1
|
van den Berg DF, Costa AR, Esser JQ, Stanciu I, Geissler JQ, Zoumaro-Djayoon AD, Haas PJ, Brouns SJJ. Bacterial homologs of innate eukaryotic antiviral defenses with anti-phage activity highlight shared evolutionary roots of viral defenses. Cell Host Microbe 2024; 32:1427-1443.e8. [PMID: 39094584 DOI: 10.1016/j.chom.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism. Searching for phage defense systems related to innate antiviral genes from vertebrates and plants, we uncovered over 450 candidates. We validated six of these phage defense systems, including factors preventing viral attachment, R-loop-acting enzymes, the inflammasome, ubiquitin pathway, and pathogen recognition signaling. Collectively, these defense systems support the concept of deep evolutionary links and shared antiviral mechanisms between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jelger Q Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ilinka Stanciu
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jasper Q Geissler
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | | | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
2
|
Apaza CJ, Días M, García Tejedor A, Boscá L, Laparra Llopis JM. Contribution of Nucleotide-Binding Oligomerization Domain-like (NOD) Receptors to the Immune and Metabolic Health. Biomedicines 2024; 12:341. [PMID: 38397943 PMCID: PMC10886542 DOI: 10.3390/biomedicines12020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Nucleotide-binding oligomerization domain-like (NOD) receptors rely on the interface between immunity and metabolism. Dietary factors constitute critical players in the activation of innate immunity and modulation of the gut microbiota. The latter have been involved in worsening or improving the control and promotion of diseases such as obesity, type 2 diabetes, metabolic syndrome, diseases known as non-communicable metabolic diseases (NCDs), and the risk of developing cancer. Intracellular NODs play key coordinated actions with innate immune 'Toll-like' receptors leading to a diverse array of gene expressions that initiate inflammatory and immune responses. There has been an improvement in the understanding of the molecular and genetic implications of these receptors in, among others, such aspects as resting energy expenditure, insulin resistance, and cell proliferation. Genetic factors and polymorphisms of the receptors are determinants of the risk and severity of NCDs and cancer, and it is conceivable that dietary factors may have significant differential consequences depending on them. Host factors are difficult to influence, while environmental factors are predominant and approachable with a preventive and/or therapeutic intention in obesity, T2D, and cancer. However, beyond the recognition of the activation of NODs by peptidoglycan as its prototypical agonist, the underlying molecular response(s) and its consequences on these diseases remain ill-defined. Metabolic (re)programming is a hallmark of NCDs and cancer in which nutritional strategies might play a key role in preventing the unprecedented expansion of these diseases. A better understanding of the participation and effects of immunonutritional dietary ingredients can boost integrative knowledge fostering interdisciplinary science between nutritional precision and personalized medicine against cancer. This review summarizes the current evidence concerning the relationship(s) and consequences of NODs on immune and metabolic health.
Collapse
Affiliation(s)
- César Jeri Apaza
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco, 8, 28049 Madrid, Spain;
| | - Marisol Días
- Center of Biological Enginneering (CEB), Iberian Nantotechnology Laboratory (INL), University of Minho, 4715-330 Braga, Portugal;
| | - Aurora García Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia (VIU), Pintor Sorolla 21, 46002 Valencia, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - José Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco, 8, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Zhang S, Liu C, Sun J, Li Y, Lu J, Xiong X, Hu L, Zhao H, Zhou H. Bridging the Gap: Investigating the Link between Inflammasomes and Postoperative Cognitive Dysfunction. Aging Dis 2023; 14:1981-2002. [PMID: 37450925 PMCID: PMC10676784 DOI: 10.14336/ad.2023.0501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/01/2023] [Indexed: 07/18/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a cluster of cognitive problems that may arise after surgery. POCD symptoms include memory loss, focus inattention, and communication difficulties. Inflammasomes, intracellular multiprotein complexes that control inflammation, may have a significant role in the development of POCD. It has been postulated that the NLRP3 inflammasome promotes cognitive impairment by triggering the inflammatory response in the brain. Nevertheless, there are many gaps in the current literature to understand the underlying pathophysiological mechanisms and develop future therapy. This review article underlines the limits of our current knowledge about the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome and POCD. We first discuss inflammasomes and their types, structures, and functions, then summarize recent evidence of the NLRP3 inflammasome's involvement in POCD. Next, we propose a hypothesis that suggests the involvement of inflammasomes in multiple organs, including local surgical sites, blood circulation, and other peripheral organs, leading to systemic inflammation and subsequent neuronal dysfunction in the brain, resulting in POCD. Research directions are then discussed, including analyses of inflammasomes in more clinical POCD animal models and clinical trials, studies of inflammasome types that are involved in POCD, and investigations into whether inflammasomes occur at the surgical site, in circulating blood, and in peripheral organs. Finally, we discuss the potential benefits of using new technologies and approaches to study inflammasomes in POCD. A thorough investigation of inflammasomes in POCD might substantially affect clinical practice.
Collapse
Affiliation(s)
- Siyu Zhang
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jintao Sun
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Yang Li
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Jian Lu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Heng Zhao
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Hongmei Zhou
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| |
Collapse
|
4
|
Padoan A, Musso G, Contran N, Basso D. Inflammation, Autoinflammation and Autoimmunity in Inflammatory Bowel Diseases. Curr Issues Mol Biol 2023; 45:5534-5557. [PMID: 37504266 PMCID: PMC10378236 DOI: 10.3390/cimb45070350] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
In this review, the role of innate and adaptive immunity in the pathogenesis of inflammatory bowel diseases (IBD) is reported. In IBD, an altered innate immunity is often found, with increased Th17 and decreased Treg cells infiltrating the intestinal mucosa. An associated increase in inflammatory cytokines, such as IL-1 and TNF-α, and a decrease in anti-inflammatory cytokines, such as IL-10, concur in favoring the persistent inflammation of the gut mucosa. Autoinflammation is highlighted with insights in the role of inflammasomes, which activation by exogenous or endogenous triggers might be favored by mutations of NOD and NLRP proteins. Autoimmunity mechanisms also take place in IBD pathogenesis and in this context of a persistent immune stimulation by bacterial antigens and antigens derived from intestinal cells degradation, the adaptive immune response takes place and results in antibodies and autoantibodies production, a frequent finding in these diseases. Inflammation, autoinflammation and autoimmunity concur in altering the mucus layer and enhancing intestinal permeability, which sustains the vicious cycle of further mucosal inflammation.
Collapse
Affiliation(s)
- Andrea Padoan
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Musso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Nicole Contran
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
5
|
Weiss HJ, O’Neill LAJ. Of Flies and Men—The Discovery of TLRs. Cells 2022; 11:cells11193127. [PMID: 36231089 PMCID: PMC9563146 DOI: 10.3390/cells11193127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
In 2011, the Nobel Prize in Physiology or Medicine was awarded to three immunologists: Bruce A. Beutler, Jules A. Hoffmann, and Ralph M. Steinman. While Steinman was honored for his work on dendritic cells and adaptive immunity, Beutler and Hoffman received the prize for their contributions to discoveries in innate immunity. In 1996, Hoffmann found the toll gene to be crucial for mounting antimicrobial responses in fruit flies, first implicating this developmental gene in immune signaling. Two years later, Beutler built on this observation by describing a Toll-like gene, tlr4, as the receptor for the bacterial product LPS, representing a crucial step in innate immune activation and protection from bacterial infections in mammals. These publications spearheaded research in innate immune sensing and sparked a huge interest regarding innate defense mechanisms in the following years and decades. Today, Beutler and Hoffmann’s research has not only resulted in the discovery of the role of multiple TLRs in innate immunity but also in a much broader understanding of the molecular components of the innate immune system. In this review, we aim to collect the discoveries leading up to the publications of Beutler and Hoffmann, taking a close look at how early advances in both developmental biology and immunology converged into the research awarded with the Nobel Prize. We will also discuss how these discoveries influenced future research and highlight the importance they hold today.
Collapse
|
6
|
P R, Ramireddy S, Chakraborty S, Mukherjee S, J S, C S. Structural localization of pathogenic mutations in the central nucleotide-binding domain (NBD) of nucleotide-binding oligomerization domain-2 (NOD2) protein and their inference in inflammatory disorders. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:1198-1219. [PMID: 34622739 DOI: 10.1080/15257770.2021.1986719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The human NBD domain which is centrally located in the NOD2 protein displays an essential role in oligomerization and initiates the immune response via CARD-RIPK2 interaction. The mutations associated with the NBD domain have been largely implicated in inflammatory disorders such as Blau syndrome and sarcoidosis. This study aims to determine the structural and phenotypic effect of a lethal mutation that occurs in the NBD domain which has an axiomatic impact on protein dysfunction. Initially, the most deleterious missense mutations were screened through various in silico analysis. Out of 33 variants, I-Mutant 3.0, SIFT, PolyPhen 2, Align GVGD, PHD SNP and SNP&GO have statistically identified 5 variants (R42W, D90E, E91K, G189D & W198L) as less stable, deleterious and damaging. Our predicted models have paved the way to understand the various structural properties such as physiochemical, secondary structural arrangements and stabilizing residues in folding associated with the native and mutant NBD domain especially of the functionally important regions. From the aforementioned results, R42W and G189D were found to be the more predominant among the mutants. Precisely, through molecular simulation, we have strongly justified the significant conformational disruption of R42W and G189D through the stabilization factors, folding and essential dynamics. Conclusively, these regions (α341-44, α13185-191 and β6133-143β7) seem to adopt such structures that are not conducive to wild-type-like functionality. Our prediction and validation of lethal mutations based on structural stability may be useful for conducting experimental studies in detail to uncover the protein deregulation leading to inflammatory disorders.
Collapse
Affiliation(s)
- Raghuraman P
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Sriroopreddy Ramireddy
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Sulagno Chakraborty
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Sayani Mukherjee
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Sreeshma J
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Sudandiradoss C
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
7
|
Structural and Evolutionary Adaptation of NOD-Like Receptors in Birds. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5546170. [PMID: 33997004 PMCID: PMC8105094 DOI: 10.1155/2021/5546170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
NOD-like receptors (NLRs) are intracellular sensors of the innate immune system that recognize intracellular pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Little information exists regarding the incidence of positive selection in the evolution of NLRs of birds or the structural differences between bird and mammal NLRs. Evidence of positive selection was identified in four avian NLRs (NOD1, NLRC3, NLRC5, and NLRP3) using the maximum likelihood approach. These NLRs are under different selection pressures which is indicative of different evolution patterns. Analysis of these NLRs showed a lower percentage of codons under positive selection in the LRR domain than seen in the studies of Toll-like receptors (TLRs), suggesting that the LRR domain evolves differently between NLRs and TLRs. Modeling of human, chicken, mammalian, and avian ancestral NLRs revealed the existence of variable evolution patterns in protein structure that may be adaptively driven.
Collapse
|
8
|
Fereig RM, Nishikawa Y. From Signaling Pathways to Distinct Immune Responses: Key Factors for Establishing or Combating Neospora caninum Infection in Different Susceptible Hosts. Pathogens 2020; 9:E384. [PMID: 32429367 PMCID: PMC7281608 DOI: 10.3390/pathogens9050384] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
: Neospora caninum is an intracellular protozoan parasite affecting numerous animal species. It induces significant economic losses because of abortion and neonatal abnormalities in cattle. In case of infection, the parasite secretes numerous arsenals to establish a successful infection in the host cell. In the same context but for a different purpose, the host resorts to different strategies to eliminate the invading parasite. During this battle, numerous key factors from both parasite and host sides are produced and interact for the maintaining and vanishing of the infection, respectively. Although several reviews have highlighted the role of different compartments of the immune system against N. caninum infection, each one of them has mostly targeted specific points related to the immune component and animal host. Thus, in the current review, we will focus on effector molecules derived from the host cell or the parasite using a comprehensive survey method from previous reports. According to our knowledge, this is the first review that highlights and discusses immune response at the host cell-parasite molecular interface against N. caninum infection in different susceptible hosts.
Collapse
Affiliation(s)
- Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
| |
Collapse
|
9
|
Moltzau Anderson J, Lipinski S, Sommer F, Pan WH, Boulard O, Rehman A, Falk-Paulsen M, Stengel ST, Aden K, Häsler R, Bharti R, Künzel S, Baines JF, Chamaillard M, Rosenstiel P. NOD2 Influences Trajectories of Intestinal Microbiota Recovery After Antibiotic Perturbation. Cell Mol Gastroenterol Hepatol 2020; 10:365-389. [PMID: 32289499 PMCID: PMC7327897 DOI: 10.1016/j.jcmgh.2020.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Loss-of-function variants in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) impair the recognition of the bacterial cell wall component muramyl-dipeptide and are associated with an increased risk for developing Crohn's disease. Likewise, exposure to antibiotics increases the individual risk for developing inflammatory bowel disease. Here, we studied the long-term impact of NOD2 on the ability of the gut bacterial and fungal microbiota to recover after antibiotic treatment. METHODS Two cohorts of 20-week-old and 52-week-old wild-type (WT) C57BL/6J and NOD2 knockout (Nod2-KO) mice were treated with broad-spectrum antibiotics and fecal samples were collected to investigate temporal dynamics of the intestinal microbiota (bacteria and fungi) using 16S ribosomal RNA and internal transcribed spacer 1 sequencing. In addition, 2 sets of germ-free WT mice were colonized with either WT or Nod2-KO after antibiotic donor microbiota and the severity of intestinal inflammation was monitored in the colonized mice. RESULTS Antibiotic exposure caused long-term shifts in the bacterial and fungal community composition. Genetic ablation of NOD2 was associated with delayed body weight gain after antibiotic treatment and an impaired recovery of the bacterial gut microbiota. Transfer of the postantibiotic fecal microbiota of Nod2-KO mice induced an intestinal inflammatory response in the colons of germ-free recipient mice compared with respective microbiota from WT controls based on histopathology and gene expression analyses. CONCLUSIONS Our data show that the bacterial sensor NOD2 contributes to intestinal microbial community composition after antibiotic treatment and may add to the explanation of how defects in the NOD2 signaling pathway are involved in the etiology of Crohn's disease.
Collapse
Affiliation(s)
| | | | - Felix Sommer
- Institute of Clinical Molecular Biology, Kiel, Germany
| | - Wei-Hung Pan
- Institute of Clinical Molecular Biology, Kiel, Germany
| | - Olivier Boulard
- University of Lille, Centre national de la recherche scientifique, Inserm, Centre Hospitalier Universitaire de Lille Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
| | | | | | | | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel, Germany,First Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel, Germany
| | - Richa Bharti
- Institute of Clinical Molecular Biology, Kiel, Germany
| | - Sven Künzel
- Evolutionary Genomics, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - John F. Baines
- Institute for Experimental Medicine, Christian-Albrechts-University, Kiel, Germany,Evolutionary Genomics, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - Mathias Chamaillard
- University of Lille, Centre national de la recherche scientifique, Inserm, Centre Hospitalier Universitaire de Lille Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel, Germany,Correspondence Address correspondence to: Philip Rosenstiel, MD, Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Str. 12, Kiel D-24105, Germany. fax: (49) 4315971842.
| |
Collapse
|
10
|
Domínguez MA, Landi V, Morera L, Martínez A, Jiménez-Marín Á, Garrido JJ. Identification and functional characterization of polymorphisms in promoter sequences of porcine NOD1 and NOD2 genes. Res Vet Sci 2019; 124:310-316. [PMID: 31030118 DOI: 10.1016/j.rvsc.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/17/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
NOD-like receptors (NLRs) play a key role in the innate immune system, acting as a second line of surveillance against pathogens. NLRs detect particular bacteria that have gained access to the cytoplasm, evading recognition by other pattern recognition receptors, such as Toll-like receptors. It has been demonstrated that coding sequence-single nucleotide polymorphisms may alter the ligand recognition ability of NLRs, affecting their pathogen-sensing function. However, there have been no data relating to the identification and functional analysis of SNPs in porcine NLR promoters. We examined the promoter sequences of the porcine NOD1 and NOD2 genes with the aim to identify and to evaluate the effect of genetic variations on promoter activity. Six SNPs in NOD1 and three SNPs in NOD2 were identified. Luciferase reporter gene assays showed significant differences in promoter activity between allele variants of NOD1 -920G>A (NC_010460.4:g.42431413G>A) and NOD2 -1670G>A (NC_010448.4:g.34169122T>C) SNPs. The results suggest that promoter polymorphisms could modify the expression levels of porcine NOD1 and NOD2 genes.
Collapse
Affiliation(s)
- Miguel A Domínguez
- Laboratorio de Genética Molecular y Zoonosis, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma Benito Juárez de Oaxaca, Mexico; Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Vincenzo Landi
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Luis Morera
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Amparo Martínez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Juan J Garrido
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
11
|
Gharagozloo M, Gris KV, Mahvelati T, Amrani A, Lukens JR, Gris D. NLR-Dependent Regulation of Inflammation in Multiple Sclerosis. Front Immunol 2018; 8:2012. [PMID: 29403486 PMCID: PMC5778124 DOI: 10.3389/fimmu.2017.02012] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS.
Collapse
Affiliation(s)
- Marjan Gharagozloo
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Katsiaryna V. Gris
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tara Mahvelati
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Abdelaziz Amrani
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - John R. Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Denis Gris
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Maharana J. Elucidating the interfaces involved in CARD-CARD interactions mediated by NLRP1 and Caspase-1 using molecular dynamics simulation. J Mol Graph Model 2017; 80:7-14. [PMID: 29324327 DOI: 10.1016/j.jmgm.2017.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Inflammasomes are the multi-protein caspase-activating complexes mainly assembled by the sensor proteins (NLRs/ALRs), adaptor molecule (ASC) and effector molecule pro-caspase-1 for the production and release of proinflammatory cytokines, IL-1β and IL-18. NLRP1 is the first NLR known to assemble the multi-protein complex. Unlike NLRP3, NLRP1 has an additional effector binding domain (CARD) at the carboxyl-terminal, which is reported to interact with pro-caspase-1 (precluding the recruitment of ASC) for the transmission of danger signals. So far no direct interaction has been observed between the NLRP1 and CASP1 at the structural level. In this study, an attempt has been made to elucidate the possible mode of interaction(s) between CASP1 and NLRP1 CARDs using structural bioinformatics approaches. The results revealed that the type-Ia patch of CASP1CARD (R10, K11, and R55) is probably the favorable interface for 1:1 interaction. Moreover, the interactions mediated in the type-II and/(or) type-III interfaces of counter CARDs can also be not ruled out altogether. Overall, the findings of this study can be beneficial in understanding the underlying molecular mechanism(s) associated with NLRP1-mediated inflammasome.
Collapse
Affiliation(s)
- Jitendra Maharana
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India.
| |
Collapse
|
13
|
Kasimsetty SG, Shigeoka AA, Scheinok AA, Gavin AL, Ulevitch RJ, McKay DB. Lack of Both Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2 Primes T Cells for Activation-Induced Cell Death. THE JOURNAL OF IMMUNOLOGY 2017; 199:1196-1205. [PMID: 28652394 DOI: 10.4049/jimmunol.1600667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2-/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2-/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2-/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation.
Collapse
Affiliation(s)
- Sashi G Kasimsetty
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, CA 92093; and
| | - Alana A Shigeoka
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, CA 92093; and
| | - Andrew A Scheinok
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, CA 92093; and
| | - Amanda L Gavin
- Department of Immunology and Microbial Sciences, Scripps Research Institute, La Jolla, CA 92037
| | - Richard J Ulevitch
- Department of Immunology and Microbial Sciences, Scripps Research Institute, La Jolla, CA 92037
| | - Dianne B McKay
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, CA 92093; and
| |
Collapse
|
14
|
Raghuraman P, Jesu Jaya Sudan R, Lesitha Jeeva Kumari J, Sudandiradoss C. Casting the critical regions in nucleotide binding oligomerization domain 2 protein: a signature mediated structural dynamics approach. J Biomol Struct Dyn 2016; 35:3297-3315. [PMID: 27790943 DOI: 10.1080/07391102.2016.1254116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleotide binding oligomerization domain 2 (NOD2), a protein involved in the first line defence mechanism has a pivotal role in innate immunity. Impaired function of this protein is implicated in disorders such as Blau syndrome and Crohn's disease. Since an altered function is linked to protein's structure, we framed a systematic strategy to interpret the structure-function relationship of the protein. Initiated with mutation-based pattern prediction and identified a distant ortholog (DO) of NOD2 from which the intra-residue interaction network was elucidated. The network was used to identify hotspots that serve as critical points to maintain the stable architecture of the protein. Structural comparison of NOD2 domains with a DO revealed the minimal number of intra-protein interactions required by the protein to maintain the structural fold. In addition, the conventional molecular dynamics simulation emphasized the conformational transitions at hot spot residues between native NOD2 domains and its respective mutants (G116R, R42W and R54A) structures. The analysis of intra-protein interactions globally and the displacement of residues locally around the mutational site revealed loss of several critical bonds and residues vital for the protein's function. Conclusively we report, about 10 residues in leucine-rich repeat, 13 residues in NOD and 6 residues in CARD domain are required by the NOD2 to maintain its function. This protocol will help the researchers to achieve for more prospective studies to attest druggable site utility in discovering novel drug candidates.
Collapse
Affiliation(s)
- P Raghuraman
- a Department of Biotechnology , School of Bioscience and Technology, VIT University , Vellore 632301 , India
| | - R Jesu Jaya Sudan
- a Department of Biotechnology , School of Bioscience and Technology, VIT University , Vellore 632301 , India
| | - J Lesitha Jeeva Kumari
- a Department of Biotechnology , School of Bioscience and Technology, VIT University , Vellore 632301 , India
| | - C Sudandiradoss
- a Department of Biotechnology , School of Bioscience and Technology, VIT University , Vellore 632301 , India
| |
Collapse
|
15
|
Martino L, Holland L, Christodoulou E, Kunzelmann S, Esposito D, Rittinger K. The Biophysical Characterisation and SAXS Analysis of Human NLRP1 Uncover a New Level of Complexity of NLR Proteins. PLoS One 2016; 11:e0164662. [PMID: 27727326 PMCID: PMC5058472 DOI: 10.1371/journal.pone.0164662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/28/2016] [Indexed: 12/02/2022] Open
Abstract
NOD-like receptors represent an important class of germline-encoded pattern recognition receptors that play key roles in the regulation of inflammatory signalling pathways. They function as danger sensors and initiate inflammatory responses and the production of cytokines. Since NLR malfunction results in chronic inflammation and auto-immune diseases, there is a great interest in understanding how they work on a molecular level. To date, a lot of insight into the biological functions of NLRs is available but biophysical and structural studies have been hampered by the difficulty to produce soluble and stable recombinant NLR proteins. NLRP1 is an inflammasome forming NLR that is believed to be activated by binding to MDP and induces activation of caspase 1. Here, we report the identification of a soluble fragment of NLRP1 that contains the NACHT oligomerization domain and the putative MDP-sensing LRR domain. We describe the biophysical and biochemical characterization of this construct and a SEC-SAXS analysis that allowed the calculation of a low resolution molecular envelope. Our data indicate that the protein is constitutively bound to ATP with a negligible ability to hydrolyse the triphosphate nucleotide and that it adopts a monomeric extended conformation that is reminiscent of the structure adopted by NLRC4 in the inflammasome complex. Furthermore, we show that the presence of MDP is not sufficient to promote self-oligomerization of the NACHT-LRR fragment suggesting that MDP may either bind to regions outside the NACHT-LRR module or that it may not be the natural ligand of NLRP1. Taken together, our data suggest that the NLRP1 mechanism of action differs from that recently reported for other NLRs.
Collapse
Affiliation(s)
- Luigi Martino
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Louise Holland
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Diego Esposito
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| |
Collapse
|
16
|
Øyri SF, Műzes G, Sipos F. Dysbiotic gut microbiome: A key element of Crohn's disease. Comp Immunol Microbiol Infect Dis 2015; 43:36-49. [PMID: 26616659 DOI: 10.1016/j.cimid.2015.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/06/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
Since the first publication on "regional ileitis", the relevance of this chronic inflammatory disease condition termed finally as Crohn's disease is continuously increasing. Although we are beginning to comprehend certain aspects of its pathogenesis, many facets remain unexplored. Host's gut microbiota is involved in a wide range of physiological and pathological processes including immune system development, and pathogen regulation. Further, the microbiome is thought to play a key role in Crohn's disease. The presence of Crohn's-associated variants of NOD2 and ATG16L genes appears to be associated not only with alterations of mucosal barrier functions, and bacterial killing, but the gut microbiota, as well, reflecting a potential relationship between the host's genotype and intestinal dysbiosis, involved in disease etiology. This review aims to characterize some exciting new aspect of Crohn's disease pathology, focusing mainly on the role of intestinal microbes, and their interplay with the immune system of the host.
Collapse
Affiliation(s)
- Styrk Furnes Øyri
- Faculty of Medicine, Semmelweis University, Szentkirályi Street 46, 1088 Budapest, Hungary.
| | - Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, 1088 Budapest, Hungary.
| | - Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, 1088 Budapest, Hungary.
| |
Collapse
|
17
|
Ma G, Shi B, Liu J, Zhang H, YinTao Z, Lou X, Liang D, Hou Y, Wan S, Yang W. Nod2-Rip2 Signaling Contributes to Intestinal Injury Induced by Muramyl Dipeptide Via Oligopeptide Transporter in Rats. Dig Dis Sci 2015; 60:3264-70. [PMID: 26138652 DOI: 10.1007/s10620-015-3762-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/10/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS PepT1 can transport bacterial oligopeptide products and induce intestinal inflammation. Our aim was to investigate the mechanism of the small intestine injury induced by bacterial oligopeptide product muramyl dipeptide (MDP) which is transported by PepT1. METHODS We perfused the jejunum with a solution with or without MDP, or with a solution of MDP + Gly-Gly and explored the degree of inflammation to determine the role of PepT1-Nod2 signaling pathway in small intestine mucosa. RESULTS MDP perfusion induced inflammatory cell accumulation and intestinal damage, accompanied by an increase in mucosal Nod2 and Rip2 transcript expression. NFκB activity and inflammatory cytokine expression, including serum levels of TNF-α, IL-1β, and IL-6, increased in the MDP group compared to the controls; these effects were reversed by perfusion of the nutritional dipeptide Gly-Gly. CONCLUSION MDP can be transported through PepT1, causing inflammatory damage in the rat small intestine. Nod2-Rip2-NFκB signaling involved in the small intestinal inflammatory injury caused by MDP which is transported through PepT1.
Collapse
Affiliation(s)
- Guoguang Ma
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Bin Shi
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China.
| | - Jingquan Liu
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Hongze Zhang
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Zijun YinTao
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Xiaoli Lou
- Department of Central Laboratory, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, Shanghai, 201600, China
| | - Dongyu Liang
- Department of Central Laboratory, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, Shanghai, 201600, China
| | - Yanqiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, Shanghai, 201600, China
| | - Shengxia Wan
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| | - Wanhua Yang
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiao Tong University, No. 746, Zhongshan Road, Shanghai, 201600, China
| |
Collapse
|
18
|
The role of NOD1/CARD4 and NOD2/CARD15 genetic variations in lung cancer risk. Inflamm Res 2015; 64:775-9. [PMID: 26238283 DOI: 10.1007/s00011-015-0859-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND AIM NOD1/CARD4 and NOD2/CARD15 are members of the Nod-like receptor (NLR) family, and they contain a caspase recruitment domain (CARD). NLRs are located in the cytosol where they bind bacterial and viral ligands and play a key role in the innate and adaptive immune response, apoptosis, autophagy, and reactive oxygen species generation. NLR gene polymorphisms may shift the balance between pro- and anti-inflammatory cytokines and modulate the risk of infection, chronic inflammation, and cancer. NOD1/CARD4 and NOD2/CARD15 gene polymorphisms may also be associated with altered risks for many cancer types. The aim of our study was to evaluate the potential associations between lung cancer and NOD1/CARD4 and NOD2/CARD15 polymorphisms. METHOD The NOD1/CARD4 (rs5743336) and NOD2/CARD15 (rs2066847) SNPs were analyzed by PCR restriction fragment-length polymorphism analysis (PCR-RFLP) in 260 subjects (lung cancer patients: n = 160; healthy controls: n = 100) of Turkish origin. PCR products were digested with AvaI for rs5743336 and ApaI for rs2066847 and then visualized. RESULTS Comparisons of the genotypes between control and lung cancer patients were performed by Chi-square tests. We found a significant difference in the genotypic distribution of the rs5743336 variant of NOD1/CARD4 between lung cancer patients and controls (p = 0.010, χ (2) = 9.220). However, we did not identify any statistically significant difference for the p.Leu1007fsX1008 (rs2066847) genotype of NOD2/CARD15 between groups (p > 0.05). CONCLUSION According to our data, the rs5743336 variant of the NOD1/CARD4 gene may influence the diagnosis and treatment of lung cancer, whereas the rs2066847 variant of the NOD2/CARD15 gene is not associated with lung cancer risk in the Turkish population.
Collapse
|
19
|
Wagner KB, Felix SB, Riad A. Innate immune receptors in heart failure: Side effect or potential therapeutic target? World J Cardiol 2014; 6:791-801. [PMID: 25228958 PMCID: PMC4163708 DOI: 10.4330/wjc.v6.i8.791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/18/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a leading cause of mortality and morbidity in western countries and occasions major expenses for public health systems. Although optimal medical treatment is widely available according to current guidelines, the prognosis of patients with HF is still poor. Despite the etiology of the disease, increased systemic or cardiac activation of the innate immune system is well documented in several types of HF. In some cases there is evidence of an association between innate immune activation and clinical outcome of patients with this disease. However, the few large trials conducted with the use of anti-inflammatory medication in HF have not revealed its benefits. Thus, greater understanding of the relationship between alteration in the immune system and development and progression of HF is urgently necessary: prior to designing therapeutic interventions that target pathological inflammatory processes in preventing harmful cardiac effects of immune modulatory therapy. In this regard, relatively recently discovered receptors of the innate immune system, i.e., namely toll-like receptors (TLRs) and nod-like receptors (NLRs)-are the focus of intense cardiovascular research. These receptors are main up-stream regulators of cytokine activation. This review will focus on current knowledge of the role of TLRs and NLRs, as well as on downstream cytokine activation, and will discuss potential therapeutic implications.
Collapse
|
20
|
Zhang X, Lin H, Zhao H, Hao Y, Mort M, Cooper DN, Zhou Y, Liu Y. Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. Hum Mol Genet 2014; 23:3024-34. [PMID: 24436305 DOI: 10.1093/hmg/ddu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small insertions/deletions (INDELs) of ≤21 bp comprise 18% of all recorded mutations causing human inherited disease and are evident in 24% of documented Mendelian diseases. INDELs affect gene function in multiple ways: for example, by introducing premature stop codons that either lead to the production of truncated proteins or affect transcriptional efficiency. However, the means by which they impact post-transcriptional regulation, including alternative splicing, have not been fully evaluated. In this study, we collate disease-causing INDELs from the Human Gene Mutation Database (HGMD) and neutral INDELs from the 1000 Genomes Project. The potential of these two types of INDELs to affect binding-site affinity of RNA-binding proteins (RBPs) was then evaluated. We identified several sequence features that can distinguish disease-causing INDELs from neutral INDELs. Moreover, we built a machine-learning predictor called PinPor (predicting pathogenic small insertions and deletions affecting post-transcriptional regulation, http://watson.compbio.iupui.edu/pinpor/) to ascertain which newly observed INDELs are likely to be pathogenic. Our results show that disease-causing INDELs are more likely to ablate RBP-binding sites and tend to affect more RBP-binding sites than neutral INDELs. Additionally, disease-causing INDELs give rise to greater deviations in binding affinity than neutral INDELs. We also demonstrated that disease-causing INDELs may be distinguished from neutral INDELs by several sequence features, such as their proximity to splice sites and their potential effects on RNA secondary structure. This predictor showed satisfactory performance in identifying numerous pathogenic INDELs, with a Matthews correlation coefficient (MCC) value of 0.51 and an accuracy of 0.75.
Collapse
Affiliation(s)
- Xinjun Zhang
- School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shiau CE, Monk KR, Joo W, Talbot WS. An anti-inflammatory NOD-like receptor is required for microglia development. Cell Rep 2013; 5:1342-52. [PMID: 24316075 PMCID: PMC3878655 DOI: 10.1016/j.celrep.2013.11.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/05/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022] Open
Abstract
Microglia are phagocytic cells that form the basis of the brain's immune system. They derive from primitive macrophages that migrate into the brain during embryogenesis, but the genetic control of microglial development remains elusive. Starting with a genetic screen in zebrafish, we show that the noncanonical NOD-like receptor (NLR) nlrc3-like is essential for microglial formation. Although most NLRs trigger inflammatory signaling, nlrc3-like acts cell autonomously in microglia precursor cells to suppress unwarranted inflammation in the absence of overt immune challenge. In nlrc3-like mutants, primitive macrophages initiate a systemic inflammatory response with increased proinflammatory cytokines and actively aggregate instead of migrating into the brain to form microglia. NLRC3-like requires both its pyrin and NACHT domains, and it can bind the inflammasome component apoptosis-associated speck-like protein. Our studies suggest that NLRC3-like may regulate the inflammasome and other inflammatory pathways. Together, these results demonstrate that NLRC3-like prevents inappropriate macrophage activation, thereby allowing normal microglial development.
Collapse
Affiliation(s)
- Celia E Shiau
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Kelly R Monk
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - William Joo
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - William S Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Characteristic changes in microbial community composition and expression of innate immune genes in acute appendicitis. Innate Immun 2013; 21:30-41. [DOI: 10.1177/1753425913515033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Appendicitis represents a common and severe gastrointestinal illness in younger individuals worldwide. The disease is characterized by an excessive inflammatory response and it is believed that bacterial overgrowth due to blockage of the appendix lumen might be involved. Despite the high incidence, only limited data on the pathophysiological changes exist; in particular, the innate immune responses involved are largely unknown. Real-time PCR analysis of tissue samples from inflamed and normal appendices demonstrated differentially regulated expression patterns of epithelial-derived antimicrobial peptides (AMP). The α-defensins human neutrophil peptides 1–3, HD5 and HD6, as well as the two β-defensins, human β-defensins (hBD)-2 and hBD-3, were up-regulated, whereas hBD-1 was down-regulated in acute appendicitis. Expression of upstream regulators of AMP expression, NOD-2 and TLRs 1, 2, 4, 5, 7, 8 and 10 was significantly increased as detected by real-time PCR. Finally, we confirmed the involvement of the pro-inflammatory cytokines IL-1β and IL-8, and detected characteristic changes in microbial community composition in appendicitis tissue specimens by 16S rDNA based detection techniques. In this study, we demonstrate a differential regulation of the innate immune system along with an altered bacterial diversity in acute appendicitis.
Collapse
|
23
|
Tao JH, Zhang Y, Li XP. P2X7R: a potential key regulator of acute gouty arthritis. Semin Arthritis Rheum 2013; 43:376-80. [PMID: 23786870 DOI: 10.1016/j.semarthrit.2013.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Acute gouty arthritis is an inflammatory disease resulting from the precipitation of long-term hyperuricemia-induced monosodium urate (MSU) crystals in joints, which stimulates the production of interleukin-1beta (IL-1β) and initiates an inflammatory reaction. However, some patients having MSU crystals in the joints never develop acute gouty arthritis, indicating that other predisposing factors are required for the disease onset. This review described the mechanism of production of IL-1β by MSU crystals and other possible factors during a gout attack. METHODS The relevant English literature on IL-1β secretion stimulated by MSU crystals and other possible factors during acute gouty arthritis flares was searched and carefully reviewed. RESULTS MSU crystals lead to the onset of acute gouty arthritis mainly through the activation of Toll-like receptors (TLRs) and NACHT-LRR-PYD-containing protein 3 (NALP3) inflammasome signaling and downstream IL-1β production. The predisposing factors of acute gouty arthritis, such as strenuous exercise, cold, alcolholism, and overeating have a common characteristic inducing dramatic changes of adenosine triphosphate (ATP) in the body. The ATP changes can activate the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R) signaling system to regulate IL-1β secretion. CONCLUSIONS We hypothesize that acute gouty arthritis is induced by two synergistic effects; one is the stimulation of MSU crystals and the other is the activation of P2X7R signaling pathways by extracellular ATP changes, which together lead to the production of IL-1β and the initiation of acute gouty arthritis. This hypothesis will provide a new avenue for the prevention and treatment of acute gouty arthritis.
Collapse
Affiliation(s)
- Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Affiliated to Anhui Medical University, No. 17 LuJiang Rd, Hefei 230001, China.
| | | | | |
Collapse
|
24
|
Qiu HN, Wong CK, Chu IMT, Hu S, Lam CWK. Muramyl dipeptide mediated activation of human bronchial epithelial cells interacting with basophils: a novel mechanism of airway inflammation. Clin Exp Immunol 2013; 172:81-94. [PMID: 23480188 DOI: 10.1111/cei.12031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 12/14/2022] Open
Abstract
Respiratory tract bacterial infection can amplify and sustain airway inflammation. Intracytosolic nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is one member of the nucleotide binding and oligomerization domain (NOD)-like receptor (NLR) family, which senses the conserved structural peptidoglycan component muramyl dipeptide (MDP) in almost all bacteria. In the present study, activation of the NOD2 ligand MDP on primary human bronchial epithelial cells (HBE) co-cultured with human basophils was investigated. Cytokines, NOD2, adhesion molecules and intracellular signalling molecules were assayed by enzyme-linked immunosorbent assay or flow cytometry. The protein expression of NOD2 was confirmed in basophils/KU812 cells and HBE/human bronchial epithelial cell line (BEAS-2B) cells. MDP was found to up-regulate significantly the cell surface expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 on basophils and HBE in the co-culture system with or without basophil priming by interleukin (IL)-33 (all P < 0·05). MDP could further enhance the release of inflammatory cytokine IL-6 and chemokine CXCL8, and epithelium-derived anti-microbial peptide β-defensin 2 in the co-culture. HBE cells were the major source for the release of IL-6, CXCL8 and β-defensin2 upon stimulation by MDP in the co-culture system. The expression of ICAM-1 and VCAM-1 and release of IL-6 and CXCL8 were suppressed by various signalling molecule inhibitors, implying that the interaction between basophils and primary human bronchial epithelial cells could be regulated differentially by the mitogen-activated protein kinase pathways and nuclear transcription factors. The results therefore provide a new insight into the functional role of basophils in innate immunity, and the link between respiratory bacteria-mediated innate immunity and subsequent amplification of allergic inflammation in the airway.
Collapse
Affiliation(s)
- H N Qiu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | | | | | | | |
Collapse
|
25
|
Wong CK, Hu S, Leung KML, Dong J, He L, Chu YJ, Chu IMT, Qiu HN, Liu KYP, Lam CWK. NOD-like receptors mediated activation of eosinophils interacting with bronchial epithelial cells: a link between innate immunity and allergic asthma. Cell Mol Immunol 2013; 10:317-29. [PMID: 23524653 DOI: 10.1038/cmi.2012.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Key intracytosolic pattern recognition receptors of innate immunity against bacterial infections are nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). We elucidated the NOD1 and NOD2-mediated activation of human eosinophils, the principal effector cells for allergic inflammation, upon interacting with human bronchial epithelial BEAS-2B cells in allergic asthma. Eosinophils constitutively expressed NOD1,2 but exhibited nonsignificant responses to release chemokines upon the stimulation by NOD1 ligand γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and NOD2 ligand muramyl dipeptide (MDP). However, iE-DAP and MDP could significantly upregulate cell surface expression of CD18 and intercellular adhesion molecule (ICAM)-1 on eosinophils and ICAM-1 on BEAS-2B cells, as well as induce chemokines CCL2 and CXCL8 release in the coculture system (all P<0.05). Both eosinophils and BEAS-2B cells were the main source for CXCL8 and CCL2 release in the coculture system upon iE-DAP or MDP stimulation. Direct interaction between eosinophils and BEAS-2B cells is responsible for CCL2 release, and soluble mediators are implicated in CXCL8 release. ERK and NF-κB play regulatory roles for the expression of adhesion molecules and chemokines in coculture. Treatment with NOD1,2 ligand could induce the subepithelial fibrosis and significantly enhance the serum concentration of total IgE, chemokine CCL5 for eosinophils and T helper type 2 (Th2) cells and asthma Th2 cytokine IL-13 in bronchoalveolar lavage fluid of ovalbumin-sensitized allergic asthmatic mice (all P<0.05). This study provides further evidence of bacterial infection-mediated activation of NOD1,2 in triggering allergic asthma via the activation of eosinophils interacting with bronchial epithelial cells at inflammatory airway.
Collapse
Affiliation(s)
- Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Su PF, Chen X, Chen H, Shyr Y. Statistical aspects of omics data analysis using the random compound covariate. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S11. [PMID: 23281681 PMCID: PMC3524312 DOI: 10.1186/1752-0509-6-s3-s11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Dealing with high dimensional markers, such as gene expression data obtained using microarray chip technology or genomics studies, is a key challenge because the numbers of features greatly exceeds the number of biological samples. After selecting biologically relevant genes, how to summarize the expression of selected genes and then further build predicted model is an important issue in medical applications. One intuitive method of addressing this challenge assigns different weights to different features, subsequently combining this information into a single score, named the compound covariate. Investigators commonly employ this score to assess whether an association exists between the compound covariate and clinical outcomes adjusted for baseline covariates. However, we found that some clinical papers concerned with such analysis report bias p-values based on flawed compound covariate in their training data set. Results We correct this flaw in the analysis and we also propose treating the compound score as a random covariate, to achieve more appropriate results and significantly improve study power for survival outcomes. With this proposed method, we thoroughly assess the performance of two commonly used estimated gene weights through simulation studies. When the sample size is 100, and censoring rates are 50%, 30%, and 10%, power is increased by 10.6%, 3.5%, and 0.4%, respectively, by treating the compound score as a random covariate rather than a fixed covariate. Finally, we assess our proposed method using two publicly available microarray data sets. Conclusion In this article, we correct this flaw in the analysis and the propose method, treating the compound score as a random covariate, can achieve more appropriate results and improve study power for survival outcomes.
Collapse
Affiliation(s)
- Pei-Fang Su
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
27
|
Walsh D, McCarthy J, O'Driscoll C, Melgar S. Pattern recognition receptors--molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine Growth Factor Rev 2012; 24:91-104. [PMID: 23102645 DOI: 10.1016/j.cytogfr.2012.09.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/24/2012] [Indexed: 12/11/2022]
Abstract
Pattern recognition receptors (PRRs) are a family of germline encoded receptors responsible for the detection of "pathogen associated molecular patterns" (PAMPs) or host derived "damage associated molecular patterns" (DAMPs) which induce innate immune signalling to generate a pro-inflammatory profile within the host. Four main classes of PRRs are recognised, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs) and C-type lectin receptors (CLRs). Abnormal activation of PRRs has been implicated in various autoimmune and inflammatory conditions including rheumatoid arthritis and asthma. Recent growing evidence has implicated these PRRs as contributory elements to the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Here, the current literature which implicates PRRs in IBD and CAC is comprehensively reviewed.
Collapse
Affiliation(s)
- David Walsh
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
28
|
Structure and functional characterization of the RNA-binding element of the NLRX1 innate immune modulator. Immunity 2012; 36:337-47. [PMID: 22386589 DOI: 10.1016/j.immuni.2011.12.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/23/2011] [Accepted: 12/20/2011] [Indexed: 12/24/2022]
Abstract
Mitochondrial NLRX1 is a member of the family of nucleotide-binding domain and leucine-rich-repeat-containing proteins (NLRs) that mediate host innate immunity as intracellular surveillance sensors against common molecular patterns of invading pathogens. NLRX1 functions in antiviral immunity, but the molecular mechanism of its ligand-induced activation is largely unknown. The crystal structure of the C-terminal fragment (residues 629-975) of human NLRX1 (cNLRX1) at 2.65 Å resolution reveals that cNLRX1 consists of an N-terminal helical (LRRNT) domain, central leucine-rich repeat modules (LRRM), and a C-terminal three-helix bundle (LRRCT). cNLRX1 assembles into a compact hexameric architecture that is stabilized by intersubunit and interdomain interactions of LRRNT and LRRCT in the trimer and dimer components of the hexamer, respectively. Furthermore, we find that cNLRX1 interacts directly with RNA and supports a role for NLRX1 in recognition of intracellular viral RNA in antiviral immunity.
Collapse
|
29
|
Templeton DM, Schwenk M, Klein R, Duffus JH. IUPAC glossary of terms used in immunotoxicology (IUPAC
Recommendations 2012). PURE APPL CHEM 2012. [DOI: 10.1351/pac-rec-11-06-03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The primary objective of this “Glossary of Terms Used in Immunotoxicology” is to
give clear definitions for those who contribute to studies relevant to
immunotoxicology but are not themselves immunologists. This applies especially
to chemists who need to understand the literature of immunology without recourse
to a multiplicity of other glossaries or dictionaries. The glossary includes
terms related to basic and clinical immunology insofar as they are necessary for
a self-contained document, and particularly terms related to diagnosing,
measuring, and understanding effects of substances on the immune system. The
glossary consists of about 1200 terms as primary alphabetical entries, and
Annexes of common abbreviations, examples of chemicals with known effects on the
immune system, autoantibodies in autoimmune disease, and therapeutic agents used
in autoimmune disease and cancer. The authors hope that among the groups who
will find this glossary helpful, in addition to chemists, are toxicologists,
pharmacologists, medical practitioners, risk assessors, and regulatory
authorities. In particular, it should facilitate the worldwide use of chemistry
in relation to occupational and environmental risk assessment.
Collapse
Affiliation(s)
- Douglas M. Templeton
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Reinhild Klein
- Immunopathological Laboratory, Department of Internal Medicine II, Otfried-Müller-Strasse, Tübingen, Germany
| | - John H. Duffus
- The Edinburgh Centre for Toxicology, Edinburgh, Scotland, UK
| |
Collapse
|
30
|
Marischen L, Wesch D, Oberg HH, Rosenstiel P, Trad A, Shomali M, Grötzinger J, Janssen O, Tchikov V, Schütze S, Kabelitz D. Functional expression of NOD2 in freshly isolated human peripheral blood γδ T cells. Scand J Immunol 2011; 74:126-34. [PMID: 21410503 DOI: 10.1111/j.1365-3083.2011.02560.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
γδ T cells play an important role in anti-infective immunity. The major subset of human γδ T cells selectively recognizes phosphorylated bacterial metabolites of the isoprenoid biosynthesis pathway, so-called phosphoantigens. The activation of γδ T cells is modulated by functionally expressed innate immune receptors, notably Toll-like receptor 2 and 3. It was also reported that in vitro expanded γδ T cells respond to muramyl dipeptide (MDP), the minimal peptidoglycan motif activating the nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, although it is unknown whether ex vivo isolated human γδ T cells express functional NOD2. Here, we report that freshly isolated, highly purified peripheral blood γδ T cells express NOD2 mRNA and detectable amounts of NOD2 protein. The biologically active MDP L-D isomer but not the inactive D-D isomer augmented the interferon-γ (IFN-γ) secretion in phosphoantigen-stimulated peripheral blood mononuclear cells. Moreover, a moderate but reproducible and statistically significant increase in IFN-γ secretion was also observed when highly purified peripheral blood γδ T cells were activated by T cell receptor cross-linking in the presence of MDP. Taken together, our results indicate that in addition to the T cell receptor and Toll-like receptors, circulating human γδ T cells express NOD2 as a third class of pattern recognition receptor for sensing bacterial products.
Collapse
Affiliation(s)
- L Marischen
- Institute of Immunology, University of Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In plants and animals, the NLR family of receptors perceives non-self and modified-self molecules inside host cells and mediates innate immune responses to microbial pathogens. Despite their similar biological functions and protein architecture, animal NLRs are normally activated by conserved microbe- or damage-associated molecular patterns, whereas plant NLRs typically detect strain-specific pathogen effectors. Plant NLRs recognize either the effector structure or effector-mediated modifications of host proteins. The latter indirect mechanism for the perception of non-self, as well as the within-species diversification of plant NLRs, maximize the capacity to recognize non-self through the use of a finite number of innate immunoreceptors. We discuss recent insights into NLR activation, signal initiation through the homotypic association of N-terminal domains and subcellular receptor dynamics in plants and compare those with NLR functions in animals.
Collapse
|
32
|
Abstract
The last 10 years have witnessed the identification of a new class of intracellular pattern-recognition molecules--the nucleotide-binding domain and leucine-rich repeat-containing family (NLR). Members of this family garnered interest as pattern-recognition receptors able to trigger inflammatory responses against pathogens. Many studies support a pathogen-recognition function for human NLR proteins and shed light on their role in the broader control of adaptive immunity and various disease states. Other evidence suggests that NLRs function in processes unrelated to pathogen detection. Here we discuss recent advances in our understanding of the biology of the human NLR proteins and their non-pathogen-recognition function in tissue homeostasis, apoptosis, graft-versus-host disease and early development.
Collapse
|
33
|
Pahl R, Brunke G, Steubesand N, Schubert S, Böttner M, Wedel T, Jürgensen C, Hampe J, Schäfer H, Zeissig S, Schreiber S, Rosenstiel P, Reiss K, Arlt A. IL-1β and ADAM17 are central regulators of β-defensin expression in Candida esophagitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G547-53. [PMID: 21233274 DOI: 10.1152/ajpgi.00251.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Candida albicans resides on epithelial surfaces as part of the physiological microflora. However, under certain conditions, it may cause life-threatening infections, including Candida sepsis. We have recently shown that human β-defensins (hBDs) hBD-2 and hBD-3 are upregulated in Candida esophagitis and that this antifungal host response is distinctly regulated by NF-κB and MAPK/activator protein-1 (AP-1) pathways. Here, we show that C. albicans induces hBD-2 through an autocrine IL-1β loop and that activation of the epidermal growth factor receptor (EGFR) by endogenous transforming growth factor-α (TGF-α) is a crucial event in the induction of hBD-3. To further dissect upstream signaling events, we investigated expression of the central sheddases for EGFR ligands ADAM10 and ADAM17 in the healthy and infected esophagus. Next, we used pharmaceutical inhibitors and small-interfering RNA-mediated knock down of ADAM10 and ADAM17 to reveal that ADAM17-induced shedding of TGF-α is a crucial step in the induction of hBD-3 expression in response to Candida infection. In conclusion, we describe for the first time an autocrine IL-1β loop responsible for the induction of hBD-2 expression and an ADAM17-TGF-α-EGFR-MAPK/AP-1 pathway leading to hBD-3 upregulation in the course of a Candida infection of the esophagus.
Collapse
Affiliation(s)
- Rene Pahl
- Department of Internal Medicine I, University of Kiel, Germany University Hospital Schleswig-Holstein, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bielig H, Velder J, Saiai A, Menning M, Meemboor S, Kalka-Moll W, Krönke M, Schmalz HG, Kufer TA. Anti-inflammatory arene--chromium complexes acting as specific inhibitors of NOD2 signalling. ChemMedChem 2011; 5:2065-71. [PMID: 20973121 DOI: 10.1002/cmdc.201000320] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inflammation is a hallmark of microbial infection in mammals and is the result of a pathogen-induced release of inflammatory effectors. In humans a variety of germ-line encoded receptors, so-called pattern-recognition receptors, respond to conserved signatures on invading pathogens, which results in the transcriptional activation of pro-inflammatory responses. Inflammation is often detrimental to the host and leads to tissue damage and/or systemic dysfunctions. Thus, specific inhibitors of these pathways are desirable for medical interventions. Herein we report on the synthesis and use of some chromium-containing compounds (arene--Cr(CO)₃ complexes) with a core structure related to anti-inflammatory diterpenes produced by the sea whip Pseudopterogorgia elisabethae. By using cell-based reporter assays we identified complexes with a potent inhibitory activity on tumour necrosis factor (TNF), Toll-like receptor (TLR), and nucleotide binding domain, leucine-rich repeat-containing receptor (NLR) pathways. Moreover, we found one complex to be a specific inhibitor of inflammatory responses mediated by the NLR protein NOD2, a pivotal innate immune receptor involved in bacterial recognition. Synthesis and characterisation of a set of derivatives of this substance revealed structural requirements for NOD2 specificity. Taken together, our studies suggest this type of arene--Cr(CO)₃ complex as a potential lead for the development of antiphlogistica and pharmacologically relevant NOD2 inhibitors.
Collapse
Affiliation(s)
- Harald Bielig
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jimenez-Martinez MC, Cruz F, Groman-Lupa S, Zenteno JC. Immunophenotyping in peripheral blood mononuclear cells, aqueous humour and vitreous in a Blau syndrome patient caused by a novel NOD2 mutation. Int J Immunogenet 2011; 38:233-42. [DOI: 10.1111/j.1744-313x.2011.00998.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Su J, Huang T, Yang C, Zhang R. Molecular cloning, characterization and expression analysis of interferon-β promoter stimulator 1 (IPS-1) gene from grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2011; 30:317-323. [PMID: 21078397 DOI: 10.1016/j.fsi.2010.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
IPS-1 (interferon-β promoter stimulator 1), also known as MAVS/VISA/Cardif, plays a central role in antiviral immunity. In this manuscript, we cloned and characterized IPS-1 from grass carp Ctenopharyngodon idella (designated as CiIPS-1). The CiIPS-1 cDNA is 2412 bp long and consists of a 5' untranslated region (UTR) of 124 bp, a 3' UTR of 497 bp with three cytokine RNA instability motifs (ATTTA) and a polyadenylation signal (AATAAA), and an open reading frame (ORF) of 1791 bp encoding a polypeptide of 596 amino acids with a calculated molecular mass of 64.1 kDa and a theoretical isoelectric point of 4.79. Structural analysis showed that the CiIPS-1 protein contained an N-terminal CARD (caspase activation and recruitment domain), a central proline-rich domain, a putative TRAF2-binding motif and a C-terminal transmembrane domain. Similarity analysis of the deduced amino acid sequence of the CiIPS-1 by MatGAT software revealed that the CiIPS-1 shared 27.8-76.4% identity and 47.4-85.2% similarity with other known piscine IPS-1 sequences. The CiIPS-1 mRNA was constitutively expressed in the examined tissues, higher in spleen, and was induced by grass carp reovirus (GCRV) injection by semi-quantitative RT-PCR assay. Quantitative real-time RT-PCR analysis revealed that the CiIPS-1 mRNA expression was rapidly and significantly up-regulated in vivo and in vitro after GCRV infection, and the CiIPS-1 transcripts were also significantly enhanced in vitro post the synthetic double stranded RNA polyinosinic-polycytidylic potassium salt (poly(I:C)) stimulation. These results indicated that CiIPS-1 was an inducible acute-phase protein and involved in the immune reaction to GCRV in grass carp.
Collapse
Affiliation(s)
- Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China.
| | | | | | | |
Collapse
|
37
|
Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ, Rahn T, Weiss Y, Bosch TCG, Rosenstiel P. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol 2010; 28:1687-702. [PMID: 21183612 DOI: 10.1093/molbev/msq349] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Distinguishing self from nonself and the onset of defense effector mechanisms upon recognition of pathogens are essential for the survival of all life forms in the animal kingdom. The family of nucleotide -binding and oligomeriszation domain-like receptors (NLRs) was first identified in vertebrates and comprises a group of pivotal sensor protein of the innate immune system for microbial cell wall components or danger signals. Here, we provide first evidence that early diverging metazoans have large and complex NLR repertoires. The cnidarian NACHT/NB-ARC genes include novel combinations of domains, and the number of one specific type (NB-ARC and tetratricopeptide repeat containing) in Hydra is particularly large. We characterize the transcript structure and expression patterns of a selected HyNLR, HyNLR type 1 and describe putative interaction partners. In a heterologous expression system, we show induced proximity recruitment of an effector caspase (HyDD-Caspase) to the HyNLR type 1 protein upon oligomerization indicating a potential role of caspase activation downstream of NLR activation in Hydra. These results add substantially to our understanding of the ancestral innate immune repertoire as well as providing the first insights into putative cytoplasmic defense mechanisms at the base of animal evolution.
Collapse
Affiliation(s)
- Christina Lange
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ehlers S, Kaufmann SHE. Infection, inflammation, and chronic diseases: consequences of a modern lifestyle. Trends Immunol 2010; 31:184-90. [PMID: 20399709 DOI: 10.1016/j.it.2010.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/04/2010] [Accepted: 02/25/2010] [Indexed: 01/08/2023]
Abstract
Infectious diseases, including tuberculosis, malaria, hepatitis, pneumonia, dysentery, and helminth infestations, still constitute a profound threat in developing countries. Curiously, their decline in high-income societies is paralleled by an unprecedented emergence of allergic disorders, notably asthma and atopy, and chronic inflammatory and autoimmune diseases, such as Crohn's disease, type 1 diabetes, and multiple sclerosis. Several changes in lifestyle are associated with this transition, including diminished exposure to soil and animals, nutritional bias, obesity and increased exposure to pollutants and antibiotics, which all impact the intestinal microbiota. Understanding the mechanistic links behind the epidemiological observations, the complexity of a changing microbiome, and the immunoregulatory consequences of microbial encounter in barrier organs was the subject of the 99(th) Dahlem Conference.
Collapse
Affiliation(s)
- Stefan Ehlers
- Cluster of Excellence Inflammation at Interfaces (Borstel-Kiel-Lübeck-Plön), Research Center Borstel, Microbial Inflammation Research, Parkallee 1, D-23845 Borstel, Germany.
| | | | | |
Collapse
|
39
|
von Kampen O, Lipinski S, Till A, Martin SJ, Nietfeld W, Lehrach H, Schreiber S, Rosenstiel P. Caspase recruitment domain-containing protein 8 (CARD8) negatively regulates NOD2-mediated signaling. J Biol Chem 2010; 285:19921-6. [PMID: 20385562 PMCID: PMC2888403 DOI: 10.1074/jbc.m110.127480] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Indexed: 01/07/2023] Open
Abstract
Caspase activating and recruitment domain 8 (CARD8) has been implicated as a co-regulator of several pro-inflammatory and apoptotic signaling pathways. In the present study, we demonstrate a specific modulation of NOD2-induced signaling by CARD8 in intestinal epithelial cells. We show that CARD8 physically interacts with NOD2 and inhibits nodosome assembly and subsequent signaling upon muramyl-dipeptide stimulation. Furthermore, CARD8 inhibits the direct bactericidal effect of NOD2 against intracellular infection by Listeria monocytogenes. Thus, CARD8 represents a novel molecular switch involved in the endogenous regulation of NOD2-dependent inflammatory processes in epithelial cells.
Collapse
Affiliation(s)
- Oliver von Kampen
- From the Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel D-24105, Germany
| | - Simone Lipinski
- From the Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel D-24105, Germany
| | - Andreas Till
- From the Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel D-24105, Germany
| | - Seamus J. Martin
- the Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland, and
| | - Wilfried Nietfeld
- the Max Planck Institute for Molecular Genetics, Berlin D-14195, Germany
| | - Hans Lehrach
- the Max Planck Institute for Molecular Genetics, Berlin D-14195, Germany
| | - Stefan Schreiber
- From the Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel D-24105, Germany
| | - Philip Rosenstiel
- From the Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel D-24105, Germany
| |
Collapse
|
40
|
Abstract
The treatment of patients with IBD has evolved towards biologic therapy, which seeks to target specific immune and biochemical abnormalities at the molecular and cellular level. Multiple genes have been associated with susceptibility to IBD, and many of these can be linked to alterations in immune pathways. These immune pathways provide avenues for understanding the pathogenesis of IBD and suggest future drug targets, such as the IL-12-IL-23 pathway. In addition, failed therapeutic drug trials can provide valuable information about pitfalls in study design, drug delivery and disease activity assessment. Future biologic drug development will benefit from the early identification of subsets of patients who are most likely to respond to therapy by use of biological markers of genetic susceptibility or immunologic susceptibility.
Collapse
Affiliation(s)
- Gil Y Melmed
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, 8635 West 3rd Street, 960-W Los Angeles, CA 90048, USA.
| | | |
Collapse
|
41
|
Rosenstiel P, Sina C, Franke A, Schreiber S. Towards a molecular risk map--recent advances on the etiology of inflammatory bowel disease. Semin Immunol 2009; 21:334-45. [PMID: 19926490 DOI: 10.1016/j.smim.2009.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/14/2009] [Indexed: 12/11/2022]
Abstract
Recent advances have enabled a comprehensive understanding of the genetic architecture of inflammatory bowel disease (IBD) with over 30 identified and replicated disease loci. The pathophysiological consequences of disease gene variants in Crohn disease and ulcerative colitis, the two main subentities of IBD, so far are only understood on the single disease gene level, yet complex network analyses linking the individual risk factors into a molecular risk map are still missing. In this review, we will focus on recent pathways and cellular functions that emerged from the genetic studies (e.g. innate immunity, autophagy) and delineate the existence of shared (e.g. IL23R, IL12B) and unique (e.g. NOD2 for CD) risk factors for the disease subtypes. Ultimately, the defined molecular profiles may identify individuals at risk early in life and may serve as a guidance to administer personalized interventions for causative therapies and/or early targeted prevention strategies. Due to this comparatively advanced level of molecular understanding in the field, IBD may represent precedent also for future developments of individualized genetic medicine in other polygenic disorders in general.
Collapse
Affiliation(s)
- Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts University of Kiel, Schittenhelmstr. 12, D-24105 Kiel, Germany.
| | | | | | | |
Collapse
|
42
|
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 2009; 21:242-53. [PMID: 19748439 DOI: 10.1016/j.smim.2009.06.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 06/30/2009] [Indexed: 12/15/2022]
Abstract
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are two major forms of innate immune sensors, which provide immediate responses against pathogenic invasion or tissue injury. Activation of these sensors induces the recruitment of innate immune cells such as macrophages and neutrophils, initiates tissue repair processes, and results in adaptive immune activation. Abnormalities in any of these innate sensor-mediated processes may cause excessive inflammation due to either hyper responsive innate immune signaling or sustained compensatory adaptive immune activation. Recent gene association studies appear to reveal strong associations of NLR gene mutations and development of several idiopathic inflammatory disorders. In contrast, TLR polymorphisms are less often associated with inflammatory disorders. Nevertheless, TLRs are up-regulated in the affected tissue of most inflammatory disorders, suggesting TLR signaling is involved in the pathogenesis of chronic and/or idiopathic inflammatory disorders. NLR signaling results in the formation of a molecular scaffold complex (termed an inflammasome) and orchestrates with TLRs to induce IL-1beta and IL-18, both of which are important mediators in the majority of inflammatory disorders. Therefore, understanding the roles of TLRs and NLRs in the pathogenesis of chronic and idiopathic inflammatory disorders may provide novel targets for the prevention and/or treatment of many common and uncommon diseases involving inflammation.
Collapse
|
43
|
Langefeld T, Mohamed W, Ghai R, Chakraborty T. Toll-like receptors and NOD-like receptors: domain architecture and cellular signalling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:48-57. [PMID: 19799111 DOI: 10.1007/978-1-4419-0901-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The innate immune system forms the first line of defense against pathogens. The Toll-like receptors and the Nod-like receptors are at the forefront of both extracellular and intracellular pathogen recognition. They recognize the most conserved structures of microbes and initiate the response to infection. In addition to the microbial stimuli, they are now also being implicated in the recognition of danger-associated stimuli, making them pivotal in disorders unrelated to microbial pathogenesis. Toll-like receptors and the Nod-like receptors share commonalities in structure, ligands and downstream signalling but they differ in their localization, and extent of influence on a wide variety of cellular processes including apoptosis. Here we discuss the common ligand recognition and signalling modules in both these classes of receptors.
Collapse
|
44
|
Möckelmann N, von Schönfels W, Buch S, von Kampen O, Sipos B, Egberts JH, Rosenstiel P, Franke A, Brosch M, Hinz S, Röder C, Kalthoff H, Fölsch UR, Krawczak M, Schreiber S, Bröring CD, Tepel J, Schafmayer C, Hampe J. Investigation of innate immunity genes CARD4, CARD8 and CARD15 as germline susceptibility factors for colorectal cancer. BMC Gastroenterol 2009; 9:79. [PMID: 19843337 PMCID: PMC2776017 DOI: 10.1186/1471-230x-9-79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/20/2009] [Indexed: 02/08/2023] Open
Abstract
Background Variation in genes involved in the innate immune response may play a role in the predisposition to colorectal cancer (CRC). Several polymorphisms of the CARD15 gene (caspase activating recruitment domain, member 15) have been reported to be associated with an increased susceptibility to Crohn disease. Since the CARD15 gene product and other CARD proteins function in innate immunity, we investigated the impact of germline variation at the CARD4, CARD8 and CARD15 loci on the risk for sporadic CRC, using a large patient sample from Northern Germany. Methods A total of 1044 patients who had been operated with sporadic colorectal carcinoma (median age at diagnosis: 59 years) were recruited and compared to 724 sex-matched, population-based control individuals (median age: 68 years). Genetic investigation was carried out following both a coding SNP and haplotype tagging approach. Subgroup analyses for N = 143 patients with early manifestation of CRC (≤50 age at diagnosis) were performed for all CARD loci and subgroup analyses for diverse age strata were carried out for CARD15 mutations R702W, G908R and L1007fs. In addition, all SNPs were tested for association with disease presentation and family history of CRC. Results No significant differences were observed between the patient and control allelic or haplotypic spectra of the three genes under study for the total cohort (N = 1044 patients). None of the analysed SNPs was significantly associated with either tumour location or yielded significant association in the familial or non-familial CRC patient subgroups. However, in a patient subgroup (≤45 age at diagnosis) with early disease manifestation the mutant allele of CARD15 R702W was found to be significantly associated with disease susceptibility (9.7% in cases vs 4.6% in controls; Pallelic = 0.008, Pgenotypic = 0.0008, ORallelic = 2.22 (1.21-4.05) ORressessive = 21.9 (1.96-245.4). Conclusion Variation in the innate immunity genes CARD4, CARD8 and CARD15 is unlikely to play a major role in the susceptibility to CRC in the German population. But, we report a significant disease contribution of CARD15 for CRC patients with very early disease manifestation, mainly driven by variant R702W.
Collapse
Affiliation(s)
- Nikolaus Möckelmann
- Department of General Internal Medicine Christian-Albrechts-University, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bielig H, Zurek B, Kutsch A, Menning M, Philpott DJ, Sansonetti PJ, Kufer TA. A function for AAMP in Nod2-mediated NF-kappaB activation. Mol Immunol 2009; 46:2647-54. [PMID: 19535145 DOI: 10.1016/j.molimm.2009.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/16/2009] [Indexed: 12/18/2022]
Abstract
The WD40 repeat containing angio-associated migratory cell protein (AAMP) was identified as a new binding partner of the human nucleotide-binding domain, leucine rich repeat containing (NLR) family member Nod2 in a yeast two-hybrid screen. Co-immunoprecipitations from human cells verified this interaction and revealed that an internal peptide of AAMP spanning three WD40 domains was sufficient for this interaction. AAMP was found to be ubiquitously expressed in different human cell-lines and exhibited a predominant cytosolic localization in epithelial cells. Functionally, using overexpression and siRNA knock-down, we showed that AAMP modulates Nod2- and Nod1-mediated NF-kappaB activation in HEK293T cells. Taken together, our data support a new function of AAMP in regulating innate immune responses initiated by the NLR protein Nod2.
Collapse
Affiliation(s)
- H Bielig
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
The expression of the beta-defensins hBD-2 and hBD-3 is differentially regulated by NF-kappaB and MAPK/AP-1 pathways in an in vitro model of Candida esophagitis. BMC Immunol 2009; 10:36. [PMID: 19523197 PMCID: PMC2702365 DOI: 10.1186/1471-2172-10-36] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 06/12/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Candida albicans resides on epithelial surfaces as part of the physiological microflora. However, under certain conditions it may cause life-threatening infections like Candida sepsis. Human beta-defensins (hBDs) are critical components of host defense at mucosal surfaces and we have recently shown that hBD-2 and hBD-3 are upregulated in Candida esophagitis. We therefore studied the role of Candidate signalling pathways in order to understand the mechanisms involved in regulation of hBD-expression by C. albicans. We used the esophageal cell line OE21 and analysed the role of paracrine signals from polymorphonuclear leukocytes (PMN) in an in vitro model of esophageal candidiasis. RESULTS Supernatants of C. albicans or indirect coculture with C. albicans induces upregulation of hBD-2 and hBD-3 expression. PMNs strongly amplifies C. albicans-mediated induction of hBDs. By EMSA we demonstrate that C. albicans activates NF-kappaB and AP-1 in OE21 cells. Inhibition of these pathways revealed that hBD-2 expression is synergistically regulated by both NF-kappaB and AP-1. In contrast hBD-3 expression is independent of NF-kappaB and relies solely on an EGFR/MAPK/AP-1-dependent pathway. CONCLUSION Our analysis of signal transduction events demonstrate a functional interaction of epithelial cells with PMNs in response to Candida infection involving divergent signalling events that differentially govern hBD-2 and hBD-3 expression.
Collapse
|
47
|
Ullrich S, Gustke H, Lamprecht P, Gross WL, Schumacher U, Ambrosch P, Laudien M. Severe impaired respiratory ciliary function in Wegener granulomatosis. Ann Rheum Dis 2009; 68:1067-71. [PMID: 19028765 DOI: 10.1136/ard.2008.096974] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The pathogenesis of granulomatous inflammation in the respiratory tract and autoimmunity in Wegener granulomatosis (WG) are poorly understood. Since mucociliar clearance represents the first major line of defence in the respiratory tract and its breakdown facilitates chronic inflammation, we investigated ciliary beat frequency (CBF) in WG. METHODS Nasal epithelial cells were obtained from 30 patients with WG with involvement of the upper respiratory tract, 12 patients with other inflammatory rheumatic disease and 10 healthy controls. CBF was measured at 5 and 24 h after collection. RESULTS were correlated with clinical data. Results: CBF was significantly reduced in WG compared to disease and healthy controls after 5 and 24 h. In WG, CBF almost stagnated after 24 h. Reduction of CBF correlated with the cumulative number of immunosuppressive agents in WG, but not in disease controls. No correlation was found between CBF impairment and cyclophosphamide levels, disease extent, disease activity, disease duration, serological and microbiological findings, or inflammation markers. CONCLUSION CBF is severely impaired in WG, potentially influenced by immunosuppressive treatment. To what extent CBF impairment and subsequent barrier dysfunction are caused by other factors still has to be elucidated. Supportive measures to improve mucociliary clearance should be discussed in patients with WG.
Collapse
Affiliation(s)
- S Ullrich
- Department for Anatomy II, Experimental Morphologie, University Medical Center Hamburg-Eppendorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Jagusztyn-Krynicka EK, Łaniewski P, Wyszyńska A. Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis. Expert Rev Vaccines 2009; 8:625-45. [PMID: 19397419 DOI: 10.1586/erv.09.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Campylobacteriosis constitutes a serious medical and socioeconomic problem worldwide. Rapidly increasing antibiotic resistance of bacterial strains compels us to develop alternative therapeutic strategies and to search for efficient immunoprophylactic methods. The vast majority of Campylobacter infections in developed countries occur as sporadic cases, mainly caused by eating undercooked Campylobacter-contaminated poultry. The most efficient strategy of decreasing the number of human Campylobacter infections is by implementing protective vaccinations for humans and/or chickens. Despite more than 10 years of research, an effective anti-Campylobacter vaccine has not been developed. This review highlights our increasing knowledge of Campylobacter interaction with host cells and focuses on recently published data describing the efficacy of anti-Campylobacter vaccine prototypes.
Collapse
|
49
|
Laudien M, Ambrosch P, Till A, Podschun R, Lamprecht P. [Diagnosis, therapy and current research aspects of selected chronic inflammatory diseases with head and neck involvement]. Z Rheumatol 2008; 67:397-406. [PMID: 18600330 DOI: 10.1007/s00393-008-0324-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Wegener's granulomatosis, Churg-Strauss syndrome and analgesics intolerance syndrome with polyps demonstrate non-specific manifestations in the head and neck region. These symptoms can often lead to early diagnosis and initiation of the correct therapy. However, symptoms are often ambiguous and many rare differential diagnoses must be borne in mind. This clinical picture presents a challenge for the otorhinolaryngologist, who is commonly the first contacted physician. Diagnostics and therapy have to be carried out in an interdisciplinary approach between rheumatologist, pulmonologist, pathologist, radiologist, ophthalmologist, infection specialist and nephrologist. Despite significant scientific and therapeutic advances, these diseases remain incurable. In recent decades they have lost their life-threatening character (Wegener's granulomatosis) and are now chronically relapsing diseases. Their aetiology, however, is still unclear and treatment leads to a wide spectrum of undesirable effects. Research work is needed to advance diagnostics and therapy in this field. Recent research aspects are presented in this article.
Collapse
Affiliation(s)
- M Laudien
- Klinik für Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie der Christian-Albrechts-Universität zu Kiel, Arnold-Heller-Strasse 14, 24103, Kiel, Deutschland.
| | | | | | | | | |
Collapse
|
50
|
Wang D, Fang L, Li T, Luo R, Xie L, Jiang Y, Chen H, Xiao S. Molecular cloning and functional characterization of porcine IFN-β promoter stimulator 1 (IPS-1). Vet Immunol Immunopathol 2008; 125:344-53. [DOI: 10.1016/j.vetimm.2008.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 05/11/2008] [Accepted: 05/19/2008] [Indexed: 01/09/2023]
|