1
|
Álvarez L, Marín-García PJ, Llobat L. Genetic haplotypes associated with immune response to Leishmania infantum infection in dogs. Vet Res Commun 2023; 47:1675-1685. [PMID: 37059873 DOI: 10.1007/s11259-023-10123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Leishmaniasis is a zoonotic parasitic disease, and the main reservoir of the parasite is the dog, although recent years have seen an increase in other mammalian species. In the Mediterranean region, where it is an endemic disease, it is caused by the species Leishmania infantum. The Ibizan hound, an autochthonous breed of this region, appears to have a genetic resistance to parasitic infection, whereas other canine breeds, such as the Boxer, are susceptible to infection. These differences are related to the differentiated activation of the immune response, with the Ibizan hound activating the Th1 immune response, whereas the Boxer breed triggers the Th2 immune response. Cytokine levels and genomic haplotypes of several genes involved in the immune response were analysed in twenty-eight Ibizan hound (resistant canine breed model) and twenty-four Boxer (susceptible canine breed) without clinical signs in the Mediterranean region. Cytokine levels were analysed by ELISA commercial kits and haplotypes were studied using CanineHD DNA Analysis BeadChip including 165,480 mapped positions. The results show 126 haplotypes associated with differential immune response in dogs. Specifically, haplotypes in IL12RB1, IL6R, CIITA, THEMIS, NOXA1, HEY2, RAB38, SLC35D2, SLC28A3, RASEF and DAPK1 genes are associated with serum levels of IFN-γ, IL-2, IL-8, and IL-18. These results suggest that the resistance or susceptibility to Leishmania infantum infection could be a consequence of haplotypes in several genes related to immune response. Future studies are needed to elucidate the relationship of these haplotypes with immune response and gene expression regulation.
Collapse
Affiliation(s)
- Luis Álvarez
- Departamento Produccion Y Sanidad Animal, Salud Publica Y Ciencia Y Tecnologia de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Pablo-Jesús Marín-García
- Departamento Produccion Y Sanidad Animal, Salud Publica Y Ciencia Y Tecnologia de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Lola Llobat
- Departamento Produccion Y Sanidad Animal, Salud Publica Y Ciencia Y Tecnologia de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
2
|
Lima SKSD, Jesus JA, Raminelli C, Laurenti MD, Passero LFD. High Selectivity of 8-Hydroxyquinoline on Leishmania (Leishmania) and Leishmania (Viannia) Species Correlates with a Potent Therapeutic Activity In Vivo. Pharmaceuticals (Basel) 2023; 16:ph16050707. [PMID: 37242490 DOI: 10.3390/ph16050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by protozoa of the genus Leishmania, which causes different clinical manifestations. Drugs currently used in the treatment such as pentavalent antimonial and amphotericin B cause severe side effects in patients, and parasite resistance has been reported. Thus, it is necessary and urgent to characterize new and effective alternative drugs to replace the current chemotherapy of leishmaniasis. In this regard, it has been experimentally demonstrated that quinoline derivatives present significative pharmacological and parasitic properties. Thus, the aim of this work was to demonstrate the leishmanicidal activity of 8-hydroxyquinoline (8-HQ) in vitro and in vivo. The leishmanicidal activity (in vitro) of 8-HQ was assayed on promastigote and intracellular amastigote forms of L. (L.) amazonensis, L. (L.) infantum chagasi, L. (V.) guyanensis L. (V.) naiffi, L. (V.) lainsoni, and L. (V.) shawi. Additionally, the levels of nitric oxide and hydrogen peroxide were analyzed. The therapeutic potential of 8-HQ was analyzed in BALB/c mice infected with a strain of L. (L.) amazonensis that causes anergic cutaneous diffuse leishmaniasis. In vitro data showed that at 24 and 72 h, 8-HQ eliminated promastigote and intracellular amastigote forms of all studied species and this effect may be potentialized by nitric oxide. Furthermore, 8-HQ was more selective than miltefosine. Infected animals treated with 8-HQ by the intralesional route dramatically reduced the number of tissue parasites in the skin, and it was associated with an increase in IFN-γ and decrease in IL-4, which correlated with a reduction in inflammatory reaction in the skin. These results strongly support the idea that 8-HQ is an alternative molecule that can be employed in the treatment of leishmaniasis, given its selectivity and multispectral action in parasites from the Leishmania genus.
Collapse
Affiliation(s)
- Sarah Kymberly Santos de Lima
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, São Paulo 01246-903, Brazil
| | - Jéssica Adriana Jesus
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil
| | - Cristiano Raminelli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09920-000, Brazil
| | - Márcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, São Paulo 01246-903, Brazil
| | - Luiz Felipe Domingues Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, Brazil
| |
Collapse
|
3
|
Interleukin 6 and interferon gamma haplotypes are related to cytokine serum levels in dogs in an endemic Leishmania infantum region. Infect Dis Poverty 2023; 12:9. [PMID: 36759910 PMCID: PMC9911338 DOI: 10.1186/s40249-023-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The Ibizan Hound is a canine breed native to the Mediterranean region, where leishmaniasis is an endemic zoonosis. Several studies indicate a low prevalence of this disease in Ibizan Hound dogs, whereas other canine breeds present a high prevalence. However, the underlying molecular mechanisms still remain unknown. The aim of this work is to analyse the relationship between serum levels of cytokines and the genomic profiles in two canine breeds, Ibizan Hound (resistant canine breed model) and Boxer (susceptible canine breed model). METHODS In this study, we analyse the haplotypes of genes encoding cytokines related to immune response of Leishmania infantum infection in twenty-four Boxers and twenty-eight Ibizan Hounds apparently healthy using CanineHD DNA Analysis BeadChip including 165,480 mapped positions. The haplo.glm extension of haplo.score was used to perform a General Linear Model (GLM) regression to estimate the magnitude of individual haplotype effects within each cytokine. RESULTS Mean levels of interferon gamma (IFN-γ), interleukin 2 (IL-2) and IL-18 in Boxer dogs were 0.19 ± 0.05 ng/ml, 46.70 ± 4.54 ng/ml, and 36.37 ± 30.59 pg/ml, whereas Ibizan Hound dogs present 0.49 ± 0.05 ng/ml, 64.55 ± 4.54 ng/ml, and 492.10 ± 31.18 pg/ml, respectively. The GLM regression shows fifteen haplotypes with statistically significant effect on the cytokine serum levels (P < 0.05). The more relevant are IL6-CGAAG and IFNG-GCA haplotypes, which increase and decrease the IL-2, IL-8 and IFN-γ serum levels, respectively. CONCLUSIONS Haplotypes in the IFNG and IL6 genes have been correlated to serum levels of IFN-γ, IL-2 and IL-18, and a moderate effect has been found on IL8 haplotype correlated to IL-8 and IL-18 serum levels. The results indicate that the resistance to L. infantum infection could be a consequence of certain haplotypes with a high frequency in the Ibizan Hound dog breed, while susceptibility to the disease would be related to other specific haplotypes, with high frequency in Boxer. Future studies are needed to elucidate whether these differences and haplotypes are related to different phenotypes in immune response and expression gene regulation to L. infantum infections in dogs and their possible application in new treatments and vaccines.
Collapse
|
4
|
Dirkx L, Hendrickx S, Merlot M, Bulté D, Starick M, Elst J, Bafica A, Ebo DG, Maes L, Van Weyenbergh J, Caljon G. Long-term hematopoietic stem cells as a parasite niche during treatment failure in visceral leishmaniasis. Commun Biol 2022; 5:626. [PMID: 35752645 PMCID: PMC9233693 DOI: 10.1038/s42003-022-03591-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/14/2022] [Indexed: 01/20/2023] Open
Abstract
Given the discontinuation of various first-line drugs for visceral leishmaniasis (VL), large-scale in vivo drug screening, establishment of a relapse model in rodents, immunophenotyping, and transcriptomics were combined to study persistent infections and therapeutic failure. Double bioluminescent/fluorescent Leishmania infantum and L. donovani reporter lines enabled the identification of long-term hematopoietic stem cells (LT-HSC) as a niche in the bone marrow with remarkably high parasite burdens, a feature confirmed for human hematopoietic stem cells (hHSPC). LT-HSC are more tolerant to antileishmanial drug action and serve as source of relapse. A unique transcriptional ’StemLeish’ signature in these cells was defined by upregulated TNF/NF-κB and RGS1/TGF-β/SMAD/SKIL signaling, and a downregulated oxidative burst. Cross-species analyses demonstrated significant overlap with human VL and HIV co-infected blood transcriptomes. In summary, the identification of LT-HSC as a drug- and oxidative stress-resistant niche, undergoing a conserved transcriptional reprogramming underlying Leishmania persistence and treatment failure, may open therapeutic avenues for leishmaniasis. Long-term hematopoietic stem cells may act as protective niches for the Leishmania parasite, potentially contributing to treatment failure in cases of visceral leishmaniasis.
Collapse
Affiliation(s)
- Laura Dirkx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Margot Merlot
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marick Starick
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology, and Transplantation, Rega Institute of Medical Research, KU Leuven, Leuven, Belgium.,Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology Federal University of Santa Catarina, Florianopolis, Brazil
| | - Jessy Elst
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - André Bafica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology Federal University of Santa Catarina, Florianopolis, Brazil
| | - Didier G Ebo
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Weyenbergh
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology, and Transplantation, Rega Institute of Medical Research, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Muñoz-Durango N, Gómez A, García-Valencia N, Roldán M, Ochoa M, Bautista-Erazo DE, Ramírez-Pineda JR. A Mouse Model of Ulcerative Cutaneous Leishmaniasis by Leishmania (Viannia) panamensis to Investigate Infection, Pathogenesis, Immunity, and Therapeutics. Front Microbiol 2022; 13:907631. [PMID: 35770175 PMCID: PMC9234518 DOI: 10.3389/fmicb.2022.907631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
A mouse model of cutaneous leishmaniasis (CL) by Leishmania (Viannia) panamensis (L(V)p) that reproduces the characteristics of the human disease remains elusive. Here we report the development of a CL model that uses a mouse-adapted L(V)p isolate to reproducibly induce a dermal disease with a remarkable similarity to human CL. BALB/c mice infected intradermally in the ear with 105 stationary UA-946 L(V)p promastigotes develop a progressive cutaneous disease that exhibits the typical ulcerated lesions with indurated borders observed in CL patients. Although most of parasites in the inoculum die within the first week of infection, the survivors vigorously multiply at the infection site during the following weeks, paralleling disease appearance and aggravation. Regional lymphadenopathy as well as lymphatic dissemination of parasites to draining lymph nodes (dLN) was evidenced early after infection. Viable parasites were also isolated from spleen at later timepoints indicating systemic parasitic dissemination, but, strikingly, no signs of systemic disease were observed. Increasing numbers of myeloid cells and T lymphocytes producing IFNγ and IL-4 were observed in the dLN as disease progressed. A mixed adaptive L(V)p-specific T cell-mediated response was induced, since ex vivo recall experiments using dLN cells and splenocytes revealed the production of type 1 (IFNγ, IL-2), type 2 (IL-4, IL-13), regulatory (IL-10), and inflammatory (GM-CSF, IL-3) cytokines. Humoral adaptive response was characterized by early production of IgG1- followed by IgG2a-type of L(V)p-specific antibodies. IFNγ/IL-4 and IgG2a/IgG1 ratios indicated that the initial non-protective Th2 response was redirected toward a protective Th1 response. In situ studies revealed a profuse recruitment of myeloid cells and of IFNγ- and IL-4-producing T lymphocytes to the site of infection, and the typical histopathological changes induced by dermotropic Leishmania species. Evidence that this model is suitable to investigate pharmacological and immunomodulatory interventions, as well as for antigen discovery and vaccine development, is also presented. Altogether, these results support the validity and utility of this novel mouse model to study the pathogenesis, immunity, and therapeutics of L(V)p infections.
Collapse
Affiliation(s)
- Natalia Muñoz-Durango
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Alexander Gómez
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Natalia García-Valencia
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Miguel Roldán
- Instituto de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Marcela Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - David E. Bautista-Erazo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - José R. Ramírez-Pineda
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
6
|
Immune Responses in Leishmaniases: An Overview. Trop Med Infect Dis 2022; 7:tropicalmed7040054. [PMID: 35448829 PMCID: PMC9029249 DOI: 10.3390/tropicalmed7040054] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a parasitic, widespread, and neglected disease that affects more than 90 countries in the world. More than 20 Leishmania species cause different forms of leishmaniasis that range in severity from cutaneous lesions to systemic infection. The diversity of leishmaniasis forms is due to the species of parasite, vector, environmental and social factors, genetic background, nutritional status, as well as immunocompetence of the host. Here, we discuss the role of the immune system, its molecules, and responses in the establishment, development, and outcome of Leishmaniasis, focusing on innate immune cells and Leishmania major interactions.
Collapse
|
7
|
da Silva GAV, Mesquita TG, Souza VC, Junior JDES, Gomes de Souza ML, Talhari AC, Talhari S, Naveca FG, Ramasawmy R. A Single Haplotype of IFNG Correlating With Low Circulating Levels of Interferon-γ Is Associated With Susceptibility to Cutaneous Leishmaniasis Caused by Leishmania guyanensis. Clin Infect Dis 2021; 71:274-281. [PMID: 31722386 DOI: 10.1093/cid/ciz810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Interferon-γ (IFN-γ) plays an important role in the control of Leishmania infection. Blockade of IFN-γ signaling in mice increases lesion size and parasite load. In endemic areas of Leishmaniasis, only a fraction of the population develop the disease. This suggest that host genetics may play a role in this response. We investigated whether single nucleotide polymorphisms (SNPs) in IFNG may be associated with elevated or decrease risk in the development of cutaneous leishmaniasis (CL). METHODS We assessed 9 SNP and cytosine-adenine (CA) repeats in IFNG by nucleotide sequencing in 647 patients with CL caused by Leishmania guyanensis and 629 controls. Circulating plasma IFN-γ levels were also assayed in 400 patients with CL and 400 controls. RESULTS The rs2069705TT genotype is associated with elevated risk of developing CL compared with the rs2069705CC genotype (OR, 1.7; 95% CI, 1.3-2.4; P = .0008). There is a 70% chance that this genotype raises the risk of developing CL. In a dominant model, carriers of the rs2069705T allele compared with the rs2069705CC genotype showed a 50% (range, 20-100%) increased risk of developing CL (OR, 1.5; 95% CI, 1.2-2.0; P = .0004). Haplotype analysis showed 1 haplotype (H1) associated with low levels of IFN-γ presented an increased risk of 60% of developing CL (OR, 1.6; 95% CI, 1.3-1.9; P = 5 × 10-5) compared with non-H1. CONCLUSIONS IFNG variant rs2069705 seems to be a genetic modifier of clinical outcome of Leishmania infection; individuals with the H1 haplotype, associated with low levels of IFN-γ, have a 60% risk of developing CL.
Collapse
Affiliation(s)
- George A V da Silva
- Programa de Pos-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Amazonas, Manaus, Brazil
| | - Tirza G Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Amazonas, Manaus, Brazil
| | - Victor C Souza
- Instituto Leônidas e Maria Deane, FIOCRUZ Amazônia, Amazonas, Manaus, Brazil
| | - José do Espírito Santo Junior
- Programa de Pos-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Amazonas, Manaus, Brazil
| | | | | | - Sinésio Talhari
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Faculdade de Medicina, Universidade Nilton Lins, Amazonas, Manaus, Brazil
| | - Felipe G Naveca
- Instituto Leônidas e Maria Deane, FIOCRUZ Amazônia, Amazonas, Manaus, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pos-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Amazonas, Manaus, Brazil.,Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Faculdade de Medicina, Universidade Nilton Lins, Amazonas, Manaus, Brazil
| |
Collapse
|
8
|
Pugliese M, Sfacteria A, Oliva G, Falcone A, Gizzarelli M, Passantino A. Clinical Significance of ROMs, OXY, SHp and HMGB-1 in Canine Leishmaniosis. Animals (Basel) 2021; 11:754. [PMID: 33803468 PMCID: PMC7998487 DOI: 10.3390/ani11030754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the role of oxidative stress parameters (ROMs, OXY, SHp), the Oxidative Stress index (OSi), and High Mobility Group Box-1 protein (HMGB-1) in canine leishmaniosis (CanL). For this study, thirty dogs, naturally infected with Leishmania spp. (Leishmania Group, LEISH) and ten healthy adult dogs (control group, CTR) were included. The diagnosis of CanL was performed by a cytological examination of lymph nodes, real time polymerase chain reaction on biological tissues (lymph nodes and whole blood), and an immunofluorescence antibody test (IFAT) for the detection of anti-Leishmania antibodies associated with clinical signs such as dermatitis, lymphadenopathy, onychogryphosis, weight loss, cachexia, lameness, conjunctivitis, epistaxis, and hepatosplenomegaly. The HMGB-1 and oxidative stress parameters of the LEISH Group were compared with the values recorded in the CTR group (Mann Whitney Test, p < 0.05). Spearman rank correlation was applied to evaluate the correlation between the HMGB-1, oxidative stress biomarkers, hematological and biochemical parameters in the LEISH Group. Results showed statistically significant higher values of SHp in the LEISH Group. Specific correlation between the ROMs and the number of red blood cells, and between HGMB-1 and SHp were recorded. These preliminary data may suggest the potential role of oxidative stress in the pathogenesis of CanL. Further studies are undoubtedly required to evaluate the direct correlation between inflammation parameters with the different stages of CanL. Similarly, further research should investigate the role of ROMs in the onset of anemia.
Collapse
Affiliation(s)
- Michela Pugliese
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.P.); (A.S.); (A.F.); (A.P.)
| | - Alessandra Sfacteria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.P.); (A.S.); (A.F.); (A.P.)
| | - Gaetano Oliva
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Annastella Falcone
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.P.); (A.S.); (A.F.); (A.P.)
| | - Manuela Gizzarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.P.); (A.S.); (A.F.); (A.P.)
| |
Collapse
|
9
|
Torres Suarez E, Granados-Falla DS, Robledo SM, Murillo J, Upegui Y, Delgado G. Antileishmanial activity of synthetic analogs of the naturally occurring quinolone alkaloid N-methyl-8-methoxyflindersin. PLoS One 2020; 15:e0243392. [PMID: 33370295 PMCID: PMC7769561 DOI: 10.1371/journal.pone.0243392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
Leishmaniasis is a neglected, parasitic tropical disease caused by an intracellular protozoan from the genus Leishmania. Quinoline alkaloids, secondary metabolites found in plants from the Rutaceae family, have antiparasitic activity against Leishmania sp. N-methyl-8-methoxyflindersin (1), isolated from the leaves of Raputia heptaphylla and also known as 7-methoxy-2,2-dimethyl-2H,5H,6H-pyran[3,2-c]quinolin-5-one, shows antiparasitic activity against Leishmania promastigotes and amastigotes. This study used in silico tools to identify synthetic quinoline alkaloids having structure similar to that of compound 1 and then tested these quinoline alkaloids for their in vitro antiparasitic activity against Leishmania (Viannia) panamensis, in vivo therapeutic response in hamsters suffering from experimental cutaneous leishmaniasis (CL), and ex vivo immunomodulatory potential in healthy donors' human peripheral blood (monocyte)-derived macrophages (hMDMs). Compounds 1 (natural), 2 (synthetic), and 8 (synthetic) were effective against intracellular promastigotes (9.9, 3.4, and 1.6 μg/mL medial effective concentration [EC50], respectively) and amastigotes (5.07, 7.94, and 1.91 μg/mL EC50, respectively). Compound 1 increased nitric oxide production in infected hMDMs and triggered necrosis-related ultrastructural alterations in intracellular amastigotes, while compound 2 stimulated oxidative breakdown in hMDMs and caused ultrastructural alterations in the parasite 4 h posttreatment, and compound 8 failed to induce macrophage modulation but selectively induced apoptosis of infected hMDMs and alterations in the intracellular parasite ultrastructure. In addition, synthetic compounds 2 and 8 improved the health of hamsters suffering from experimental CL, without evidence of treatment-associated adverse toxic effects. Therefore, synthetic compounds 2 and 8 are potential therapeutic candidates for topical treatment of CL.
Collapse
Affiliation(s)
- Elaine Torres Suarez
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana Susana Granados-Falla
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
- Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Sara María Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Javier Murillo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Yulieth Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gabriela Delgado
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Metacyclogenesis of Leishmania (Viannia) guyanensis: a comprehensive study of the main transformation features in axenic culture and purification of metacyclic promastigotes by negative selection with Bauhinia purpurea lectin. Parasitology 2018; 146:716-727. [PMID: 30588899 DOI: 10.1017/s0031182018002111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leishmania (Viannia) guyanensis is one species that causes cutaneous leishmaniasis in the New World. The incidence of infections with this parasite is probably underestimated and few studies exist on this species, despite its epidemiological importance. In particular, there are no studies concerning L. guyanensis metacyclogenesis and no technique for obtaining metacyclic promastigotes for this species is presently available. Here, we have studied L. guyanensis metacyclogenesis in axenic culture, describing the main changes that occur during this process, namely, in morphology and size, sensitivity to complement-mediated lysis, surface carbohydrates and infectivity to macrophages. We have shown that metacyclogenesis in L. guyanensis promastigotes is basically complete on the 4th day of culture, as determined by decreased body size, increased flagellum length, resistance to complement-mediated lysis and infectivity. We have also found that only a fraction of the parasites is agglutinated by Bauhinia purpurea lectin. The non-agglutinated parasites, which also peaked on the 4th day of culture, had all morphological traits typical of the metacyclic stage. This is the first report describing metacyclogenesis in L. guyanensis axenic promastigotes and a simple and efficient method for the purification of metacyclic forms. Furthermore, a model of human macrophage infection with L. guyanensis was established.
Collapse
|
11
|
Borges AF, Gomes RS, Ribeiro-Dias F. Leishmania (Viannia) guyanensis in tegumentary leishmaniasis. Pathog Dis 2018; 76:4950396. [PMID: 29722820 DOI: 10.1093/femspd/fty025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Leishmania (Viannia) guyanensis is a causal agent of American tegumentary leishmaniasis (ATL). This protozoan has been poorly investigated; however, it can cause different clinical forms of ATL, ranging from a single cutaneous lesion to severe lesions that can lead to destruction of the nasopharyngeal mucosa. L. (V.) guyanensis and the disease caused by this species can present unique aspects revealing the need to better characterize this parasite species to improve our knowledge of the immunopathological mechanisms and treatment options for ATL. The mechanisms by which some patients develop a more severe form of ATL remain unclear. It is known that the host immune profile and parasite factors may influence the clinical manifestations of the disease. Besides intrinsic parasite factors, Leishmaniavirus RNA 1 (LRV1) infecting L. guyanensis can contribute to ATL immunopathogenesis. In this review, general aspects of L. guyanensis infection in humans and mouse models are presented.
Collapse
Affiliation(s)
- Arissa Felipe Borges
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiás, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiás, Brazil
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiás, Brazil
| |
Collapse
|
12
|
Leishmania LABCG2 transporter is involved in ATP-dependent transport of thiols. Biochem J 2018; 475:87-97. [PMID: 29162656 DOI: 10.1042/bcj20170685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
The Leishmania LABCG2 transporter has a key role in the redox metabolism of these protozoan parasites. Recently, the involvement of LABCG2 in virulence, autophagy and oxidative stress has been described. Null mutant parasites for LABCG2 present an increase in the intracellular levels of glutathione (GSH) and trypanothione [T(SH)2]. On the other hand, parasites overexpressing LABCG2 transporter export non-protein thiols to the extracellular medium. To explore if LABCG2 may mediate an active transport of non-protein thiols, the effect of these molecules on ATPase activity of LABCG2 as well as the ability of LABCG2 to transport them was determined using a baculovirus-Sf9 insect cell system. Our results indicate that all thiols tested [GSH, T(SH)2] as well as their oxidized forms GSSG and TS2 (trypanothione disulfide) stimulate LABCG2-ATPase basal activity. We have measured the transport of [3H]-GSH in inside-out Sf9 cell membrane vesicles expressing LABCG2-GFP (green fluorescence protein), finding that LABCG2 was able to mediate a rapid and concentration-dependent uptake of [3H]-GSH in the presence of ATP. Finally, we have analyzed the ability of different thiol species to compete for this uptake, T(SH)2 and TS2 being the best competitors. The IC50 value for [3H]-GSH uptake in the presence of increasing concentrations of T(SH)2 was less than 100 μM, highlighting the affinity of this thiol for LABCG2. These results provide the first direct evidence that LABCG2 is an ABC transporter of reduced and oxidized non-protein thiols in Leishmania, suggesting that this transporter can play a role in the redox metabolism and related processes in this protozoan parasite.
Collapse
|
13
|
Carneiro MBH, Roma EH, Ranson AJ, Doria NA, Debrabant A, Sacks DL, Vieira LQ, Peters NC. NOX2-Derived Reactive Oxygen Species Control Inflammation during Leishmania amazonensis Infection by Mediating Infection-Induced Neutrophil Apoptosis. THE JOURNAL OF IMMUNOLOGY 2017; 200:196-208. [PMID: 29158417 DOI: 10.4049/jimmunol.1700899] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) produced by NADPH phagocyte oxidase isoform (NOX2) are critical for the elimination of intracellular pathogens in many infections. Despite their importance, the role of ROS following infection with the eukaryotic pathogen Leishmania has not been fully elucidated. We addressed the role of ROS in C57BL/6 mice following intradermal infection with Leishmania amazonensis. Despite equivalent parasite loads compared with wild-type (WT) mice, mice deficient in ROS production by NOX2 due to the absence of the gp91 subunit (gp91phox-/-) had significantly more severe pathology in the later stages of infection. Pathology in gp91phox-/- mice was not associated with alterations in CD4+ T cell-mediated immunity but was preceded by enhanced neutrophil accumulation at the dermal infection site. Ex vivo analysis of infected versus uninfected neutrophils revealed a deficiency in infection-driven apoptosis in gp91phox-/- mice versus WT mice. gp91phox-/- mice presented with higher percentages of healthy or necrotic neutrophils but lower percentages of apoptotic neutrophils at early and chronic time points. In vitro infection of gp91phox-/- versus WT neutrophils also revealed reduced apoptosis and CD95 expression but increased necrosis in infected cells at 10 h postinfection. Provision of exogenous ROS in the form of H2O2 reversed the necrotic phenotype and restored CD95 expression on infected gp91phox-/- neutrophils. Although ROS production is typically viewed as a proinflammatory event, our observations identify the importance of ROS in mediating appropriate neutrophil apoptosis and the importance of apoptosis in inflammation and pathology during chronic infection.
Collapse
Affiliation(s)
- Matheus B H Carneiro
- Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eric H Roma
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852; and
| | - Adam J Ranson
- Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Nicole A Doria
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852; and
| | - Alain Debrabant
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20993
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852; and
| | - Leda Q Vieira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada;
| |
Collapse
|
14
|
Impact of reactive oxygen species (ROS) on the control of parasite loads and inflammation in Leishmania amazonensis infection. Parasit Vectors 2016; 9:193. [PMID: 27056545 PMCID: PMC4825088 DOI: 10.1186/s13071-016-1472-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/23/2016] [Indexed: 01/22/2023] Open
Abstract
Background Reactive oxygen species (ROS) protect the host against a large number of pathogenic microorganisms. ROS have different effects on parasites of the genus Leishmania: some parasites are susceptible to their action, while others seem to be resistant. The role of ROS in L. amazonensis infection in vivo has not been addressed to date. Methods In this study, C57BL/6 wild-type mice (WT) and mice genetically deficient in ROS production by phagocytes (gp91phox−/−) were infected with metacyclic promastigotes of L. amazonensis to address the effect of ROS in parasite control. Inflammatory cytokines, parasite loads and myeloperoxidase (MPO) activity were evaluated. In parallel, in vitro infection of peritoneal macrophages was assessed to determine parasite killing, cytokine, NO and ROS production. Results In vitro results show induction of ROS production by infected peritoneal macrophages, but no effect in parasite killing. Also, ROS do not seem to be important to parasite killing in vivo, but they control lesion sizes at early stages of infection. IFN-γ, TNF-α and IL-10 production did not differ among mouse strains. Myeloperoxidase assay showed augmented neutrophils influx 6 h and 72 h post - infection in gp91phox−/− mice, indicating a larger inflammatory response in gp91phox−/− even at early time points. At later time points, neutrophil numbers in lesions correlated with lesion size: larger lesions in gp91phox−/− at earlier times of infection corresponded to larger neutrophil infiltrates, while larger lesions in WT mice at the later points of infection also displayed larger numbers of neutrophils. Conclusion ROS do not seem to be important in L. amazonensis killing, but they regulate the inflammatory response probably by controlling neutrophils numbers in lesions.
Collapse
|
15
|
DaMata JP, Mendes BP, Maciel-Lima K, Menezes CAS, Dutra WO, Sousa LP, Horta MF. Distinct Macrophage Fates after in vitro Infection with Different Species of Leishmania: Induction of Apoptosis by Leishmania (Leishmania) amazonensis, but Not by Leishmania (Viannia) guyanensis. PLoS One 2015; 10:e0141196. [PMID: 26513474 PMCID: PMC4626090 DOI: 10.1371/journal.pone.0141196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.
Collapse
Affiliation(s)
- Jarina Pena DaMata
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Pinheiro Mendes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kátia Maciel-Lima
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiane Alves Silva Menezes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walderez Ornelas Dutra
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
16
|
Identification and Biological Characterization of Leishmania (Viannia) guyanensis Isolated from a Patient with Tegumentary Leishmaniasis in Goiás, a Nonendemic Area for This Species in Brazil. BIOMED RESEARCH INTERNATIONAL 2015; 2015:350764. [PMID: 26583102 PMCID: PMC4637049 DOI: 10.1155/2015/350764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/04/2015] [Indexed: 01/08/2023]
Abstract
The aim of this study was to characterize clinical field isolates of Leishmania spp. obtained from patients with American Tegumentary Leishmaniasis (ATL) who live in Goiás state, Brazil. The presumed areas of infection were in Goiás, Tocantins, and Pará states. Three isolates of parasites were identified as L. (Viannia) braziliensis and one as L. (V.) guyanensis. The in vitro growth profiles were found to be similar for all parasites. Nevertheless, in C57BL/6 mice, L. (V.) guyanensis infection was better controlled than L. (V.) braziliensis. Yet in C57BL/6 mice deficient in interferon gamma, L. (V.) guyanensis lesions developed faster than those caused by L. (V.) braziliensis isolates. In BALB/c mice, the development of lesions was similar for isolates from both species; however, on the 11th week of infection, amastigotes could not be observed in macrophages from L. (V.) guyanensis-infected mice. Thus, L. (V.) guyanensis can be circulating in Goiás, a state where autochthonous cases of this species had not yet been reported. Considering the difficulties to differentiate L. (V.) guyanensis from L. (V.) braziliensis at the molecular, morphological, and clinical (human and murine models) levels, the presence of L. (V.) guyanensis infections is possibly underestimated in several regions of Brazil.
Collapse
|
17
|
Santos DM, Petersen ALOA, Celes FS, Borges VM, Veras PST, de Oliveira CI. Chemotherapeutic potential of 17-AAG against cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis. PLoS Negl Trop Dis 2014; 8:e3275. [PMID: 25340794 PMCID: PMC4207694 DOI: 10.1371/journal.pntd.0003275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Leishmaniasis remains a worldwide public health problem. The limited therapeutic options, drug toxicity and reports of resistance, reinforce the need for the development of new treatment options. Previously, we showed that 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a Heat Shock Protein 90 (HSP90)-specific inhibitor, reduces L. (L.) amazonensis infection in vitro. Herein, we expand the current knowledge on the leishmanicidal activity of 17-AAG against cutaneous leishmaniasis, employing an experimental model of infection with L. (V.) braziliensis. METHODOLOGY/PRINCIPAL FINDINGS Exposure of axenic L. (V.) braziliensis promastigotes to 17-AAG resulted in direct dose-dependent parasite killing. These results were extended to L. (V.) braziliensis-infected macrophages, an effect that was dissociated from the production of nitric oxide (NO), superoxide (O(-2)) or inflammatory mediators such as TNF-α, IL-6 and MCP-1. The leishmanicidal effect was then demonstrated in vivo, employing BALB/c mice infected with L. braziliensis. In this model, 17-AAG treatment resulted in smaller skin lesions and parasite counts were also significantly reduced. Lastly, 17-AAG showed a similar effect to amphotericin B regarding the ability to reduce parasite viability. CONCLUSION/SIGNIFICANCE 17-AAG effectively inhibited the growth of L. braziliensis, both in vitro and in vivo. Given the chronicity of L. (V.) braziliensis infection and its association with mucocutaneous leishmaniasis, 17-AAG can be envisaged as a new chemotherapeutic alternative for cutaneous Leishmaniasis.
Collapse
Affiliation(s)
- Diego M. Santos
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Fabiana S. Celes
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Valeria M. Borges
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Bahia, Brazil
| | - Patricia S. T. Veras
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Camila I. de Oliveira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
18
|
Abstract
Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses.
Collapse
Affiliation(s)
- Claudia N Paiva
- Departamento de Imunologia, Instituto de Microbiologia , CCS Bloco D, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
19
|
Huo M, Gao R, Jiang L, Cui X, Duan L, Deng X, Guan S, Wei J, Soromou LW, Feng H, Chi G. Suppression of LPS-induced inflammatory responses by gossypol in RAW 264.7 cells and mouse models. Int Immunopharmacol 2013; 15:442-9. [DOI: 10.1016/j.intimp.2013.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 12/28/2022]
|
20
|
Hartley MA, Ronet C, Zangger H, Beverley SM, Fasel N. Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2012; 2:99. [PMID: 22919688 PMCID: PMC3417650 DOI: 10.3389/fcimb.2012.00099] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/27/2012] [Indexed: 12/21/2022] Open
Abstract
The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic "metastatic factors" or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Reactive oxygen species and nitric oxide in cutaneous leishmaniasis. J Parasitol Res 2012; 2012:203818. [PMID: 22570765 PMCID: PMC3337613 DOI: 10.1155/2012/203818] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 01/03/2023] Open
Abstract
Cutaneous leishmaniasis affects millions of people around the world. Several species of Leishmania infect mouse strains, and murine models closely reproduce the cutaneous lesions caused by the parasite in humans. Mouse models have enabled studies on the pathogenesis and effector mechanisms of host resistance to infection. Here, we review the role of nitric oxide (NO), reactive oxygen species (ROS), and peroxynitrite (ONOO−) in the control of parasites by macrophages, which are both the host cells and the effector cells. We also discuss the role of neutrophil-derived oxygen and nitrogen reactive species during infection with Leishmania. We emphasize the role of these cells in the outcome of leishmaniasis early after infection, before the adaptive Th-cell immune response.
Collapse
|
22
|
Effect of the Synadenium carinatum latex lectin (ScLL) on Leishmania (Leishmania) amazonensis infection in murine macrophages. Exp Parasitol 2011; 128:61-7. [DOI: 10.1016/j.exppara.2011.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/27/2011] [Accepted: 02/01/2011] [Indexed: 11/21/2022]
|
23
|
Quintana E, Torres Y, Alvarez C, Rojas A, Forero ME, Camacho M. Changes in macrophage membrane properties during early Leishmania amazonensis infection differ from those observed during established infection and are partially explained by phagocytosis. Exp Parasitol 2010; 124:258-64. [PMID: 19854174 DOI: 10.1016/j.exppara.2009.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 12/01/2022]
Affiliation(s)
- Eduardo Quintana
- Laboratorio de Biofísica, Centro Internacional de Física, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
24
|
Paltrinieri S, Ravicini S, Rossi G, Roura X. Serum concentrations of the derivatives of reactive oxygen metabolites (d-ROMs) in dogs with leishmaniosis. Vet J 2009; 186:393-5. [PMID: 19758830 DOI: 10.1016/j.tvjl.2009.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 07/21/2009] [Accepted: 08/16/2009] [Indexed: 11/19/2022]
Abstract
Leishmania infantum interferes with the oxidative metabolism of phagocytes. In order to assess whether derivatives of reactive oxygen metabolites (d-ROMs) decrease due to infection or increase due to inflammation, d-ROMs were measured in serum collected from control dogs (Group 1; n = 12), from dogs seropositive for Leishmania either symptomatic (Group 2; n = 27) or not (Group 3; n = 14), and from dogs with other diseases (Group 4; n = 16). The concentrations of d-ROMs in the four groups, expressed in Carratelli Units (U CARR) were, respectively, 75.4 ± 39.5 (median, 81.6), 108.2 ± 96.3 (73.4), 73.5 ± 62.2 (62.0), 127.7 ± 97.3 (94.3). There were no significant differences between groups, but dogs with values higher than the reference interval were found, mostly in Groups 2 and 4 (which had serum C-reactive protein levels consistent with inflammation), whilst low values were occasionally found in Groups 2 and 3. Inflammation may mask decreases in d-ROMs induced by Leishmania infection.
Collapse
Affiliation(s)
- Saverio Paltrinieri
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Italy.
| | | | | | | |
Collapse
|
25
|
Lupi O, Bartlett BL, Haugen RN, Dy LC, Sethi A, Klaus SN, Machado Pinto J, Bravo F, Tyring SK. Tropical dermatology: Tropical diseases caused by protozoa. J Am Acad Dermatol 2009; 60:897-925; quiz 926-8. [PMID: 19467364 DOI: 10.1016/j.jaad.2009.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 10/05/2008] [Accepted: 03/07/2009] [Indexed: 11/18/2022]
Abstract
UNLABELLED Protozoan infections are very common among tropical countries and have an important impact on public health. Leishmaniasis is the most widely disseminated protozoan infection in the world, while the trypanosomiases are widespread in both Africa and South America. Amebiasis, a less common protozoal infection, is a cause of significant morbidity in some regions. Toxoplasmosis and pneumocystosis (formerly thought to be caused by a protozoan) are worldwide parasitic infections with a very high incidence in immunocompromised patients but are not restricted to them. In the past, most protozoan infections were restricted to specific geographic areas and natural reservoirs. There are cases in which people from other regions may have come in contact with these pathogens. A common situation involves an accidental contamination of a traveler, tourist, soldier, or worker that has contact with a reservoir that contains the infection. Protozoan infections can be transmitted by arthropods, such as sandflies in the case of leishmaniasis or bugs in the case of trypanosomiases. Vertebrates also serve as vectors as in the case of toxoplasmosis and its transmission by domestic cats. The recognition of the clinical symptoms and the dermatologic findings of these diseases, and a knowledge of the geographic distribution of the pathogen, can be critical in making the diagnosis of a protozoan infection. LEARNING OBJECTIVES After completing this learning activity, participants should be able to recognize the significance of protozoan infections worldwide, identify the dermatologic manifestations of protozoan infections, and select the best treatment for the patient with a protozoan infection.
Collapse
Affiliation(s)
- Omar Lupi
- Department of Dermatology at Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bogdan C. Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example. Cell Microbiol 2008; 10:1221-34. [DOI: 10.1111/j.1462-5822.2008.01146.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Kossuga MH, Nascimento AM, Reimão JQ, Tempone AG, Taniwaki NN, Veloso K, Ferreira AG, Cavalcanti BC, Pessoa C, Moraes MO, Mayer AMS, Hajdu E, Berlinck RGS. Antiparasitic, antineuroinflammatory, and cytotoxic polyketides from the marine sponge Plakortis angulospiculatus collected in Brazil. JOURNAL OF NATURAL PRODUCTS 2008; 71:334-339. [PMID: 18177008 DOI: 10.1021/np0705256] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Investigation of the bioactive crude extract from the sponge Plakortis angulospiculatus from Brazil led to the isolation of plakortenone ( 1) as a new polyketide, along with five known polyketides ( 2- 6) previously isolated from other Plakortis sponges. The known polyketides were tested in antileishmanial, antitrypanosomal, antineuroinflammatory, and cytotoxicity assays. The results show that plakortide P ( 3) is a potent antiparasitic compound, against both Leishmania chagasi and Trypanosona cruzi, and exhibited antineuroinflammatory activity. The known polyketides 2- 6 were tested for cytotoxicity against four human cancer cell lines, but displayed only moderate cytotoxic activity.
Collapse
Affiliation(s)
- Miriam H Kossuga
- Instituto de quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Logan F, Taylor M, Wilkinson S, Kaur H, Kelly J. The terminal step in vitamin C biosynthesis in Trypanosoma cruzi is mediated by a FMN-dependent galactonolactone oxidase. Biochem J 2007; 407:419-26. [PMID: 17627608 PMCID: PMC2275072 DOI: 10.1042/bj20070766] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Humans lack the ability to synthesize vitamin C (ascorbate) due to the absence of gulonolactone oxidase, the last enzyme in the biosynthetic pathway in most other mammals. The corresponding oxidoreductase in trypanosomes therefore represents a target that may be therapeutically exploitable. This is reinforced by our observation that Trypanosoma cruzi, the causative agent of Chagas' disease, lacks the capacity to scavenge ascorbate from its environment and is therefore dependent on biosynthesis to maintain intracellular levels of this vitamin. Here, we show that T. cruzi galactonolactone oxidase (TcGAL) can utilize both L-galactono-gamma-lactone and D-arabinono-gamma-lactone as substrates for synthesis of vitamin C, in reactions that obey Michaelis-Menten kinetics. It is >20-fold more active than the analogous enzyme from the African trypanosome Trypanosoma brucei. FMN is an essential cofactor for enzyme activity and binds to TcGAL non-covalently. In other flavoproteins, a histidine residue located within the N-terminal flavin-binding motif has been shown to be crucial for cofactor binding. Using site-directed mutagenesis, we show that the corresponding residue in TcGAL (Lys-55) is not essential for this interaction. In contrast, we find that histidine and tryptophan residues (His-447 and Trp-448), localized within a C-terminal motif (HWXK) that is a feature of ascorbate-synthesizing enzymes, are necessary for the FMN association. The conserved lysine residue within this motif (Lys-450) is not required for cofactor binding, but its replacement by glycine renders the protein completely inactive.
Collapse
Affiliation(s)
- Flora J. Logan
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Martin C. Taylor
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Shane R. Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Harparkash Kaur
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - John M. Kelly
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Maia C, Rolão N, Nunes M, Gonçalves L, Campino L. Infectivity of five different types of macrophages by Leishmania infantum. Acta Trop 2007; 103:150-5. [PMID: 17626776 DOI: 10.1016/j.actatropica.2007.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/22/2007] [Accepted: 06/01/2007] [Indexed: 11/18/2022]
Abstract
Leishmania are intracellular parasites that multiply as the amastigote form in the macrophages of their vertebrate hosts. Since vaccines against leishmaniases are still under development, the control of these diseases relies on prompt diagnosis and chemotherapy in infected humans as well as in dogs, which are the main reservoir of Leishmania infantum, in Mediterranean countries. To establish the macrophage type to be used as an in vitro model for antileishmanial chemotherapeutic studies, we analysed the susceptibility of human peripheral blood derived macrophages, macrophages derived from mouse bone marrow, mouse peritoneal macrophages and macrophages differentiated from cell lines U-937 and DH82 to infection by two L. infantum strains, one obtained from a human leishmanial infection and other from a canine infection. Both strains displayed comparable behaviour in their capacity of infecting the different macrophage types. Human peripheral blood macrophages and DH82 cells were less infectable by both strains. U-937, mouse peritoneal macrophages and mouse bone marrow derived macrophages are the most active cells to phagocytose the parasites. However, U-937 cell line appears to be the most useful as Leishmania infection model providing an unlimited source of homogeneous host cells with reproducibility of the results, is less time consuming, less expensive and tolerate high doses of first line drugs for human and canine visceral leishmaniasis treatment.
Collapse
Affiliation(s)
- C Maia
- Unidade de Leishmanioses, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, R. da Junqueira, 96, 1349-008 Lisboa, Portugal
| | | | | | | | | |
Collapse
|