of New Jersey–The Robert Wood Johnson Medical School, Department of Biochemistry, Piscataway, NJ 08854
| |
Collapse
|
11
|
Identification of residues outside of the receptor binding domain that influence the infectivity and tropism of porcine endogenous retrovirus. J Virol 2008; 82:7483-91. [PMID: 18508891 DOI: 10.1128/jvi.00295-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of determinants of human tropism of porcine endogenous retrovirus (PERV) is critical to understanding the risk of transmission of PERV to recipients of porcine xenotransplantation products. Previously, we showed that a chimeric envelope cDNA encoding the 360 N-terminal residues of the human-tropic PERV envelope class A (PERV-A) SU and the 130 C-terminal residues of the pig-tropic PERV-C SU and all of TM (PERV-A/C) showed a 100-fold decrease in infectivity titer on human cells (M. Gemeniano, O. Mpanju, D. R. Salomon, M. V. Eiden, and C. A. Wilson, Virology 346:108-117, 2006). To identify residues important for human cell infection, we performed site-directed mutagenesis on each of the nine residues, singly or in combination, that distinguish the C-terminal region of PERV-C from PERV-A. Of the nine amino acids, two single-amino-acid substitutions, Q374R and I412V, restored the infectivity of human cells to the chimeric PERV-A/C to a titer equivalent to that of PERV-A. In contrast, PERV-A/C mutant envelope Q439P resulted in undetectable infection of human cells and an approximately 1,000-fold decrease in control pig cells. Mutation of K441R rescued mutants that carried Q439P, suggesting an incompatibility between the proline residue at this position and the presence of KK in the proteolytic cleavage signal. We confirmed this incompatibility with vectors carrying PERV-A envelope mutant R462K that were also rendered noninfectious. Finally, tropism of vectors carrying PERV-C envelope mutants with only four amino acid changes in the C terminus of PERV-C envelope, NHRQ436YNRP plus K441R, was shifted to one similar to that of PERV-A. Our results show an important and previously unrecognized role for infectivity and tropism for residues at the C terminus of SU.
Collapse
|
12
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Reappraisal of biosafety risks posed by PERVs in xenotransplantation. Rev Med Virol 2008; 18:53-65. [PMID: 17987669 DOI: 10.1002/rmv.559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Donor materials of porcine origin could potentially provide an alternative source of cells, tissues or whole organs for transplantation to humans, but is hampered by the health risk posed by infection with porcine viruses. Although pigs can be bred in such a way that all known exogenous microorganisms are eliminated, this is not feasible for all endogenous pathogens, such as the porcine endogenous retroviruses (PERVs) which are present in the germline of pigs as proviruses. Upon transplantation, PERV proviruses would be transferred to the human recipient along with the xenograft. If xenotransplantation stimulates or facilitates replication of PERVs in the new hosts, a risk exists for adaptation of the virus to humans and subsequent spread of these viruses. In a worst-case scenario, this might result in the emergence of a new viral disease. Although the concerns for disease potential of PERVs are easing, only limited pre-clinical and clinical data are available. Small-scale, well-designed and carefully controlled clinical trials would provide more evidence on the safety of this approach and allow a better appreciation of the risks involved. It is therefore important to have a framework of protective measures and monitoring protocols in place to facilitate such initially small scale clinical trials. This framework will raise ethical and social considerations regarding acceptability.
Collapse
Affiliation(s)
- Derrick Louz
- GMO office, Substances Expertise Centre of the National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Differential resistance to cell entry by porcine endogenous retrovirus subgroup A in rodent species. Retrovirology 2007; 4:93. [PMID: 18081925 PMCID: PMC2241639 DOI: 10.1186/1742-4690-4-93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 12/14/2007] [Indexed: 12/23/2022] Open
Abstract
Background The risk of zoonotic infection by porcine endogenous retroviruses (PERV) has been highlighted in the context of pig-to-human xenotransplantation. The use of receptors for cell entry often determines the host range of retroviruses. A human-tropic PERV subgroup, PERV-A, can enter human cells through either of two homologous multitransmembrane proteins, huPAR-1 and huPAR-2. Here, we characterised human PARs and their homologues in the PERV-A resistant rodent species, mouse and rat (muPAR and ratPAR, respectively). Results Upon exogenous expression in PERV-A resistant cells, human and rat PARs, but not muPAR, conferred PERV-A sensitivity. Exogenously expressed ratPAR binds PERV-A Env and allows PERV-A infection with equivalent efficiency to that of huPAR-1. Endogenous ratPAR expression in rat cell lines appeared to be too low for PERV-A infection. In contrast, the presence of Pro at position 109 in muPAR was identified to be the determinant for PERV-A resistance. Pro109. was shown to be located in the second extracellular loop (ECL2) and affected PERV-A Env binding to PAR molecules. Conclusion The basis of resistance to PERV-A infection in two rodent species is different. Identification of a single a.a. mutation in muPAR, which is responsible for mouse cell resistance to PERV-A highlighted the importance of ECL-2 for the viral receptor function.
Collapse
|
14
|
Chiang CY, Pan YR, Chou LF, Fang CY, Wang SR, Yang CY, Chang HY. Functional epitopes on porcine endogenous retrovirus envelope protein interacting with neutralizing antibody combining sites. Virology 2007; 361:364-71. [PMID: 17222436 DOI: 10.1016/j.virol.2006.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/19/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Porcine cell and organ transplantation provides promise for maintaining normal physiological conditions in patients with end-stage organ failure. The approach however poses serious risk of transmitting pig pathogens to humans. Among many potential pathogens, porcine endogenous retroviruses (PERV) are of particular concern due to their ubiquitous nature in pigs and capability of infecting human cells. Major antigenic determinants and receptor binding domains on PERV remain unclear until now. Two monoclonal antibodies (mAb), named 8E10 and 7C4 capable of neutralizing PERV infection in HEK293 cells are isolated at an IC(50) of 3.0 and 2.7 microg/ml, respectively, in this work. Epitope location for mAb 8E10 was mapped to amino acids 427-434, residing at the C-terminal region of the gp70 component of type A PERV Env protein. The mAb 8E10 bound directly to the PERV indicating that the epitope is exposed on the virion surface. The mAb 7C4 epitope was assigned to the region comprising amino acids 517-537 on the p15E component of PERV. In contrast to mAb 8E10, the 7C4 mAb bound native PERV inefficiently suggesting that its epitope is accessible only after the virus interacts with its receptor. Finally, both mAbs variable regions were cloned and nucleotide sequence determined. All together, these results reveal that both mAbs 8E10 and 7C4 effectively neutralize PERV infection and may be used as a mean to prevent PERV infection in patients receiving xenotransplantation.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
15
|
Miyagawa S, Nakatsu S, Hazama K, Nakagawa T, Kondo A, Matsunami K, Yamamoto A, Yamada J, Miyazawa T, Shirakura R. A novel strategy for preventing PERV transmission to human cells by remodeling the viral envelope glycoprotein. Xenotransplantation 2006; 13:258-63. [PMID: 16756569 DOI: 10.1111/j.1399-3089.2006.00313.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Porcine endogenous retrovirus (PERV) released from pig cells is a main problem associated with clinical xenotransplantation. In a previous study, we demonstrated that the high mannose type of N-glycan of the envelope glycoprotein is closely related to PERV infectivity with respect to human cells. In this study, we addressed the effects of reducing the high mannose type of N-glycan on PERV infectivity. METHODS Pig endothelial cells (PEC) were transduced with the LacZ gene by a pseudotype infection to produce PEC(Z). The PEC(Z)s were then further infected with PERV subtype B (PERV-B) to produce PEC(Z)/PB. The PEC(Z)/PBs were next transfected with the alpha 1,2 mannosidase Ib (Man Ib), N-acetylglucosaminyltransferase I (GnT-I) or alpha-mannosidase II (Man II) gene in order to reduce the levels of high mannose type of N-glycan. HEK293 cells were inoculated with the PERV in each of the culture supernatants. The inoculated cells were histochemically stained and the LacZ-positive cells were counted. RESULTS In experiment I, PERV transmission from the PEC(Z)/PB with GnT-I or Man II to HEK 293 cells was significantly reduced in comparison with control PEC(Z)/PB, while the PEC(Z)/PB with Man Ib was not. However, in experiment II, PERV transmission from the PEC(Z)/PB with ManIb to HEK 293 cells was also significantly reduced in comparison with control PEC(Z)/PB. CONCLUSION The transfection of these genes to pig cells is effective in reducing the susceptibility of human cells to PERV infection. The results suggest that this represents a potentially useful strategy for further decreasing the likelihood of PERV infections.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Division of Organ Transplantation, Department of Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Gemeniano M, Mpanju O, Salomon DR, Eiden MV, Wilson CA. The infectivity and host range of the ecotropic porcine endogenous retrovirus, PERV-C, is modulated by residues in the C-terminal region of its surface envelope protein. Virology 2005; 346:108-17. [PMID: 16309725 DOI: 10.1016/j.virol.2005.10.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/22/2005] [Accepted: 10/18/2005] [Indexed: 11/17/2022]
Abstract
Endogenous retroviral genetic material serves as a reservoir for the generation of retroviral pathogens by recombination between activated endogenous or exogenous infectious agents. Some porcine tissues actively express infectious porcine endogenous retroviruses (PERVs). Of the three classes of PERV characterized to date, two, PERV-A and B, are capable of infecting human cells in vitro, whereas PERV-C cannot. Here, we demonstrate that the PERV-C envelope surface protein (SU) when disassociated from its C-terminus binds human cells. Further, we show that PERV-C binding to human cells is not inhibited in 293 cells productively infected with PERV-A, confirming that the molecule PERV-C interacts with on human cells is distinct from that used by PERV-A. Moreover, we demonstrate that the envelope region encompassing the proline-rich region is required for binding to cells in addition to the putative variable region A (VRA) and B (VRB). The region in the C-terminus of the SU that alters the binding and infectivity properties of PERV-C differs by only nine residues from the analogous region of PERV-A. Caution may be warranted even when a xenotransplantation product is from source pigs that do not express human-tropic viruses, as minimal mutations within PERV-C combined with selection in a human recipient could render PERV-C infectious in humans.
Collapse
Affiliation(s)
- Malou Gemeniano
- Laboratory of Immunology and Virology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, HFM-725, Building 29B, Room 2NN12, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|