1
|
Hill BD, Zak AJ, Raja S, Bugada LF, Rizvi SM, Roslan SB, Nguyen HN, Chen J, Jiang H, Ono A, Goldstein DR, Wen F. iGATE analysis improves the interpretability of single-cell immune landscape of influenza infection. JCI Insight 2024; 9:e172140. [PMID: 38814732 PMCID: PMC11383363 DOI: 10.1172/jci.insight.172140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Influenza poses a persistent health burden worldwide. To design equitable vaccines effective across all demographics, it is essential to better understand how host factors such as genetic background and aging affect the single-cell immune landscape of influenza infection. Cytometry by time-of-flight (CyTOF) represents a promising technique in this pursuit, but interpreting its large, high-dimensional data remains difficult. We have developed a new analytical approach, in silico gating annotating training elucidating (iGATE), based on probabilistic support vector machine classification. By rapidly and accurately "gating" tens of millions of cells in silico into user-defined types, iGATE enabled us to track 25 canonical immune cell types in mouse lung over the course of influenza infection. Applying iGATE to study effects of host genetic background, we show that the lower survival of C57BL/6 mice compared with BALB/c was associated with a more rapid accumulation of inflammatory cell types and decreased IL-10 expression. Furthermore, we demonstrate that the most prominent effect of aging is a defective T cell response, reducing survival of aged mice. Finally, iGATE reveals that the 25 canonical immune cell types exhibited differential influenza infection susceptibility and replication permissiveness in vivo, but neither property varied with host genotype or aging. The software is available at https://github.com/UmichWenLab/iGATE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Judy Chen
- Program in Immunology
- Department of Internal Medicine
| | | | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Fei Wen
- Department of Chemical Engineering
| |
Collapse
|
2
|
Dehau T, Ducatelle R, Immerseel FV, Goossens E. Omics technologies in poultry health and productivity - part 1: current use in poultry research. Avian Pathol 2022; 51:407-417. [PMID: 35675291 DOI: 10.1080/03079457.2022.2086447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host, and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as a key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Brannelly LA, McCallum HI, Grogan LF, Briggs CJ, Ribas MP, Hollanders M, Sasso T, Familiar López M, Newell DA, Kilpatrick AM. Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol Lett 2020; 24:130-148. [PMID: 33067922 DOI: 10.1111/ele.13621] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.
Collapse
Affiliation(s)
- Laura A Brannelly
- Veterinary BioSciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic, 3030, Australia
| | - Hamish I McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Laura F Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia.,Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Maria P Ribas
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia.,Wildlife Conservation Medicine Research Group, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Matthijs Hollanders
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Thais Sasso
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Mariel Familiar López
- School of Environment and Sciences, Griffith University, Gold Coast, Qld., 4215, Australia
| | - David A Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Auston M Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
4
|
Zayed RA, Omran D, Mokhtar DA, Zakaria Z, Ezzat S, Soliman MA, Mobarak L, El-Sweesy H, Emam G. Association of Toll-Like Receptor 3 and Toll-Like Receptor 9 Single Nucleotide Polymorphisms with Hepatitis C Virus Infection and Hepatic Fibrosis in Egyptian Patients. Am J Trop Med Hyg 2017; 96:720-726. [PMID: 28093541 DOI: 10.4269/ajtmh.16-0644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) are recognized as fundamental contributors to the immune system function against infections. Hepatitis C virus (HCV) infection represents a global health problem especially in Egypt having the highest HCV prevalence worldwide where HCV infection is a continuing epidemic. The aim of the present study was to investigate the possible association between genetic variation in TLR-3 and TLR-9 and HCV infection and hepatic fibrosis in chronic HCV-positive Egyptian patients. The present study included 100 naïve chronic HCV-positive patients and 100 age- and sex-matched healthy controls. Genotyping of TLR-3 (_7 C/A [rs3775296]), TLR-3 (c.1377C/T [rs3775290]) and TLR-9 (1237T/C [rs5743836]) were done by polymerase chain reaction restriction fragment length polymorphism technique. Frequency of polymorphic genotypes in TLR-3 (_7 C/A), TLR-3 (c.1377C/T) and TLR-9 (1237T/C) were not significantly different between studied HCV-positive patients and controls with P values 0.121, 0.112, and 0.683, respectively. TLR-3 c.1377 T-allele was associated with advanced stage of hepatic fibrosis (P = 0.003).
Collapse
Affiliation(s)
- Rania A Zayed
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Omran
- Department of Endemic Medicine and Hepato-gastroentrology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doha A Mokhtar
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Zinab Zakaria
- Department of Endemic Medicine and Hepato-gastroentrology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sameera Ezzat
- Community Medicine Department, National Liver Institute, Menofia University, Menofia, Egypt
| | - Mohamed A Soliman
- Specialized Liver Unit, Kasr Alainy Hospital, Cairo University, Cairo, Egypt
| | - Lamiaa Mobarak
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Hossam El-Sweesy
- Tropical Medicine Department, Cairo Fatemic Hospital, Ministry of Health, Cairo, Egypt
| | - Ghada Emam
- Clinical Pathology Department, National Institute of Neuromotor System, Cairo, Egypt
| |
Collapse
|
5
|
Ibarra-Coronado EG, Pantaleón-Martínez AM, Velazquéz-Moctezuma J, Prospéro-García O, Méndez-Díaz M, Pérez-Tapia M, Pavón L, Morales-Montor J. The Bidirectional Relationship between Sleep and Immunity against Infections. J Immunol Res 2015; 2015:678164. [PMID: 26417606 PMCID: PMC4568388 DOI: 10.1155/2015/678164] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/24/2014] [Indexed: 12/31/2022] Open
Abstract
Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.
Collapse
Affiliation(s)
- Elizabeth G. Ibarra-Coronado
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510 México, DF, Mexico
| | - Ana Ma. Pantaleón-Martínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510 México, DF, Mexico
| | - Javier Velazquéz-Moctezuma
- Area de Neurociencias, Departmento de Biología de la Reproduccion, CBS, Universidad Autonoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Col Vicentina, Iztapalapa, 09340 Mexico City, DF, Mexico
| | - Oscar Prospéro-García
- Grupo de Neurociencias, Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México, DF, Mexico
| | - Mónica Méndez-Díaz
- Grupo de Neurociencias, Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México, DF, Mexico
| | - Mayra Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, 11340 México, DF, Mexico
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, IPN Prolongación de Carpio y Plan de Ayala s/n, Col. Sto. Tomás, 11340 México, DF, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, 14370 México, DF, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510 México, DF, Mexico
| |
Collapse
|
6
|
Machida M, Ambrozewicz MA, Breving K, Wellman LL, Yang L, Ciavarra RP, Sanford LD. Sleep and behavior during vesicular stomatitis virus induced encephalitis in BALB/cJ and C57BL/6J mice. Brain Behav Immun 2014; 35:125-34. [PMID: 24055862 PMCID: PMC3959631 DOI: 10.1016/j.bbi.2013.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022] Open
Abstract
Intranasal application of vesicular stomatitis virus (VSV) produces a well-characterized model of viral encephalitis in mice. Within one day post-infection (PI), VSV travels to the olfactory bulb and, over the course of 7 days, it infects regions and tracts extending into the brainstem followed by clearance and recovery in most mice by PI day 14 (PI 14). Infectious diseases are commonly accompanied by excessive sleepiness; thus, sleep is considered a component of the acute phase response to infection. In this project, we studied the relationship between sleep and VSV infection using C57BL/6 (B6) and BALB/c mice. Mice were implanted with transmitters for recording EEG, activity and temperature by telemetry. After uninterrupted baseline recordings were collected for 2 days, each animal was infected intranasally with a single low dose of VSV (5×10(4) PFU). Sleep was recorded for 15 consecutive days and analyzed on PI 0, 1, 3, 5, 7, 10, and 14. Compared to baseline, amounts of non-rapid eye movement sleep (NREM) were increased in B6 mice during the dark period of PI 1-5, whereas rapid eye movement sleep (REM) was significantly reduced during the light periods of PI 0-14. In contrast, BALB/c mice showed significantly fewer changes in NREM and REM. These data demonstrate sleep architecture is differentially altered in these mouse strains and suggests that, in B6 mice, VSV can alter sleep before virus progresses into brain regions that control sleep.
Collapse
Affiliation(s)
- Mayumi Machida
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Marta A. Ambrozewicz
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Kimberly Breving
- Department of Molecular and Cellular Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Laurie L. Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Linghui Yang
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Richard P. Ciavarra
- Department of Molecular and Cellular Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Larry D. Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
7
|
|
8
|
Trammell RA, Liberati TA, Toth LA. Host genetic background and the innate inflammatory response of lung to influenza virus. Microbes Infect 2011; 14:50-8. [PMID: 21920449 DOI: 10.1016/j.micinf.2011.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 07/30/2011] [Accepted: 08/10/2011] [Indexed: 12/15/2022]
Abstract
Many studies of influenza severity have focused on viral properties that confer virulence, whereas the contributory role of the host genetic background on infection severity remains largely unexplored. In this study, we measure the impact of inoculation with influenza virus in four strains of inbred mice - BALB/cByJ, C57BL/6J, A/J, and DBA/2J. To evaluate the extent to which responses are inherent to lung per se, as opposed to effects of the systemic response to lung infection, we also measured cytokines and chemokines in lung slices exposed to the virus in vitro. Finally, we evaluate the in vivo responses of recombinant inbred (RI) and select consomic strains of mice to search for genomic loci that contribute to phenotypic variance in response to influenza infection. We found marked variation among mouse strains after challenge with virus strain A/HKX31(H3N2), consistent with previous reports using more virulent strains. Furthermore, response patterns differ after in vivo versus in vitro exposure of lung to virus, supporting a predominant role of the systemic host inflammatory response in generating the strain differences. These results add to the body of information pointing to host genotype as a crucial factor in mediating the severity of influenza infections.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9616, USA
| | | | | |
Collapse
|
9
|
Durrant C, Swertz MA, Alberts R, Arends D, Möller S, Mott R, Prins P, van der Velde KJ, Jansen RC, Schughart K. Bioinformatics tools and database resources for systems genetics analysis in mice--a short review and an evaluation of future needs. Brief Bioinform 2011; 13:135-42. [PMID: 22396485 PMCID: PMC3294237 DOI: 10.1093/bib/bbr026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During a meeting of the SYSGENET working group ‘Bioinformatics’, currently available software tools and databases for systems genetics in mice were reviewed and the needs for future developments discussed. The group evaluated interoperability and performed initial feasibility studies. To aid future compatibility of software and exchange of already developed software modules, a strong recommendation was made by the group to integrate HAPPY and R/qtl analysis toolboxes, GeneNetwork and XGAP database platforms, and TIQS and xQTL processing platforms. R should be used as the principal computer language for QTL data analysis in all platforms and a ‘cloud’ should be used for software dissemination to the community. Furthermore, the working group recommended that all data models and software source code should be made visible in public repositories to allow a coordinated effort on the use of common data structures and file formats.
Collapse
|
10
|
Microarray analyses of mouse responses to infection by Neospora caninum identifies disease associated cellular pathways in the host response. Mol Biochem Parasitol 2010; 174:117-27. [PMID: 20817048 DOI: 10.1016/j.molbiopara.2010.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 11/20/2022]
Abstract
Neospora caninum is a coccidian cyst-forming parasite found in a wide range of host species such as mice, dogs and cattle. The development of methods such as vaccines to prevent abortion and fetal loss due to neosporosis would be greatly assisted by further knowledge on immunity and host responses to infection. In this study we used microarray technology to investigate the protective host responses occurring at 6h post infection in the spleen of mice infected with a prototype live N. caninum vaccine. Naive non-pregnant mice were infected with the NC-Nowra isolate as such infections are known to induce protective host responses that will prevent transplacental transmission of a challenge given using pregnancy. The expression data was analysed by SAM (significance of microarrays), ANOVA and clustering methods. Gene lists were investigated for enrichment of gene ontology terms by functional annotation using hypergeometric tests. The results show that Qs and BALB/c mice infected with NC-Nowra differ in their transcriptional responses to infection and these affect a wide range of biological and molecular processes. Transcriptional changes in the Jak-STAT signaling pathway (as well as Irf and other IFN-γ regulated molecules such as GTPases) confirmed the influence of IFN-γ in the mouse response to N. caninum. Gene ontology analyses also assigned some of the molecules involved to well known disease pathways associated with cancer, Parkinson's and Alzheimer's diseases, which were linked to the cell cycle, mitochondrial electron transport chain and coupled proton transport pathways amongst others. Although infection of mice with NC-Nowra causes little or no signs of clinical disease, the molecular functions, processes and pathways identified through these studies clearly warrant further investigation for their role in the development of protective immunity as well as pathogenesis. These studies therefore provide new, exciting leads by which to study neosporosis.
Collapse
|
11
|
Petersen L, Andersen PK, Sørensen TIA. Genetic influences on incidence and case-fatality of infectious disease. PLoS One 2010; 5:e10603. [PMID: 20498716 PMCID: PMC2871036 DOI: 10.1371/journal.pone.0010603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/22/2010] [Indexed: 11/25/2022] Open
Abstract
Background Family, twin and adoption studies suggest that genetic susceptibility contributes to familial aggregation of infectious diseases or to death from infections. We estimated genetic and shared environmental influences separately on the risk of acquiring an infection (incidence) and on dying from it (case fatality). Methods Genetic influences were estimated by the association between rates of hospitalization for infections and between case-fatality rates of adoptees and their biological full- and half- siblings. Familial environmental influences were investigated in adoptees and their adoptive siblings. Among 14,425 non-familial adoptions, granted in Denmark during the period 1924–47, we selected 1,603 adoptees, who had been hospitalized for infections and/or died with infection between 1977 and 1993. Their siblings were considered predisposed to infection, and compared with non-predisposed siblings of randomly selected 1,348 adoptees alive in 1993 and not hospitalized for infections in the observation period. The risk ratios presented were based on a Cox regression model. Results Among 9971 identified siblings, 2829 had been hospitalised for infections. The risk of infectious disease was increased among predisposed compared with non-predisposed in both biological (1.18; 95% confidence limits 1.03–1.36) and adoptive siblings (1.23; 0.98–1.53). The risk of a fatal outcome of the infections was strongly increased (9.36; 2.94–29.8) in biological full siblings, but such associations were not observed for the biological half siblings or for the adoptive siblings. Conclusion Risk of getting infections appears to be weakly influenced by both genetically determined susceptibility to infection and by family environment, whereas there appears to be a strong non-additive genetic influence on risk of fatal outcome.
Collapse
Affiliation(s)
- Liselotte Petersen
- National Centre for Register-Based Research, University of Aarhus, Aarhus, Denmark.
| | | | | |
Collapse
|
12
|
Verschoor CP, Pant SD, Schenkel FS, Sharma BS, Karrow NA. SNPs in the bovine IL-10 receptor are associated with somatic cell score in Canadian dairy bulls. Mamm Genome 2009; 20:447-54. [PMID: 19641966 DOI: 10.1007/s00335-009-9198-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
Altering the balance between pro- and anti-inflammatory responses can influence an animal's susceptibility to acute or chronic inflammatory disease; bovine mastitis is no exception. Genetic variation in the form of single nucleotide polymorphisms (SNPs) may alter the function and expression of genes that regulate inflammation, making them important candidates for defining an animal's risk of developing acute or chronic mastitis. The objective of the present study was to identify SNPs in genes that regulate anti-inflammatory responses and test their association with estimated breeding values (EBVs) for somatic cell score (SCS), a trait highly correlated with the incidence of mastitis. These genes included bovine interleukin-10 (IL-10) and its receptor (IL-10R), and transforming growth factor beta1 (TGF-beta1) and its receptor (TGF-betaR). Sequencing-pooled DNA allowed for the identification of SNPs in IL-10 (n = 2), IL-10Ralpha (n = 6) and beta (n = 2), and TGF-beta1 (n = 1). These SNPs were subsequently genotyped in a cohort of Holstein (n = 500), Jersey (n = 83), and Guernsey (n = 50) bulls. Linear regression analysis identified significant SNP effects for IL-10Ralpha 1185C>T with SCS. Haplotype IL-10Ralpha AAT showed a significant effect on increasing SCS compared to the most common haplotype. The results presented here indicate that SNPs in IL-10Ralpha may contribute to variation in the SCS of dairy cattle. Although functional studies are necessary to ascertain whether these SNPs are causal polymorphisms or merely in linkage with the true causal SNP(s), a selection program incorporating these markers could have a beneficial influence on the average SCS and productivity of a dairy herd.
Collapse
Affiliation(s)
- Chris P Verschoor
- Department of Animal and Poultry Science, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, N1G 2W1, ON, Canada.
| | | | | | | | | |
Collapse
|
13
|
cDNA sequencing and expression of Nramp1 (Slc11a1) in dogs phenotypically resistant or susceptible to visceral leishmaniasis. Vet Immunol Immunopathol 2009; 127:332-9. [DOI: 10.1016/j.vetimm.2008.10.335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 07/28/2008] [Accepted: 10/31/2008] [Indexed: 11/18/2022]
|
14
|
Trammell RA, Toth LA. Genetic susceptibility and resistance to influenza infection and disease in humans and mice. Expert Rev Mol Diagn 2008; 8:515-29. [PMID: 18598231 DOI: 10.1586/14737159.8.4.515] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although genetic risk factors for influenza infection have not yet been defined in people, differences in genetic background and related variation in the response to infection, as well as viral virulence, are all likely to influence both the likelihood of infection and disease severity. However, apart from characterization of viral binding sites in avian and mammalian hosts, relatively little investigation has focused on host genetic determinants of susceptibility or resistance to infection, or the severity of the associated disease in humans or other species. Similarly, the role of genetic background in the generation of an efficacious immune response to either infection or vaccination has not been extensively evaluated. However, genetic influences on susceptibility and resistance to numerous infectious agents and on the resultant host inflammatory and immune responses are well established in both humans and other animals. Mouse-adapted strains of human influenza viruses and the use of inbred strains of laboratory mice have supported extensive characterization of the pathogenesis and immunology of influenza virus infections. Like individual humans, inbred strains of mice vary in their reactions to influenza infection, particularly with regard to the inflammatory response and disease severity, supporting the potential use of these mice as a valuable surrogate for human genetic variation. Relying heavily on what we have learned from mice, this overview summarizes existing animal, human and epidemiologic data suggestive of host genetic influences on influenza infection.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9616, USA.
| | | |
Collapse
|
15
|
Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection. Infect Immun 2008; 76:4745-56. [PMID: 18678664 DOI: 10.1128/iai.00341-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genetically regulated mechanisms of host defense against Cryptococcus neoformans infection are not well understood. In this study, pulmonary infection with the moderately virulent C. neoformans strain 24067 was used to compare the host resistance phenotype of C57BL/6J with that of inbred mouse strain SJL/J. At 7 days or later after infection, C57BL/6J mice exhibited a significantly greater fungal burden in the lungs than SJL/J mice. Characterization of the pulmonary innate immune response at 3 h after cryptococcal infection revealed that resistant SJL/J mice exhibited significantly higher neutrophilia, with elevated levels of inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and keratinocyte-derived chemokine (KC)/CXCL1 in the airways, as well as increased whole-lung mRNA expression of chemokines KC/CXCL1, MIP-1alpha/CCL3, MIP-1beta/CCL4, MIP-2/CXCL2, and MCP-1/CCL2 and cytokines interleukin 1beta (IL-1beta) and IL-1Ra. At 7 and 14 days after infection, SJL/J mice maintained significantly higher levels of TNF-alpha and KC/CXCL1 in the airways and exhibited a Th1 response characterized by elevated levels of lung gamma interferon (IFN-gamma) and IL-12/IL-23p40, while C57BL/6J mice exhibited Th2 immunity as defined by eosinophilia and IL-4 production. Alveolar and resident peritoneal macrophages from SJL/J mice also secreted significantly greater amounts of TNF-alpha and KC/CXCL1 following in vitro stimulation with C. neoformans. Intracellular signaling analysis demonstrated that TNF-alpha and KC/CXCL1 production was regulated by NF-kappaB and phosphatidylinositol 3 kinase in both strains; however, SJL/J macrophages exhibited heightened and prolonged activation in response to C. neoformans infection compared to that of C57BL/6J. Taken together, these data demonstrate that an enhanced innate immune response against pulmonary C. neoformans infection in SJL/J mice is associated with natural resistance to progressive infection.
Collapse
|
16
|
Richer E, Qureshi ST, Vidal SM, Malo D. Chemical mutagenesis: a new strategy against the global threat of infectious diseases. Mamm Genome 2008; 19:309-17. [PMID: 18560940 DOI: 10.1007/s00335-008-9114-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
The perpetual evolution of drug-resistant microbes, the overwhelming burden of acquired immune suppression due to HIV, the emergence or re-emergence of various pathogens (West Nile virus, pandemic influenza, Creutzfeld-Jacob disease), and increased fears of bioterrorism has drawn a great deal of new attention to infectious diseases. The pathogenesis of infection is characterized by complex interactions of potentially virulent microorganisms with host genetic and acquired factors. Chemical mutagenesis of the mouse genome provides a robust method to unravel this challenging problem. To deepen our understanding of the natural host response to pathogens, our team and others are interrogating the mouse genome to define genes that are crucial to the defense against infectious diseases (pathogen recognition, viral defense, bacterial defense, prion infection). In this review we highlight the current progress of these efforts and propose a toolbox for other groups that are interested in this endeavor.
Collapse
Affiliation(s)
- Etienne Richer
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
17
|
Abstract
Forward genetics is an experimental approach in which gene mapping and positional cloning are used to elucidate the molecular mechanisms underlying phenotypic differences between two individuals for a given trait. This strategy has been highly successful for the study of inbred mouse strains that show differences in innate susceptibility to bacterial, parasitic, fungal, and viral infections. Over the past 20 years, these studies have led to the identification of a number of cell populations and critical biochemical pathways and proteins that are essential for the early detection of and response to invading pathogens. Strikingly, the macrophage is the point of convergence for many of these genetic studies. This has led to the identification of diverse pathways involved in extracellular and intracellular pathogen recognition, modification of the properties and content of phagosomes, transcriptional response, and signal transduction for activation of adaptive immune mechanisms. In models of viral infections, elegant genetic studies highlighted the pivotal role of natural killer cells in the detection and destruction of infected cells.
Collapse
Affiliation(s)
- S M Vidal
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
18
|
Cheng PL, Eng HL, Chou MH, You HL, Lin TM. Genetic polymorphisms of viral infection-associated Toll-like receptors in Chinese population. Transl Res 2007; 150:311-8. [PMID: 17964520 DOI: 10.1016/j.trsl.2007.03.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 12/22/2022]
Abstract
Toll-like receptors (TLRs) play a pivotal role in an innate immunity system, which controls inflammation responses and further instructs development of adaptive immunity. We enrolled 250 Han Chinese in Taiwan screening for the single nucleotide polymorphisms (SNPs) in TLRs associated with viral infection, including TLR2, TLR3, TLR4, TLR7, TLR8, and TLR9. The 6 SNPs not hitherto identified in Chinese populations, including TLR3 1377 C>T, TLR3 -7 C>A, TLR7 Gln11Leu, TLR7 IVS1+1817 G>T, TLR8 Met1Val, and TLR8 -129 G>C, had minor allele frequencies of 38%, 23%, 22.3%, 3%, 16.0%, and 16.0%, respectively. The frequencies of 2 common SNPs, TLR9, -1486 T>C and 2848 G>A, were 28% and 44%, respectively. As compared with other ethnic populations, Chinese displayed an opposite allele frequency of TLR8 Met1Val and TLR8 -129 G>C to Caucasians and African Americans. In addition, TLR2 Arg677Try, TLR2 Arg753Gln, TLR4 Asp299Gly, and TLR4 Thr399Ile that were apparent in approximately 10% of Caucasians were not detected in Chinese. In conclusion, obvious ethnic differences in TLR polymorphisms may in part reflect the ethnic diversity of host viral susceptibility.
Collapse
Affiliation(s)
- Pei-Lin Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Schnappinger D, Ehrt S. Introduction: genomic approaches in infectious diseases. Microbes Infect 2006; 8:1611-2. [PMID: 16697238 DOI: 10.1016/j.micinf.2005.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 11/30/2005] [Indexed: 11/19/2022]
|