1
|
Karimaei S, Moradkasani S, Esmaeili S. Overview of the Q fever vaccine development: current status and future prospects. Antonie Van Leeuwenhoek 2025; 118:85. [PMID: 40448839 DOI: 10.1007/s10482-025-02094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/03/2025] [Indexed: 06/02/2025]
Abstract
Coxiella burnetii, the causative agent of Q fever, is responsible for a globally significant zoonotic disease, characterized by flu-like symptoms. The primary reservoirs of C. burnetii are ruminant livestock, particularly goats, sheep, and cattle, which shed the bacterium through birth products, such as the placenta, amniotic fluid, and other secretions. Human infections typically occur via the inhalation of contaminated aerosols during direct or indirect contact with infected animals or their birthing materials. Consequently, individuals living in or working near livestock environments are at elevated risk, making Q fever both a location- and occupation-related disease. Owing to its remarkable environmental resilience and extremely low infectious dose, C. burnetii is classified as a Category B bioterrorism agent by the U.S. Centers for Disease Control and Prevention (CDC). These characteristics significantly complicate efforts to eradicate the bacterium and position vaccination as a key strategy for preventing human transmission. Although whole-cell vaccines (WCVs) are currently licensed for use in Australia, their widespread implementation has been hindered by their strong reactogenic responses in individuals with prior exposure to C. burnetii. This review provides an overview of past and current efforts to develop non-reactogenic C. burnetii vaccines and discusses possible approaches to enhance the efficiency and safety of these vaccines.
Collapse
Affiliation(s)
- Samira Karimaei
- WHO Collaborating Centre for Vector-Borne Diseases, Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Safoura Moradkasani
- WHO Collaborating Centre for Vector-Borne Diseases, Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Saber Esmaeili
- WHO Collaborating Centre for Vector-Borne Diseases, Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Kabudar Ahang, Akanlu, Hamadan, Iran.
| |
Collapse
|
2
|
Lobanovska M, Feng Y, Zhang J, Williams AH, Portnoy DA. Stress-dependent activation of the Listeria monocytogenes virulence program ensures bacterial resilience during infection. mBio 2025:e0071925. [PMID: 40304513 DOI: 10.1128/mbio.00719-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Listeria monocytogenes (Lm) is a Gram-positive, facultative intracellular pathogen that uses both a housekeeping (P1) and stress-activated (Sigma B-dependent) promoter (P2) to express the master virulence regulator PrfA. The Sigma B regulon contains over 300 genes known to respond to different stressors. However, the role of Sigma B in the regulation of prfA during the infection remains uncertain. To define pathways that lead to Sigma B-dependent prfA activation, we performed a genetic screen in L2 fibroblasts using ΔP1 Lm that only has the Sigma B-dependent promoter directly upstream of prfA. The screen identified transposon insertions in a large bacterial sensory organelle known as the stressosome. The absence of functional stressosome components resulted in heterogeneity within bacterial populations, with some bacteria behaving like wild type, while other members of the population exhibited defects in either vacuolar escape and/or cell-to-cell spread. We show that the heterogeneity of the stressosome mutants cannot be rescued by constitutive activation of PrfA. These data defined the importance of the stressosome in controlling bacterial homogeneity and characterized the function of the stressosome in robust virulence activation during infection. ΔP1 Lm model provides new opportunities to identify host-specific signals necessary for stressosome-dependent signaling during Listeria pathogenesis.IMPORTANCEMicrobial pathogens must adapt to varying levels of stress to survive. This study uncovered a link between stress sensing and activation of the virulence program in a facultative intracellular pathogen, Listeria monocytogenes. We show that host-imposed stress is sensed by the signaling machinery known as the stressosome to ensure robust and resilient virulence responses in vivo. Stressosome-dependent activation of the master virulence regulator PrfA was necessary to maintain L. monocytogenes homogeneity within the bacteria population during the transition between early and late stages of intracellular infection. This work also provides a model to further characterize how specific stress stimuli affect bacterial survival within the host, which is critical for our understanding of bacterial pathogenesis.
Collapse
Affiliation(s)
- Mariya Lobanovska
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Ying Feng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jonathan Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Allison H Williams
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Radhakrishnan P, Theriot JA. Listeria monocytogenes cell-to-cell spread bypasses nutrient limitation for replicating intracellular bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635960. [PMID: 39975404 PMCID: PMC11838505 DOI: 10.1101/2025.01.31.635960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Listeria monocytogenes is an intracellular bacterial pathogen that obtains nutrients from the mammalian host cell to fuel its replication in cytosol. Sparse infection of epithelial monolayers by L. monocytogenes results in the formation of distinct infectious foci, where each focus originates from the initial infection of a single host cell followed by multiple rounds of active bacterial cell-to-cell spread into neighboring host cells in the monolayer. We used time-lapse microscopy to measure changes in bacterial growth rate in individual foci over time and found that intracellular bacteria initially replicate exponentially, but then bacterial growth rate slows later in infection, particularly in the center of the infectious focus. We found that the intracellular replication rate of L. monocytogenes is measurably decreased by limiting host cell glucose availability, by decreasing the rate of intracellular bacterial oligopeptide import, and, most interestingly, by alterations in host cell junctional proteins that limit bacterial spread into neighboring cells without directly affecting bacterial growth or metabolism. By measuring the carrying capacity of individual host cells, we found that the nutritional density of cytoplasm is comparable to rich medium. Taken together, our results indicate that the rate of intracellular L. monocytogenes replication is governed by a balance of the rate of nutrient depletion by the bacteria, the rate of nutrient replenishment by the metabolically active host cells, and the rate of bacterial cell-to-cell spread which enables the bacteria to seek out "greener pastures" before nutrient availability in a single host cell becomes limiting.
Collapse
Affiliation(s)
- Prathima Radhakrishnan
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-1800
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-1800
| |
Collapse
|
4
|
Sirit IS, Peek RM. Decoding the Ability of Helicobacter pylori to Evade Immune Recognition and Cause Disease. Cell Mol Gastroenterol Hepatol 2025; 19:101470. [PMID: 39889829 PMCID: PMC11946503 DOI: 10.1016/j.jcmgh.2025.101470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Helicobacter pylori (H pylori) successfully and chronically colonizes the gastric mucosa of approximately 43% of the world's population. Infection with this organism is the strongest known risk factor for the development of gastric cancer, and disease development is dependent on several interactive components. One H pylori determinant that augments cancer risk is the strain-specific cag type IV secretion system, which not only translocates a pro-inflammatory and oncogenic protein, CagA, into host cells but also DNA, peptidoglycan, and a lipopolysaccharide intermediate, heptose-1,7-bisphosphate. However, cognate interactions between certain microbial and host constituents can also attenuate pro-inflammatory responses, and H pylori harbors multiple effectors that function differently than the respective counterparts in other mucosal pathogens. In this review, we discuss current data related to mechanisms utilized by H pylori to evade the immune response, sustain its longevity in the host, and further disease progression, as well as implications for developing targeted, immune-based eradication strategies.
Collapse
Affiliation(s)
- Isabella S Sirit
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Molecular Pathology and Immunology Training Program, Vanderbilt University, Nashville, Tennessee
| | - Richard M Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
5
|
Canizci Erdemli P, Öcal Demir S, Bozkurt S, Aslan Tuncay S, Yilmaz S, Parlak B, Dizi Işik A, Büyüktaş Aytaç D, Abaci Çapar MÇ, Ergenç Z, Atalay AS, Gökçe İ, Karakoc-Aydiner E, Özen A, Kepenekli E, Akkoç G. Listeria Meningitis as an Indication of Undiagnosed Primary Immune Deficiency, Activated Phosphoinositide 3-Kinase Delta Syndrome: A Case Report. Pediatr Infect Dis J 2025:00006454-990000000-01205. [PMID: 39889727 DOI: 10.1097/inf.0000000000004737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
INTRODUCTION Listeria monocytogenes is a Gram-positive bacillus that causes severe infections mainly in newborns, pregnant women, immunocompromised individuals, and elderly. In this report, we present a case of immune dysregulation that presented with invasive Listeria infection despite the absence of these risk factors. CASE A previously healthy 5-year-old girl developed L. monocytogenes meningitis, which is unusual given her age and lack of typical risk factors. The patient initially presented with fever, diarrhea and altered mental status, unresponsive to empiric antibiotic treatment. Besides clinical diagnosis of meningitis, laboratory tests revealed pleocytosis and positive polymerase chain reaction test for L. monocytogenes in cerebrospinal fluid. Despite initial improvement, the patient developed proteinuria and hypertension and was later diagnosed with focal class 3 lupus nephritis following a renal biopsy. Given the atypical nature of her L. monocytogenes infection, persistent organomegaly, and lupus nephritis, further immunological evaluation was conducted. Genetic testing revealed a de-novo gain-of-function mutation in the PIK3CD gene, confirming the diagnosis of Activated Phosphoinositide 3-Kinase Delta Syndrome 1 (APDS1), a rare primary immunodeficiency characterized by lymphoproliferation and autoimmunity. The patient was started on immunoglobulin replacement therapy and prophylactic trimethoprim-sulfamethoxazole. No recurrence of severe infection occurred during 2 years of follow-up. CONCLUSION This case underscores the importance of considering underlying immune dysregulations in pediatric patients with atypical presentation of Listeria infections.
Collapse
Affiliation(s)
| | | | | | | | - Seyhan Yilmaz
- From the Departments of Pediatric Infectious Diseases
| | - Burcu Parlak
- From the Departments of Pediatric Infectious Diseases
| | | | | | | | - Zeynep Ergenç
- From the Departments of Pediatric Infectious Diseases
| | - Ayşe Sümeyye Atalay
- Pediatric Nephrology, Marmara University School of Medicine, İstanbul, Turkey
| | - İbrahim Gökçe
- Pediatric Nephrology, Marmara University School of Medicine, İstanbul, Turkey
| | | | | | - Eda Kepenekli
- From the Departments of Pediatric Infectious Diseases
| | - Gülşen Akkoç
- From the Departments of Pediatric Infectious Diseases
| |
Collapse
|
6
|
Sun J, Wang J, Jiang X, Xia J, Han Y, Chen M, Xu J, Deng S, Cheng C, Song H. LADS: a powerful vaccine platform for cancer immunotherapy and prevention. BMC Biol 2024; 22:291. [PMID: 39696249 DOI: 10.1186/s12915-024-02086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The intracellular bacterium Listeria monocytogenes is an attractive vector for cancer immunotherapy as it can effectively deliver tumor antigens to antigen-presenting cells, leading to a robust antitumor response. RESULTS In this study, we developed a novel vaccine platform called Listeria-based Live Attenuated Double Substitution (LADS), which involves introducing two amino acid substitutions (N478AV479A) into the virulence factor listeriolysin O (LLO). LADS is a safe vaccine platform, with an attenuation of nearly 7000-fold, while retaining complete immunogenicity due to the absence of deletion of any virulence factors. We developed two LADS-based vaccines, LADS-E7 and LADS-AH1, which deliver the human papillomavirus (HPV) type 16 E7 oncoprotein and murine colon carcinoma immunodominant antigen AH1, respectively. Treatment with LADS-E7 or LADS-AH1 significantly inhibited and regressed established tumors, while also dramatically increasing the populations of tumor-infiltrated antigen-specific CD8+ T cells. RNA-sequencing analysis of tumor tissue samples revealed that LADS-E7 altered the expression of genes related to the immune response. Moreover, intratumoral injection of LADS-based vaccines induced strong antitumor responses, generating systemic antitumor responses to control distant tumor growth. Encouragingly, LADS-E7 or LADS-AH1 immunization effectively prevented tumor formation and growth. CONCLUSIONS Our findings demonstrate that LADS-based vaccines represent a more powerful platform for the development of immunotherapeutic and preventive vaccines against cancers and infectious diseases.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xin Jiang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Xia
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Yue Han
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Mianmian Chen
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jiali Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Simin Deng
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Changyong Cheng
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China.
| |
Collapse
|
7
|
Chia JE, Rousseau RP, Ozturk M, Poswayo SKL, Lucas R, Brombacher F, Parihar SP. The divergent outcome of IL-4Rα signalling on Foxp3 T regulatory cells in listeriosis and tuberculosis. Front Immunol 2024; 15:1427055. [PMID: 39483462 PMCID: PMC11524857 DOI: 10.3389/fimmu.2024.1427055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Forkhead box P3 (Foxp3) T regulatory cells are critical for maintaining self-tolerance, immune homeostasis, and regulating the immune system. Methods We investigated interleukin-4 receptor alpha (IL-4Rα) signalling on T regulatory cells (Tregs) during Listeria monocytogenes (L. monocytogenes) infection using a mouse model on a BALB/c background, specifically with IL-4Rα knockdown in Tregs (Foxp3creIL-4Rα-/lox). Results We showed an impairment of Treg responses, along with a decreased bacterial burden and diminished tissue pathology in the liver and spleen, which translated into better survival. Mechanistically, we observed an enhancement of the Th1 signature, characterised by increased expression of the T-bet transcription factor and a greater number of effector T cells producing IFN-γ, IL-2 following ex-vivo stimulation with heat-killed L. monocytogenes in Foxp3creIL-4Rα-/lox mice. Furthermore, CD8 T cells from Foxp3creIL-4Rα-/lox mice displayed increased cytotoxicity (Granzyme-B) with higher proliferation capacity (Ki-67), better survival (Bcl-2) with concomitant reduced apoptosis (activated caspase 3). In contrast to L. monocytogenes, Foxp3creIL-4Rα-/lox mice displayed similar bacterial burdens, lung pathology and survival during Mycobacterium tuberculosis (M. tuberculosis) infection, despite increased T cell numbers and IFN-γ, TNF and IL-17 production. Conclusion Our results demonstrated that the diminished IL-4Rα signalling on Foxp3+ T regulatory cells resulted in a loss of their functionality, leading to survival benefits in listeriosis but not in tuberculosis.
Collapse
Affiliation(s)
- Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert P. Rousseau
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sibongiseni K. L. Poswayo
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rodney Lucas
- Research Animal Facility (RAF), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Arnold F, Kupferschmid L, Weissenborn P, Heldmann L, Hummel JF, Zareba P, Sagar, Rogg M, Schell C, Tanriver Y. Tissue-resident memory T cells break tolerance to renal autoantigens and orchestrate immune-mediated nephritis. Cell Mol Immunol 2024; 21:1066-1081. [PMID: 38961265 PMCID: PMC11364874 DOI: 10.1038/s41423-024-01197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
Immune-mediated nephritis is a leading cause of acute kidney injury and chronic kidney disease. While the role of B cells and antibodies has been extensively investigated in the past, the advent of immune-checkpoint inhibitors has led to a reappraisal of the role of T cells in renal immunology. However, it remains elusive how T cells with specificity for renal autoantigens are activated and participate in immune-mediated nephritis. Here, we followed the fate and function of pathogen-activated autoreactive CD8 T cells that are specific for a renal autoantigen. We demonstrate that recently activated splenic CD8 T cells developed a hybrid phenotype in the context of renal autoantigen cross-presentation, combining hallmarks of activation and T cell dysfunction. While circulating memory T cells rapidly disappeared, tissue-resident memory T cells emerged and persisted within the kidney, orchestrating immune-mediated nephritis. Notably, T cells infiltrating kidneys of patients with interstitial nephritis also expressed key markers of tissue residency. This study unveils how a tissue-specific immune response can dissociate from its systemic counterpart driving a compartmentalized immune response in the kidneys of mice and man. Consequently, targeting tissue-resident memory T cells emerges as a promising strategy to control immune-mediated kidney disease.
Collapse
Affiliation(s)
- Frederic Arnold
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laurence Kupferschmid
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Weissenborn
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Heldmann
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paulina Zareba
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Sukhina A, Queriault C, Hall E, Rome K, Aggarwal M, Nunn E, Weiss A, Nguyen J, Bailis W. Malnutrition drives infection susceptibility and dysregulated myelopoiesis that persists after refeeding intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608575. [PMID: 39229137 PMCID: PMC11370435 DOI: 10.1101/2024.08.19.608575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Undernutrition is one of the largest persistent global health crises, with nearly 1 billion people facing severe food insecurity. Infectious disease represents the main underlying cause of morbidity and mortality for malnourished individuals, with infection during malnutrition representing the leading cause of childhood mortality worldwide. In the face of this complex challenge, simple refeeding protocols have remained the primary treatment strategy. Although an association between undernutrition and infection susceptibility has been appreciated for over a century, the underlying mechanisms remain poorly understood and the extent to which refeeding intervention is sufficient to reverse nutritionally acquired immunodeficiency is unclear. Here we investigate how malnutrition leads to immune dysfunction and the ability of refeeding to repair it. We find that chronic malnutrition severely impairs the ability of animals to control a sub-lethal bacterial infection. Malnourished animals exhibit blunted immune cell expansion, impaired immune function, and accelerated contraction prior to pathogen clearance. While this defect is global, we find that myelopoiesis is uniquely impacted, resulting in in reduced neutrophil and monocyte numbers prior to and post-infection. Upon refeeding, we observe that animals recover body mass, size, cellularity across all major immune organs, the capacity to undergo normal immune cell expansion in response to infection, and a restoration in T cell responses. Despite this broad improvement, refed animals remain susceptible to bacterial infection, uncoupling global lymphoid atrophy from immunodeficiency. Mechanistically, we find peripheral neutrophil and monocyte numbers fail to fully recover and refed animals are unable to undergo normal emergency myelopoiesis. Altogether, this work identifies a novel cellular link between prior nutritional state and immunocompetency, highlighting dysregulated myelopoiesis as a major driver. We believe these findings illustrate how exposure to food scarcity is an immunologic variable, even post-recovery, which should be accounted for in patient medical history and current global public health policy.
Collapse
Affiliation(s)
- Alisa Sukhina
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Clemence Queriault
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Elise Hall
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Kelly Rome
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Muskaan Aggarwal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Elizabeth Nunn
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Weiss
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Janet Nguyen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| |
Collapse
|
10
|
Meulewaeter S, Aernout I, Deprez J, Engelen Y, De Velder M, Franceschini L, Breckpot K, Van Calenbergh S, Asselman C, Boucher K, Impens F, De Smedt SC, Verbeke R, Lentacker I. Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. J Control Release 2024; 370:379-391. [PMID: 38697317 DOI: 10.1016/j.jconrel.2024.04.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.
Collapse
Affiliation(s)
- Sofie Meulewaeter
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Ilke Aernout
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Joke Deprez
- Inflammation Research Center, VIB-UGent, Zwijnaarde, Belgium
| | - Yanou Engelen
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Margo De Velder
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Lorenzo Franceschini
- Translational Oncology Research Center, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serge Van Calenbergh
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
11
|
Carvalho TP, Toledo FAO, Bautista DFA, Silva MF, Oliveira JBS, Lima PA, Costa FB, Ribeiro NQ, Lee JY, Birbrair A, Paixão TA, Tsolis RM, Santos RL. Pericytes modulate endothelial inflammatory response during bacterial infection. mBio 2024; 15:e0325223. [PMID: 38289074 PMCID: PMC10936204 DOI: 10.1128/mbio.03252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/14/2024] Open
Abstract
Pericytes are located around blood vessels, in close contact with endothelial cells. We discovered that pericytes dampen pro-inflammatory endothelial cell responses. Endothelial cells co-cultured with pericytes had markedly reduced expression of adhesion molecules (PECAM-1 and ICAM-1) and proinflammatory cytokines (CCL-2 and IL-6) in response to bacterial stimuli (Brucella ovis, Listeria monocytogenes, or Escherichia coli lipopolysaccharide). Pericyte-depleted mice intraperitoneally inoculated with either B. ovis, a stealthy pathogen that does not trigger detectable inflammation, or Listeria monocytogenes, developed peritonitis. Further, during Citrobacter rodentium infection, pericyte-depleted mice developed severe intestinal inflammation, which was not evident in control mice. The anti-inflammatory effect of pericytes required connexin 43, as either chemical inhibition or silencing of connexin 43 abrogated pericyte-mediated suppression of endothelial inflammatory responses. Our results define a mechanism by which pericytes modulate inflammation during infection, which shifts our understanding of pericyte biology: from a structural cell to a pro-active player in modulating inflammation. IMPORTANCE A previously unknown mechanism by which pericytes modulate inflammation was discovered. The absence of pericytes or blocking interaction between pericytes and endothelium through connexin 43 results in stronger inflammation, which shifts our understanding of pericyte biology, from a structural cell to a player in controlling inflammation.
Collapse
Affiliation(s)
- Thaynara P. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Frank A. O. Toledo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego F. A. Bautista
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique F. Silva
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jefferson B. S. Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pâmela A. Lima
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola B. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Noelly Q. Ribeiro
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Alexander Birbrair
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Reneé M. Tsolis
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| |
Collapse
|
12
|
Eallonardo SJ, Freitag NE. Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells 2023; 13:88. [PMID: 38201292 PMCID: PMC10778170 DOI: 10.3390/cells13010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Vertically transmitted infections are a significant cause of fetal morbidity and mortality during pregnancy and pose substantial risks to fetal development. These infections are primarily transmitted to the fetus through two routes: (1) direct invasion and crossing the placenta which separates maternal and fetal circulation, or (2) ascending the maternal genitourinary tact and entering the uterus. Only two bacterial species are commonly found to cross the placenta and infect the fetus: Listeria monocytogenes and Treponema pallidum subsp. pallidum. L. monocytogenes is a Gram-positive, foodborne pathogen found in soil that acutely infects a wide variety of mammalian species. T. pallidum is a sexually transmitted spirochete that causes a chronic infection exclusively in humans. We briefly review the pathogenesis of these two very distinct bacteria that have managed to overcome the placental barrier and the role placental immunity plays in resisting infection. Both organisms share characteristics which contribute to their transplacental transmission. These include the ability to disseminate broadly within the host, evade immune phagocytosis, and the need for a strong T cell response for their elimination.
Collapse
Affiliation(s)
- Samuel J. Eallonardo
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Tang M, Tian S, Chen K, Zhang Q, Lei Y, Tang T, Zeng J, Wang C. Membrane vesicles derived from Listeria monocytogenes might be a potential antigen delivery vector. Int J Pharm 2023; 644:123275. [PMID: 37516216 DOI: 10.1016/j.ijpharm.2023.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Membrane vesicles (MVs) derived from Listeria monocytogenes (LM) have a natural nanoscale size and contain a variety of bacterial components. We speculated that LM MVs may be a novel delivery vector, but it is necessary to evaluate the safety and immunogenicity of LM MVs in vivo. Here, we isolated LM MVs and tested their safety and immunogenicity both in vitro and in vivo. The results showed that LM MVs stimulated RAW264.7 cells and DC2.4 cells to secrete the inflammatory cytokines IL-1β, TNF-α, IL-6 and IL-10. Intraperitoneal injection of LM MVs at 80 μg per C57BL/6 mouse did not cause lethal effects or irreversible pathological changes in major organs, indicating that LM MVs were safe. Intraperitoneal immunization of C57BL/6 mice twice with LM MVs mainly induced a high level of LM MV-specific IgG antibodies. In addition, we subcutaneously injected C57BL/6 mice with a mixture of ovalbumin and LM MVs and found that LM MVs exhibited a humoral immune adjuvant effect equal to that of the same amount of alum. The results of this study indicated that LM MVs have good safety and effective immunogenicity and may act as humoral immune adjuvants. Therefore, LM MVs are a potential new choice for antigen and drug delivery vectors.
Collapse
Affiliation(s)
- Mingyuan Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Sicheng Tian
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Kehan Chen
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Qiuyang Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Yao Lei
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Tian Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Jumei Zeng
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Chuan Wang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China.
| |
Collapse
|
14
|
Wang Y, Hu Y, Liu Y, Shi C, Yu L, Lu N, Zhang C. Liver-resident CD44 hiCD27 - γδT Cells Help to Protect Against Listeria monocytogenes Infection. Cell Mol Gastroenterol Hepatol 2023; 16:923-941. [PMID: 37611663 PMCID: PMC10616555 DOI: 10.1016/j.jcmgh.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND & AIMS Gamma delta (γδ) T cells are heterogeneous and functionally committed to producing interferon (IFN)-γ and interleukin (IL)-17. γδT cells are defined as tissue-resident lymphocytes in barrier tissues. Among them, IL-17-producing γδT cells are relatively abundant in the liver. However, a systematic and comprehensive understanding of the residency characteristics and function of hepatic IL-17A+ γδT cells is lacking. METHODS We undertook a single-cell analysis of γδT17 cells derived from murine livers. A parabiosis model was used to assess tissue residency. Fluorescence-activated cell sorting and adoptive transfer experiments were used to investigate the response and protective role of liver-resident CD44hiCD27- γδT cells in Listeria monocytogenes infection. Transwell assay was used to assess the role of macrophages in the chemotaxis of liver-resident CD44hiCD27- γδT cells. RESULTS We identified hepatic IL-17A-producing γδT cells as CD44hiCD27- γδT cells. They had tissue-resident characteristics and resided principally within the liver. Vγ6+ T cells also exhibited liver-resident features. Liver-resident CD44hiCD27- γδT cells had significantly increased proliferation capacity, and their proportion rapidly increased after infection. Some CD44hiCD27- γδT cells could produce IL-17A and IFN-γ simultaneously in response to Lm infection. Adoptive transfer of hepatic CD44hiCD27- γδT cells into Lm-infected TCRδ-/- mice led to markedly lower bacterial numbers in the liver. Hepatic macrophages promoted the migration and accumulation of liver-resident CD44hiCD27- γδT cells into infection sites. CONCLUSIONS Liver-resident CD44hiCD27- γδT cells protect against Lm infection. Hepatic macrophages coordinate with liver-resident CD44hiCD27- γδT cells and contribute to the clearance of Lm at the early stage of infection corporately.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chongdeng Shi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linyan Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
15
|
Quiros-Roldan E, Sottini A, Signorini SG, Serana F, Tiecco G, Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses 2023; 15:v15051215. [PMID: 37243300 DOI: 10.3390/v15051215] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-cytokine autoantibodies and, in particular, anti-type I interferons are increasingly described in association with immunodeficient, autoimmune, and immune-dysregulated conditions. Their presence in otherwise healthy individuals may result in a phenotype characterized by a predisposition to infections with several agents. For instance, anti-type I interferon autoantibodies are implicated in Coronavirus Disease 19 (COVID-19) pathogenesis and found preferentially in patients with critical disease. However, autoantibodies were also described in the serum of patients with viral, bacterial, and fungal infections not associated with COVID-19. In this review, we provide an overview of anti-cytokine autoantibodies identified to date and their clinical associations; we also discuss whether they can act as enemies or friends, i.e., are capable of acting in a beneficial or harmful way, and if they may be linked to gender or immunosenescence. Understanding the mechanisms underlying the production of autoantibodies could improve the approach to treating some infections, focusing not only on pathogens, but also on the possibility of a low degree of autoimmunity in patients.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | | | - Federico Serana
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
16
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Frentzel S, Jeron A, Pausder A, Kershaw O, Volckmar J, Schmitz I, Bruder D. IκB NS-deficiency protects mice from fatal Listeria monocytogenes infection by blunting pro-inflammatory signature in Ly6C high monocytes and preventing exaggerated innate immune responses. Front Immunol 2022; 13:1028789. [PMID: 36618344 PMCID: PMC9813228 DOI: 10.3389/fimmu.2022.1028789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
IκB proteins regulate the inhibition and activation of NF-κB transcription factor complexes. While classical IκB proteins keep NF-κB complexes inactive in the cytoplasm, atypical IκB proteins act on activated NF-κB complexes located in the nucleus. Most of the knowledge regarding the function of IκB proteins has been collected in vitro, while far less is known regarding their impact on activation and regulation of immune responses during in vivo infections. Combining in vivo Listeria monocytogenes (Lm) infection with comparative ex vivo transcriptional profiling of the hepatic response to the pathogen we observed that in contrast to wild type mice that mounted a robust inflammatory response, IκBNS-deficiency was generally associated with a transcriptional repression of innate immune responses. Whole tissue transcriptomics revealed a pronounced IκBNS-dependent reduction of myeloid cell-associated transcripts in the liver together with an exceptionally high Nfkbid promoter activity uncovered in Ly6Chigh inflammatory monocytes prompted us to further characterize the specific contribution of IκBNS in the inflammatory response of monocytes to the infectious agent. Indeed, Ly6Chigh monocytes primed during Lm infection in the absence of IκBNS displayed a blunted response compared to wild type-derived Ly6Chigh monocytes as evidenced by the reduced early expression of hallmark transcripts of monocyte-driven inflammation such as Il6, Nos2 and Il1β. Strikingly, altered monocyte activation in IκBNS-deficient mice was associated with an exceptional resistance against Lm infection and protection was associated with a strong reduction in immunopathology in Lm target organs. Of note, mice lacking IκBNS exclusively in myeloid cells failed to resist Lm infection, indicating that the observed effect was not monocyte intrinsic but monocyte extrinsic. While serum cytokine-profiling did not discover obvious differences between wild type and IκBNS -/- mice for most of the analyzed mediators, IL-10 was virtually undetectable in IκBNS-deficient mice, both in the steady state and following Lm infection. Together, we show here a crucial role for IκBNS during Lm infection with IκBNS-deficient mice showing an overall blunted pro-inflammatory immune response attributed to a reduced pro-inflammatory signature in Ly6Chigh monocytes. Reduced immunopathology and complete protection of mice against an otherwise fatal Lm infection identified IκBNS as molecular driver of inflammation in listeriosis.
Collapse
Affiliation(s)
- Sarah Frentzel
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Jeron
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Pausder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Julia Volckmar
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ingo Schmitz
- Dept. of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany,*Correspondence: Dunja Bruder,
| |
Collapse
|
18
|
Tian L, Zhou W, Wu X, Hu Z, Qiu L, Zhang H, Chen X, Zhang S, Lu Z. CTLs: Killers of intracellular bacteria. Front Cell Infect Microbiol 2022; 12:967679. [PMID: 36389159 PMCID: PMC9645434 DOI: 10.3389/fcimb.2022.967679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
Many microbial pathogens have evolved a range of capabilities to evade host immune defense mechanisms and to survive and multiply in host cells. The presence of host intracellular bacteria makes it difficult for specific antibodies to function. After the intracellular bacteria escape the attack of the innate immune system, such as phagocytes, they survive in cells, and then adaptive immunity comes into play. Cytotoxic T lymphocytes (CTLs) play an important role in eliminating intracellular bacteria. The regulation of key transcription factors could promote CD4+/CD8+ T cells to acquire cytolytic ability. The TCR-CD3 complex transduces activation signals generated by TCR recognition of antigen and promotes CTLs to generate multiple pathways to kill intracellular bacteria. In this review, the mechanism of CD4/CD8 CTLs differentiation and how CD4/CD8 CTLs kill intracellular bacteria are introduced. In addition, their application and prospects in the treatment of bacterial infections are discussed.
Collapse
Affiliation(s)
- Li Tian
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhou
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwei Wu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuannan Hu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Qiu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyong Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shaoyan Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Tavares LS, Mancebo BD, Santana LN, Adelson do Nascimento Silva A, Silva RLDO, Benko-Iseppon AM, Ramos MV, Monteiro do Nascimento CT, Grangeiro TB, Sousa JS, Mota RA, Júnior VADS, Lima-Filho JV. Recombinant osmotin inclusion bodies from Calotropis procera produced in E. coli BL21(DE3) prevent acute inflammation in a mouse model of listeriosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154186. [PMID: 35617890 DOI: 10.1016/j.phymed.2022.154186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The osmotin from the medicinal plant Calotropis procera (CpOsm) has characteristics similar to adiponectin, a human protein with immunoregulatory actions. PURPOSE This study aimed to investigate whether recombinant osmotin inclusion bodies from C. procera (IB/rCpOsm) produced in E. coli BL21(DE3) can prevent infection-induced inflammation. A virulent strain of Listeria monocytogenes was used as an infection model. METHODS Cells of E. coli BL21(DE3) carrying the plasmid pET303-CpOsm were used to express the recombinant osmotin, which accumulated at reasonable levels as inclusion bodies (IB/rCpOsm). IB/rCpOsm were purified from induced cells and SDS-polyacrylamide gel electrophoresis followed by mass spectrometry analyses confirmed the identity of the major protein band (23 kDa apparent molecular mass) as CpOsm. Peritoneal macrophages (pMØ) from Swiss mice were cultured with IB/rCpOsm (1 or 10 µg/ml) in 96-well plates and then infected with L. monocytogenes. IB/rCpOsm (0.1, 1 or 10 mg/kg) was also administered intravenously to Swiss mice, which were then infected intraperitoneally with L. monocytogenes. RESULTS Pretreatment of the pMØ with IB/rCpOsm significantly increased cell viability after infection and reduced the intracellular bacterial load. The infiltration of neutrophils into the peritoneal cavity of mice pretreated with IB/rCpOsm at 10 mg/kg (but not 0.1 and 1 mg/kg) was reduced after infection. In these mice, the bacterial load was high in the peritoneal fluid and the liver, but histological damage was discrete. The treatments with IB/rCpOsm at 10 mg/kg significantly increased the expression of the anti-inflammatory cytokine IL-10. CONCLUSION This study shows that recombinant osmotin inclusion bodies from C. procera were bioactive and prompted anti-inflammatory actions at therapeutic dosages in the L. monocytogenes infection model.
Collapse
|
20
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
21
|
Zhou C, Zou Y, Huang J, Zhao Z, Zhang Y, Wei Y, Ye K. TMT-Based Quantitative Proteomic Analysis of Intestinal Organoids Infected by Listeria monocytogenes Strains with Different Virulence. Int J Mol Sci 2022; 23:ijms23116231. [PMID: 35682909 PMCID: PMC9181811 DOI: 10.3390/ijms23116231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
L. monocytogenes, consisting of 13 serotypes, is an opportunistic food-borne pathogen that causes different host reactions depending on its serotypes. In this study, highly toxic L. monocytogenes 10403s resulted in more severe infections and lower survival rates. Additionally, to investigate the remodeling of the host proteome by strains exhibiting differential toxicity, the cellular protein responses of intestinal organoids were analyzed using tandem mass tag (TMT) labeling and high-performance liquid chromatography−mass spectrometry. The virulent strain 10403s caused 102 up-regulated and 52 down-regulated proteins, while the low virulent strain M7 caused 188 up-regulated and 25 down-regulated proteins. Based on the analysis of gene ontology (GO) and KEGG databases, the expressions of differential proteins in organoids infected by L. monocytogenes 10403s (virulent strain) or M7 (low virulent strain) were involved in regulating essential processes such as the biological metabolism, the energy metabolism, and immune system processes. The results showed that the immune system process, as the primary host defense response to L. monocytogenes, comprised five pathways, including ECM−receptor interaction, the complement and coagulation cascades, HIF-1, ferroptosis, and NOD-like receptor signaling pathways. As for the L. monocytogenes 10403s vs. M7 group, the expression of differential proteins was involved in two pathways: systemic lupus erythematosus and transcriptional mis-regulation in cancer. All in all, these results revealed that L. monocytogenes strains with different toxicity induced similar biological functions and immune responses while having different regulations on differential proteins in the pathway.
Collapse
|
22
|
Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel) 2022; 14:toxins14050344. [PMID: 35622591 PMCID: PMC9143185 DOI: 10.3390/toxins14050344] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Venoms are products of specialized glands and serve many living organisms to immobilize and kill prey, start digestive processes and act as a defense mechanism. Venoms affect different cells, cellular structures and tissues, such as skin, nervous, hematological, digestive, excretory and immune systems, as well as the heart, among other structures. Components of both the innate and adaptive immune systems can be stimulated or suppressed. Studying the effects on the cells and molecules produced by the immune system has been useful in many biomedical fields. The effects of venoms can be the basis for research and development of therapeutic protocols useful in the modulation of the immunological system, including different autoimmune diseases. This review focuses on the understanding of biological effects of diverse venom on the human immune system and how some of their components can be useful for the study and development of immunomodulatory drugs.
Collapse
|
23
|
Sin JH, Kashyap S, Acenas D, Cortez JT, Lee J, Marson A, Matloubian M, Waterfield MR. ATF7ip Targets Transposable Elements for H3K9me3 Deposition to Modify CD8 + T Cell Effector and Memory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1155-1169. [PMID: 35110421 PMCID: PMC8881383 DOI: 10.4049/jimmunol.2100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
CD8+ T cells are critical for the immune response to pathogens and tumors, and CD8+ T cell memory protects against repeat infections. In this study, we identify the activating transcription factor 7 interacting protein (ATF7ip) as a critical regulator of CD8+ T cell immune responses. Mice with a T cell-specific deletion of ATF7ip have a CD8+ T cell-intrinsic enhancement of Il7r expression and Il2 expression leading to enhanced effector and memory responses. Chromatin immunoprecipitation sequencing studies identified ATF7ip as a repressor of Il7r and Il2 gene expression through the deposition of the repressive histone mark H3K9me3 at the Il7r gene and Il2-Il21 intergenic region. Interestingly, ATF7ip targeted transposable elements for H3K9me3 deposition at both the IL7r locus and the Il2-Il21 intergenic region, indicating that ATF7ip silencing of transposable elements is important for regulating CD8+ T cell function. These results demonstrate a new epigenetic pathway by which IL-7R and IL-2 production are constrained in CD8+ T cells, and this may open up new avenues for modulating their production.
Collapse
Affiliation(s)
- Jun Hyung Sin
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA
| | - Sujit Kashyap
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Dante Acenas
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Jessica T Cortez
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - James Lee
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Alexander Marson
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA
- Diabetes Center, University of California, San Francisco, San Francisco, CA
- J. David Gladstone Institutes, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA; and
| | - Mehrdad Matloubian
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Division of Rheumatology, University of California San Francisco, San Francisco, CA
| | - Michael R Waterfield
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA;
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA
| |
Collapse
|
24
|
Safety and efficacy of prophylactic and therapeutic vaccine based on live-attenuated Listeria monocytogenes in hepatobiliary cancers. Oncogene 2022; 41:2039-2053. [PMID: 35173308 PMCID: PMC8853207 DOI: 10.1038/s41388-022-02222-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 11/15/2022]
Abstract
Primary liver cancer (PLC) comprising hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represents the third deadliest cancer worldwide with still insufficient treatment options. We have previously found that CD4 T helper 1 (Th1) response is indispensable for the protection against PLC. In the present research, we aimed to test the potent inducers of Th1 responses, live-attenuated Listeria monocytogenes ∆actA/∆inlB strain as preventive/therapeutic vaccine candidate in liver fibrosis, HCC, and CCA. Studies were performed using autochthonous models of HCC and CCA, highly reflecting human disease. L. monocytogenes ∆actA/∆inlB demonstrated strong safety/efficacy in premalignant and malignant liver diseases. The protective mechanism relied on the induction of strong tumor-specific immune responses that keep the development of hepatobiliary cancers under control. Combination therapy, comprising Listeria vaccination and a checkpoint inhibitor blockade significantly extended the survival of HCC-bearing mice even at the advanced stages of the disease. This is the first report on the safety and efficacy of Listeria-based vaccine in liver fibrosis, as well as the first proof of principle study on Listeria-based vaccines in CCA. Our study paves the way for the use of live-attenuated Listeria as safe and efficient vaccine and a potent inducer of protective immune responses in liver fibrosis and hepatobiliary malignancies. Protective immune mechanism induced by live-attenuated double-deleted L. monocytogenes ∆actA/∆inlB vaccine strain delivering tumor antigens keeps hepatobiliary malignancies under control. Live-attenuated, double-deleted L. monocytogenes ∆actA/∆inlB strain expressing model tumor antigen was used in both, prophylactic and therapeutic vaccination settings. Vaccination was safe and led to: (i) induction of protective tumor-specific Th1 immune responses in premalignant and malignant stages and strong increase of tumor-specific IFN-ɣ+ CD4 and CD8 T cells; (ii) decrease of T regulatory cells; (iii) downregulation of several tumor-promoting ICI molecules (PD-1, CD160, LAG3, 4-1BBL) on CD4/CD8 T lymphocytes; (iv) decrease of tumor-specific IgG in serum, and (v) decrease of B lymphocytes, DC and MΦ locally in livers. iCCA, intrahepatic cholangiocarcinoma.![]()
Collapse
|
25
|
Protective Immunity against Listeria monocytogenes in Rats, Provided by HCl- and NaOH-Induced Listeria monocytogenes Bacterial Ghosts (LMGs) as Vaccine Candidates. Int J Mol Sci 2022; 23:ijms23041946. [PMID: 35216061 PMCID: PMC8876606 DOI: 10.3390/ijms23041946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes (Lm) bacterial ghosts (LMGs) were produced by the minimum inhibitory concentration (MIC) of HCl, H2SO4, and NaOH. Acid and alkali effects on the LMGs were compared by in vitro and in vivo analyses. Scanning electron microscope showed that all chemicals form lysis pores on the Lm cell envelopes. Real-time qPCR revealed a complete absence of genomic DNA in HCl- and H2SO4-induced LMGs but not in NaOH-induced LMGs. HCl-, H2SO4- and NaOH-induced LMGs showed weaker or missing protein bands on SDS-PAGE gel when compared to wild-type Lm. Murine macrophages exposed to the HCl-induced LMGs showed higher cell viability than those exposed to NaOH-induced LMGs or wild-type Lm. The maximum level of cytokine expression (TNF-α, iNOS, IFN-γ, and IL-10 mRNA) was observed in the macrophages exposed to NaOH-induced LMGs, while that of IL-1β mRNA was observed in the macrophages exposed to HCl-induced LMGs. To investigate LMGs as a vaccine candidate, mice were divided into PBS buffer-injected, HCl- and NaOH-induced LMGs immunized groups. Mice vaccinated with HCl- and NOH-induced LMGs, respectively, significantly increased in specific IgG antibodies, bactericidal activities of serum, and CD4+ and CD8+ T-cell population. Antigenic Lm proteins reacted with antisera against HCl- and NOH-induced LMGs, respectively. Bacterial loads in HCl- and NaOH-induced LMGs immunized mice were significantly lower than PBS-injected mice after virulent Lm challenges. It suggested that vaccination with LMGs induces both humoral and cell-mediated immune responses and protects against virulent challenges.
Collapse
|
26
|
Böning MAL, Parzmair GP, Jeron A, Düsedau HP, Kershaw O, Xu B, Relja B, Schlüter D, Dunay IR, Reinhold A, Schraven B, Bruder D. Enhanced Susceptibility of ADAP-Deficient Mice to Listeria monocytogenes Infection Is Associated With an Altered Phagocyte Phenotype and Function. Front Immunol 2021; 12:724855. [PMID: 34659211 PMCID: PMC8515145 DOI: 10.3389/fimmu.2021.724855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date, only limited data exist regarding the role of ADAP in pathogen-specific immunity during in vivo infection, and its contribution in phagocyte-mediated antibacterial immunity remains elusive. Here, we show that mice lacking ADAP (ADAPko) are highly susceptible to the infection with the intracellular pathogen Listeria monocytogenes (Lm) by showing enhanced immunopathology in infected tissues together with increased morbidity, mortality, and excessive infiltration of neutrophils and monocytes. Despite high phagocyte numbers in the spleen and liver, ADAPko mice only inefficiently controlled pathogen growth, hinting at a functional impairment of infection-primed phagocytes in the ADAP-deficient host. Flow cytometric analysis of hallmark pro-inflammatory mediators and unbiased whole genome transcriptional profiling of neutrophils and inflammatory monocytes uncovered broad molecular alterations in the inflammatory program in both phagocyte subsets following their activation in the ADAP-deficient host. Strikingly, ex vivo phagocytosis assay revealed impaired phagocytic capacity of neutrophils derived from Lm-infected ADAPko mice. Together, our data suggest that an alternative priming of phagocytes in ADAP-deficient mice during Lm infection induces marked alterations in the inflammatory profile of neutrophils and inflammatory monocytes that contribute to enhanced immunopathology while limiting their capacity to eliminate the pathogen and to prevent the fatal outcome of the infection.
Collapse
Affiliation(s)
- Martha A L Böning
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Gerald P Parzmair
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Jeron
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Henning P Düsedau
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Baolin Xu
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
27
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Wang S, Ma J, Ji Q, Liu Q. Evaluation of an attenuated Listeria monocytogenes as a vaccine vector to control Helicobacter pylori infection. Immunol Lett 2021; 238:68-74. [PMID: 34363896 DOI: 10.1016/j.imlet.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022]
Abstract
The increasing resistance of Helicobacter pylori (H. pylori) to antibiotics has limited the efficacy of antibiotic therapy in the treatment of H. pylori-associated gastric diseases. The vaccine as an alternative method is becoming a safe and effective way to address this problem. In previous studies, live vector vaccines have proved to be effective in controlling H. pylori infection. Attenuated Listeria monocytogenes (L. monocytogenes) is a potential candidate vector applied in clinical trials, which can deliver foreign antigens and induce a broad immune response. To further explore the effectiveness of L. monocytogenes as a vaccine vector against H. pylori, attenuated L. monocytogenes-based vaccine EGDeΔactA/inlB(EGDeAB)-MECU was constructed to secrete a multi-epitope chimeric antigen (MECU) containing multiple B cell epitopes from H. pylori antigens. EGDeAB-MECU could secrete MECU stably. After immunized by gavage and intravenous injection, both EGDeAB and EGDeAB-MECU could significantly decrease gastric H. pylori colonization and induce a high level of specific antibodies against H. pylori. In conclusion, attenuated L. monocytogenes had an immunotherapeutic effect on H. pylori-infected mice, indicating its further development as a promising candidate vaccine vector for the H. pylori vaccine.
Collapse
Affiliation(s)
- Shuying Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qianyu Ji
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
29
|
Wang Z, Tao X, Liu S, Zhao Y, Yang X. An Update Review on Listeria Infection in Pregnancy. Infect Drug Resist 2021; 14:1967-1978. [PMID: 34079306 PMCID: PMC8165209 DOI: 10.2147/idr.s313675] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes (LM) is an intracellular, aerobic and facultative anaerobic, Gram-positive bacterium, which is primarily transmitted to humans orally via food. LM could occur in asymptomatic pregnant women; however, fetal infection is a serious condition, entailing premature birth, abortion, sepsis, central nervous system (CNS) involvement, or even death. If a pregnant woman exhibits symptoms, the performance is almost like influenza, such as fever, headache, diarrhea, myalgia, or other digestive-related symptoms. This review collected clinical and empirical results regarding the mechanism, clinical manifestations, obstetrical outcome, diagnosis, treatment, vertical transmission, neonatal infection, and prevention of listeriosi according to articles published in PubMed from January 1, 1980, to March 20, 2021. The early detection and diagnosis of pregnancy-associated listeriosis are significant since sensitive antibiotics are effective at enhancing the prognosis of newborns. Listeriosis can be diagnosed using positive cultures from maternal or neonatal blood, neonatal cerebrospinal fluid (CSF), amniotic fluid, intrauterine mucosa, or the placenta. Two weeks of high-dose intravenous amoxicillin (more than 6 g/day) is recommended for LM pregnant women without allergy. Terminating the pregnancy to save the mother’s life should be considered if maternal and fetal conditions aggravate. Neonatal Listeria infection is primarily transmitted through the placenta, which is a critical illness associated with a high mortality rate. The necessary dietary guidance for pregnant women can reduce the incidence rate of pregnancy-related listeriosis.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaojing Tao
- Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shan Liu
- Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yutong Zhao
- Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
30
|
Adefemi F, Fruman DA, Marshall AJ. A Case for Phosphoinositide 3-Kinase-Targeted Therapy for Infectious Disease. THE JOURNAL OF IMMUNOLOGY 2021; 205:3237-3245. [PMID: 33288538 DOI: 10.4049/jimmunol.2000599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
Abstract
PI3Ks activate critical signaling cascades and have multifaceted regulatory functions in the immune system. Loss-of-function and gain-of-function mutations in the PI3Kδ isoform have revealed that this enzyme can substantially impact immune responses to infectious agents and their products. Moreover, reports garnered from decades of infectious disease studies indicate that pharmacologic inhibition of the PI3K pathway could potentially be effective in limiting the growth of certain microbes via modulation of the immune system. In this review, we briefly highlight the development and applications of PI3K inhibitors and summarize data supporting the concept that PI3Kδ inhibitors initially developed for oncology have immune regulatory potential that could be exploited to improve the control of some infectious diseases. This repurposing of existing kinase inhibitors could lay the foundation for alternative infectious disease therapy using available therapeutic agents.
Collapse
Affiliation(s)
- Folayemi Adefemi
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, R3E-0T5 Winnipeg, Manitoba, Canada
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697; and.,Institute for Immunology, University of California, Irvine, CA 92697
| | - Aaron J Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, R3E-0T5 Winnipeg, Manitoba, Canada;
| |
Collapse
|
31
|
Galicia-Carmona T, Arango-Bravo E, Serrano-Olvera JA, Flores-de La Torre C, Cruz-Esquivel I, Villalobos-Valencia R, Morán-Mendoza A, Castro-Eguiluz D, Cetina-Pérez L. ADXS11-001 LM-LLO as specific immunotherapy in cervical cancer. Hum Vaccin Immunother 2021; 17:2617-2625. [PMID: 33793380 DOI: 10.1080/21645515.2021.1893036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) infection is a well-known cause of cervical cancer. Therapeutic cancer vaccines are part of the current therapeutic options for HPV-associated cancers. Axalimogen filolisbac (ADXS11-001) is an immunotherapy based on live attenuated Listeria monocytogenes-listeriolysin O (Lm-LLO), designed by biological engineering to secrete an antigen-adjuvant fusion protein, composed of a truncated fragment of LLO fused to HPV. The proposed mechanism of action is that Lm-based vectors infect antigen-presenting cells (APC) and secrete HPV-LLO fusion proteins within the APC cytoplasm, these proteins are processed and presented to cytotoxic T lymphocytes (CTL), thus generating a new population of CTLs specific to HPV antigens. These HPV-specific CTLs destroy HPV infected cells. ADXS11-001 has demonstrated safety results in phase I-II studies in women with cervical cancer and is being assessed in clinical trials in patients with HPV-positive anal canal and head and neck cancers.
Collapse
Affiliation(s)
- Tatiana Galicia-Carmona
- Department of Clinical Research, Instituto Nacional De Cancerología, Mexico City, Mexico.,Department of Medical Oncology, Instituto Nacional De Cancerología, Mexico City, Mexico
| | - Eder Arango-Bravo
- Department of Clinical Research, Instituto Nacional De Cancerología, Mexico City, Mexico.,Department of Medical Oncology, Instituto Nacional De Cancerología, Mexico City, Mexico
| | | | - Celia Flores-de La Torre
- Department of Medical Oncology, Centro Estatal De Oncología Campeche INDESALUD, Campeche, Mexico
| | - Ivan Cruz-Esquivel
- Department of Surgical Oncology, Centro Estatal De Oncología Campeche INDESALUD, Campeche, Mexico
| | - Ricardo Villalobos-Valencia
- Oncology Hospital, Centro Médico Siglo XXI, Instituto Mexicano Del Seguro Social (IMSS), Mexico City, Mexico
| | - Andrés Morán-Mendoza
- Department of Oncology, UMAE Hospital Ginecoobstetricia, Centro Médico Nacional De Occidente, Instituto Mexicano Del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | | | - Lucely Cetina-Pérez
- Department of Clinical Research, Instituto Nacional De Cancerología, Mexico City, Mexico.,Department of Medical Oncology, Instituto Nacional De Cancerología, Mexico City, Mexico
| |
Collapse
|
32
|
Antilisterial Potential of Lactic Acid Bacteria in Eliminating Listeria monocytogenes in Host and Ready-to-Eat Food Application. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Listeriosis is a severe food borne disease with a mortality rate of up to 30% caused by pathogenic Listeria monocytogenes via the production of several virulence factors including listeriolysin O (LLO), transcriptional activator (PrfA), actin (Act), internalin (Int), etc. It is a foodborne disease predominantly causing infections through consumption of contaminated food and is often associated with ready-to-eat food (RTE) and dairy products. Common medication for listeriosis such as antibiotics might cause an eagle effect and antibiotic resistance if it is overused. Therefore, exploration of the use of lactic acid bacteria (LAB) with probiotic characteristics and multiple antimicrobial properties is increasingly getting attention for their capability to treat listeriosis, vaccine development, and hurdle technologies. The antilisterial gene, a gene coding to produce antimicrobial peptide (AMP), one of the inhibitory substances found in LAB, is one of the potential key factors in listeriosis treatment, coupled with the vast array of functions and strategies; this review summarizes the various strategies by LAB against L. monocytogenes and the prospect in development of a ‘generally regarded as safe’ LAB for treatment of listeriosis.
Collapse
|
33
|
Johnson RM, Olatunde AC, Woodie LN, Greene MW, Schwartz EH. The Systemic and Cellular Metabolic Phenotype of Infection and Immune Response to Listeria monocytogenes. Front Immunol 2021; 11:614697. [PMID: 33628207 PMCID: PMC7897666 DOI: 10.3389/fimmu.2020.614697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
It is widely accepted that infection and immune response incur significant metabolic demands, yet the respective demands of specific immune responses to live pathogens have not been well delineated. It is also established that upon activation, metabolic pathways undergo shifts at the cellular level. However, most studies exploring these issues at the systemic or cellular level have utilized pathogen associated molecular patterns (PAMPs) that model sepsis, or model antigens at isolated time points. Thus, the dynamics of pathogenesis and immune response to a live infection remain largely undocumented. To better quantitate the metabolic demands induced by infection, we utilized a live pathogenic infection model. Mice infected with Listeria monocytogenes were monitored longitudinally over the course of infection through clearance. We measured systemic metabolic phenotype, bacterial load, innate and adaptive immune responses, and cellular metabolic pathways. To further delineate the role of adaptive immunity in the metabolic phenotype, we utilized two doses of bacteria, one that induced both sickness behavior and protective (T cell mediated) immunity, and the other protective immunity alone. We determined that the greatest impact to systemic metabolism occurred during the early immune response, which coincided with the greatest shift in innate cellular metabolism. In contrast, during the time of maximal T cell expansion, systemic metabolism returned to resting state. Taken together, our findings demonstrate that the timing of maximal metabolic demand overlaps with the innate immune response and that when the adaptive response is maximal, the host has returned to relative metabolic homeostasis.
Collapse
Affiliation(s)
- Robert M Johnson
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Adesola C Olatunde
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Lauren N Woodie
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Michael W Greene
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
34
|
Cardiotropic Isolates of Listeria monocytogenes with Enhanced Vertical Transmission Dependent upon the Bacterial Surface Protein InlB. Infect Immun 2021; 89:IAI.00321-20. [PMID: 33139387 DOI: 10.1128/iai.00321-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a facultative Gram-positive intracellular bacterium that is capable of causing serious invasive infections in pregnant women, resulting in abortion, still-birth, and disseminated fetal infection. Previously, a clinical L. monocytogenes isolate, 07PF0776, was identified as having an enhanced ability to target cardiac tissue. This tissue tropism appeared to correlate with amino acid variations found within internalin B (InlB), a bacterial surface protein associated with host cell invasion. Given that the mammalian receptor bound by InlB, Met, is abundantly expressed by placental tissue, we assessed isolate 07PF0776 for its ability to be transmitted from mother to fetus. Pregnant Swiss Webster mice were infected on gestational day E13 via tail vein injection with the standard isolate 10403S, a noncardiotropic strain, or 07PF0776, the cardiac isolate. Pregnant mice infected with 07PF0776 exhibited significantly enhanced transmission of L. monocytogenes to placentas and fetuses compared to 10403S. Both bacterial burdens and the frequency of placental and fetal infection were increased in mice infected with the cardiac isolate. Strain 07PF0776 also exhibited an enhanced ability to invade Jar human trophoblast tissue culture cells in comparison to 10403S, and was found to have increased levels of InlB associated with the bacterial cell surface. Overexpression of surface InlB via genetic manipulation was sufficient to confer enhanced invasion of the placenta and fetus to both 10403S and 07PF0776. These data support a central role for surface InlB in promoting vertical transmission of L. monocytogenes.
Collapse
|
35
|
LRCH1 deficiency enhances LAT signalosome formation and CD8 + T cell responses against tumors and pathogens. Proc Natl Acad Sci U S A 2020; 117:19388-19398. [PMID: 32727906 DOI: 10.1073/pnas.2000970117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CD8+ T cells play pivotal roles in eradicating pathogens and tumor cells. T cell receptor (TCR) signaling is vital for the optimal activation of CD8+ T cells. Upon TCR engagement, the transmembrane adapter protein LAT (linker for activation of T cells) recruits other key signaling molecules and forms the "LAT signalosome" for downstream signal transduction. However, little is known about which functional partners could restrain the formation of the LAT signalosome and inhibit CD8+ cytotoxic T lymphocyte (CTL)-mediated cytotoxicity. Here we have demonstrated that LRCH1 (leucine-rich repeats and calponin homology domain containing 1) directly binds LAT, reduces LAT phosphorylation and interaction with GRB2, and also promotes the endocytosis of LAT. Lrch1 -/- mice display better protection against influenza virus and Listeria infection, with enhanced CD8+ T cell proliferation and cytotoxicity. Adoptive transfer of Lrch1 -/- CD8+ CTLs leads to increased B16-MO5 tumor clearance in vivo. Furthermore, knockout of LRCH1 in human chimeric antigen receptor (CAR) T cells that recognize the liver tumor-associated antigen glypican-3 could improve CAR T cell migration and proliferation in vitro. These findings suggest LRCH1 as a potential translational target to improve T cell immunotherapy against infection and tumors.
Collapse
|
36
|
Nguyen BN, Chávez-Arroyo A, Cheng MI, Krasilnikov M, Louie A, Portnoy DA. TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes. PLoS Pathog 2020; 16:e1008622. [PMID: 32634175 PMCID: PMC7340287 DOI: 10.1371/journal.ppat.1008622] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/12/2020] [Indexed: 01/24/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from phagosomes and induces a robust adaptive immune response in mice, while mutants unable to escape phagosomes fail to induce a robust adaptive immune response and suppress the immunity to wildtype bacteria when co-administered. The capacity to suppress immunity can be reversed by blocking IL-10. In this study, we sought to understand the host receptors that lead to secretion of IL-10 in response to phagosome-confined L. monocytogenes (Δhly), with the ultimate goal of generating strains that fail to induce IL-10. We conducted a transposon screen to identify Δhly L. monocytogenes mutants that induced significantly more or less IL-10 secretion in bone marrow-derived macrophages (BMMs). A transposon insertion in lgt, which encodes phosphatidylglycerol-prolipoprotein diacylglyceryl transferase and is essential for the formation of lipoproteins, induced significantly reduced IL-10 secretion. Mutants with transposon insertions in pgdA and oatA, which encode peptidoglycan N-acetylglucosamine deacetylase and O-acetyltransferase, are sensitive to lysozyme and induced enhanced IL-10 secretion. A ΔhlyΔpgdAΔoatA strain was killed in BMMs and induced enhanced IL-10 secretion that was dependent on Unc93b1, a trafficking molecule required for signaling of nucleic acid-sensing TLRs. These data revealed that nucleic acids released by bacteriolysis triggered endosomal TLR-mediated IL-10 secretion. Secretion of IL-10 in response to infection with the parental strain was mostly TLR2-dependent, while IL-10 secretion in response to lysozyme-sensitive strains was dependent on TLR2 and Unc93b1. In mice, the IL-10 response to vacuole-confined L. monocytogenes was also dependent on TLR2 and Unc93b1. Co-administration of Δhly and ΔactA resulted in suppressed immunity in WT mice, but not in mice with mutations in Unc93b1. These data revealed that secretion of IL-10 in response to L. monocytogenes infection in vitro is mostly TLR2-dependent and immune suppression by phagosome-confined bacteria in vivo is mostly dependent on endosomal TLRs.
Collapse
Affiliation(s)
- Brittney N. Nguyen
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Alfredo Chávez-Arroyo
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mandy I. Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Maria Krasilnikov
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Alexander Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
37
|
Fol M, Włodarczyk M, Druszczyńska M. Host Epigenetics in Intracellular Pathogen Infections. Int J Mol Sci 2020; 21:ijms21134573. [PMID: 32605029 PMCID: PMC7369821 DOI: 10.3390/ijms21134573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Some intracellular pathogens are able to avoid the defense mechanisms contributing to host epigenetic modifications. These changes trigger alterations tothe chromatin structure and on the transcriptional level of genes involved in the pathogenesis of many bacterial diseases. In this way, pathogens manipulate the host cell for their own survival. The better understanding of epigenetic consequences in bacterial infection may open the door for designing new vaccine approaches and therapeutic implications. This article characterizes selected intracellular bacterial pathogens, including Mycobacterium spp., Listeria spp., Chlamydia spp., Mycoplasma spp., Rickettsia spp., Legionella spp. and Yersinia spp., which can modulate and reprogram of defense genes in host innate immune cells.
Collapse
Affiliation(s)
- Marek Fol
- Correspondence: ; Tel.: +48-42-635-44-72
| | | | | |
Collapse
|
38
|
Robledo-Avila FH, Ruiz-Rosado JDD, Brockman KL, Partida-Sánchez S. The TRPM2 Ion Channel Regulates Inflammatory Functions of Neutrophils During Listeria monocytogenes Infection. Front Immunol 2020; 11:97. [PMID: 32117251 PMCID: PMC7010865 DOI: 10.3389/fimmu.2020.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
During infection, phagocytic cells pursue homeostasis in the host via multiple mechanisms that control microbial invasion. Neutrophils respond to infection by exerting a variety of cellular processes, including chemotaxis, activation, phagocytosis, degranulation and the generation of reactive oxygen species (ROS). Calcium (Ca2+) signaling and the activation of specific Ca2+ channels are required for most antimicrobial effector functions of neutrophils. The transient receptor potential melastatin-2 (TRPM2) cation channel has been proposed to play important roles in modulating Ca2+ mobilization and oxidative stress in neutrophils. In the present study, we use a mouse model of Listeria monocytogenes infection to define the role of TRPM2 in the regulation of neutrophils' functions during infection. We show that the susceptibility of Trpm2-/- mice to L. monocytogenes infection is characterized by increased migration rates of neutrophils and monocytes to the liver and spleen in the first 24 h. During the acute phase of L. monocytogenes infection, Trpm2-/- mice developed septic shock, characterized by increased serum levels of TNF-α, IL-6, and IL-10. Furthermore, in vivo depletion of neutrophils demonstrated a critical role of these immune cells in regulating acute inflammation in Trpm2-/- infected mice. Gene expression and inflammatory cytokine analyses of infected tissues further confirmed the hyperinflammatory profile of Trpm2-/- neutrophils. Finally, the increased inflammatory properties of Trpm2-/- neutrophils correlated with the dysregulated cytoplasmic concentration of Ca2+ and potentiated membrane depolarization, in response to L. monocytogenes. In conclusion, our findings suggest that the TRPM2 channel plays critical functional roles in regulating the inflammatory properties of neutrophils and preventing tissue damage during Listeria infection.
Collapse
Affiliation(s)
- Frank H. Robledo-Avila
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Juan de Dios Ruiz-Rosado
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Kenneth L. Brockman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Santiago Partida-Sánchez
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
39
|
Intranasal vaccination with Listeria ivanovii as vector of Mycobacterium tuberculosis antigens promotes specific lung-localized cellular and humoral immune responses. Sci Rep 2020; 10:302. [PMID: 31942003 PMCID: PMC6962167 DOI: 10.1038/s41598-019-57245-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/12/2019] [Indexed: 11/08/2022] Open
Abstract
We have previously demonstrated that a recombinant Listeria ivanovii (LI) strain expressing the ESAT-6 or Ag85C protein of Mycobacterium tuberculosis (Mtb) as a tuberculosis (TB) vaccine candidates induced antigen-specific cellular immune responses after intravenous immunization of mice. However, whether such recombinant strains could induce desired immune responses in the lung, where TB infection occurs, is not clear. In this paper, C57BL/6 J mice were intranasally vaccinated with attenuated LIΔactAplcB-Rv3875 (Δ refers to gene deletion in the bacterial genome) or LIΔactAplcB-Rv0129c, the two vaccine candidates that utilize LI as an antigen delivery vector. Bacterial load in the target organs, histological changes in the infected organs, the percentage of specific cytokine-secreting T cells in the lung and spleen, IgG levels in the serum and secretory IgA (SIgA) levles in bronchoalveolar lavage (BAL) fluid were determined at specific days post inoculation (dpi). The results showed that both strains were mainly confined to the lung and were eliminated at 10 dpi. The histological damage caused by the infection in the lung was slight and recovered by day 5. Intranasal vaccination of the mice twice at an interval of 4 weeks notably elicited TB antigen-specific CD4+ and CD8+ T cell responses in the lung and SIgA secretion in the pulmonary mucosa, and significantly enhanced the percentage of double-functional CD8+ T cells (IFN-γ+ TNF-α+ CD8+). To our knowledge, this is the first report regarding the used of LI vector vaccines to induce promising lung-localized cellular and humoral immune responses by intranasal vaccination. These data suggest that LI could be a novel and promising live vector to construct an intranasal vaccine against respiratory diseases.
Collapse
|
40
|
Morrow ZT, Powers ZM, Sauer JD. Listeria monocytogenes cancer vaccines: bridging innate and adaptive immunity. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:213-224. [PMID: 33072493 DOI: 10.1007/s40588-019-00133-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose of the Review Immunotherapy has emerged as a promising cancer treatment, however success in only select clinical indications underscores the need for novel approaches. Recently Listeria monocytogenes-based vaccines have been developed to drive tumor specific T-cell responses. Here, we discuss recent preclinical studies using L. monocytogenes vaccines, innate immune pathways that influence T-cell priming, and new vaccine strategies in clinical trials. Recent Findings Recent studies indicate that in addition to inducing antigen specific T-cell responses, L. monocytogenes vaccines remodel the TME. In addition, several innate immune pathways influence adaptive immune responses to L. monocytogenes and modulating these pathways holds promise to enhance anti-tumor T-cell responses. Summary The interplay between innate and adaptive immune responses to L. monocytogenes is poorly understood. Understanding these interactions will facilitate the design of better anti-cancer vaccines and improved use of combination therapies.
Collapse
Affiliation(s)
- Zachary T Morrow
- University of Wisconsin- Madison, School of Medicine and Public Health, Department of Medical Microbiology and Immunology
| | - Zachary M Powers
- University of Wisconsin- Madison, School of Medicine and Public Health, Department of Medical Microbiology and Immunology
| | - John-Demian Sauer
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medical Microbiology and Immunology, 1550 Linden Dr. Rm 4203, Madison WI, 53706
| |
Collapse
|
41
|
Critical Role of B Cells in Toll-Like Receptor 7-Mediated Protection against Listeria monocytogenes Infection. Infect Immun 2019; 87:IAI.00742-19. [PMID: 31591164 DOI: 10.1128/iai.00742-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptors (TLR) trigger the immune system to mount a rapid innate response capable of protecting the host from a wide variety of bacterial and viral pathogens. There is interest in harnessing TLR agonists to reduce the susceptibility of at-risk populations to infection. However, the widespread prophylactic use of TLR agonists has been compromised by the need to administer them by parenteral injection. An exception is the TLR7/8 agonist R848, which can boost gastrointestinal and systemic immunity when administered orally. This work examines the effect of R848 on host susceptibility to Listeria monocytogenes in a murine challenge model and describes the underlying mechanisms. Results show that prophylactic administration of R848 significantly reduces susceptibility to infection of BALB/c mice, an effect that lasts 1 week. Oral R848 directly stimulated B cells to produce cytokines and Ig. In the absence of B cells, R848-mediated protection was lost. These findings support the use of oral R848 to reduce the susceptibility of at-risk individuals to infection and identify the critical role of B cells in TLR7-mediated resistance to bacterial infection.
Collapse
|
42
|
IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α + Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity 2019; 51:64-76.e7. [PMID: 31231033 DOI: 10.1016/j.immuni.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
Type 1 CD8α+ conventional dendritic cells (cDC1s) are required for CD8+ T cell priming but, paradoxically, promote splenic Listeria monocytogenes infection. Using mice with impaired cDC2 function, we ruled out a role for cDC2s in this process and instead discovered an interleukin-10 (IL-10)-dependent cellular crosstalk in the marginal zone (MZ) that promoted bacterial infection. Mice lacking the guanine nucleotide exchange factor DOCK8 or CD19 lost IL-10-producing MZ B cells and were resistant to Listeria. IL-10 increased intracellular Listeria in cDC1s indirectly by reducing inducible nitric oxide synthase expression early after infection and increasing intracellular Listeria in MZ metallophilic macrophages (MMMs). These MMMs trans-infected cDC1s, which, in turn, transported Listeria into the white pulp to prime CD8+ T cells. However, this also facilitated bacterial expansion. Therefore, IL-10-mediated crosstalk between B cells, macrophages, and cDC1s in the MZ promotes both Listeria infection and CD8+ T cell activation.
Collapse
|
43
|
Khachanova NV, Bakhtiyarova KZ, Boyko AN, Vlasov YV, Davydovskaia MV, Evdoshenko EP, Zakharova MN, Malkova NA, Sivertseva SA, Spirin NN, Stolyarov ID, Schmidt TE, Khabirov FA. [Provision of alemtuzumab safety is one of the main components of pharmacovigilance]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:82-87. [PMID: 30160673 DOI: 10.17116/jnevro201811808282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Modern multiple sclerosis therapy with disease-modifying drugs is characterized by the risks of dangerous infectious complications. In the last 5 years, there have been several reports of severe, sometimes lethal, listeriosis infection in patients treated with alemtuzumab. This article presents a clinical case of lethal listeriosis meningoencephalitis, which developed within 7 days after the completion of the first cycle of alemtuzumab therapy. In January 2018, a meeting of the expert Council was held, at which the clinical recommendations published in 2017 were revised and updated.
Collapse
Affiliation(s)
- N V Khachanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ya V Vlasov
- Samara State Medical University, Samara, Russia
| | - M V Davydovskaia
- Pirogov Russian National Research Medical University, Moscow, Russia; Scientific and Practical Center for Clinical Research and Medical Technologies Assessment of the Department of Health of the City of Moscow, Moscow, Russia
| | - E P Evdoshenko
- City Center of Multiple Sclerosis and Other Autoimmune Diseases City Clinical Hospital #31, St-Petersburg, Russia; Pavlov Saint-Petersburg State Medical University, St-Petersburg, Russia
| | | | - N A Malkova
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - S A Sivertseva
- Tyumen Regional Multiple Sclerosis Center, Tyumen, Russia
| | - N N Spirin
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - I D Stolyarov
- Bechtereva Institute of Human Brain, St-Petersburg, Russia
| | - T E Schmidt
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | |
Collapse
|
44
|
Tallapaka SB, Karuturi BVK, Yeapuri P, Curran SM, Sonawane YA, Phillips JA, David Smith D, Sanderson SD, Vetro JA. Surface conjugation of EP67 to biodegradable nanoparticles increases the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccine after respiratory immunization and subsequent T-cell-mediated protection against respiratory infection. Int J Pharm 2019; 565:242-257. [PMID: 31077762 DOI: 10.1016/j.ijpharm.2019.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
Encapsulation of protein vaccines in biodegradable nanoparticles (NP) increases T-cell expansion after mucosal immunization but requires incorporating a suitable immunostimulant to increase long-lived memory T-cells. EP67 is a clinically viable, host-derived peptide agonist of the C5a receptor that selectively activates antigen presenting cells over neutrophils. We previously found that encapsulating EP67-conjugated CTL peptide vaccines in NP increases long-lived memory subsets of CTL after respiratory immunization. Thus, we hypothesized that alternatively conjugating EP67 to the NP surface can increase long-lived mucosal and systemic memory T-cells generated by encapsulated protein vaccines. We found that respiratory immunization of naïve female C57BL/6 mice with LPS-free ovalbumin (OVA) encapsulated in PLGA 50:50 NP (∼380 nm diameter) surface-conjugated with ∼0.1 wt% EP67 through 2 kDa PEG linkers (i) increased T-cell expansion and long-lived memory subsets of OVA323-339-specific CD4+ and OVA257-264-specific CD8a+ T-cells in the lungs (CD44HI/CD127/KLRG1) and spleen (CD44HI/CD127/KLRG1/CD62L) and (ii) decreased peak CFU of OVA-expressing L. monocytogenes (LM-OVA) in the lungs, liver, and spleen after respiratory challenge vs. encapsulation in unmodified NP. Thus, conjugating EP67 to the NP surface is one approach to increase the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccines after respiratory immunization.
Collapse
Affiliation(s)
- Shailendra B Tallapaka
- DILIsym Services Inc., Six Davis Drive, PO Box 12317, Research Triangle Park, NC 27709, USA(1)
| | - Bala V K Karuturi
- Mylan Pharmaceuticals Inc., 781 Chestnut Ridge Road, Morgantown, WV 26505, USA(1)
| | - Pravin Yeapuri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Stephen M Curran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68022, USA
| | - Joy A Phillips
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA 92115, USA
| | - D David Smith
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Sam D Sanderson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Joseph A Vetro
- Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
45
|
Karthikeyan R, Gayathri P, Gunasekaran P, Jagannadham MV, Rajendhran J. Comprehensive proteomic analysis and pathogenic role of membrane vesicles of Listeria monocytogenes serotype 4b reveals proteins associated with virulence and their possible interaction with host. Int J Med Microbiol 2019; 309:199-212. [PMID: 30962079 DOI: 10.1016/j.ijmm.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Membrane vesicles (MVs) are produced by various Gram positive and Gram negative pathogenic bacteria and play an important role in virulence. In this study, the membrane vesicles (MVs) of L. monocytogenes were isolated from the culture supernatant. High-resolution electron microscopy and dynamic light scattering analysis revealed that L. monocytogenes MVs are spherical with a diameter of 200 to 300 nm in size. Further, comprehensive proteomic analyses of MVs and whole cells of L. monocytogenes were performed using LC/MS/MS. A total of 1355 and 312 proteins were identified in the L. monocytogenes cells and MVs, respectively. We identified that 296 proteins are found in both whole cells, and MV proteome and 16 proteins were identified only in the MVs. Also, we have identified the virulence factors such as listeriolysin O (LLO), internalin B (InlB), autolysin, p60, NLP/P60 family protein, UPF0356 protein, and PLC-A in MVs. Computational prediction of host-MV interactions revealed a total of 1841 possible interactions with the host involving 99 MV proteins and 1513 host proteins. We elucidated the possible pathway that mediates internalization of L. monocytogenes MV to host cells and the subsequent pathogenesis mechanisms. The in vitro infection assays showed that the purified MVs could induce cytotoxicity in Caco-2 cells. Using endocytosis inhibitors, we demonstrated that MVs are internalized via actin-mediated endocytosis. These results suggest that L. monocytogenes MVs can interact with host cell and contribute to the pathogenesis of L. monocytogenes during infection.
Collapse
Affiliation(s)
- Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Pratapa Gayathri
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad, 500007, India
| | | | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
46
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
47
|
Wang G, Lin A, Han Q, Zhao H, Tian Z, Zhang J. IFN-γ protects from apoptotic neutrophil-mediated tissue injury during acute Listeria monocytogenes infection. Eur J Immunol 2018; 48:1470-1480. [PMID: 29935120 DOI: 10.1002/eji.201847491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023]
Abstract
Listeria monocytogenes (LM) is a foodborne Gram-positive intracellular pathogen that can cause listeriosis in humans and animals. Although phagocytes are known to be involved in the response to this infection, the role of neutrophils is not entirely clear. Here, we have demonstrated that soon after LM infection, a large number of IFN-γ-producing neutrophils quickly accumulated in the spleen, blood, and peritoneal cavity. Both in vivo and in vitro experiments demonstrated that neutrophils were an important source of IFN-γ. IFN-γ played a critical protective role against acute LM infection, as demonstrated by the poor survival of Ifng-/- mice. Moreover, IFN-γ promoted bacterial clearance by the neutrophils, thereby inhibiting LM-induced neutrophil apoptosis and spleen damage. In addition to this, IFN-γ could effectively drive macrophage-mediated phagocytosis of apoptotic neutrophils, which was accompanied with TGF-β secretion and was involved in protection against tissue injury. Importantly, by phagocytizing apoptotic neutrophils, macrophages obtained myeloperoxidase, an important bactericidal molecule only produced by neutrophils, which further promoted the antibacterial activity of macrophages. These findings demonstrate that neutrophils are an important source of IFN-γ at the early stage of LM infection, which is characterized by both LM elimination and tissue-protective effects.
Collapse
Affiliation(s)
- Guan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ang Lin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhigang Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
48
|
Muruganandah V, Sathkumara HD, Navarro S, Kupz A. A Systematic Review: The Role of Resident Memory T Cells in Infectious Diseases and Their Relevance for Vaccine Development. Front Immunol 2018; 9:1574. [PMID: 30038624 PMCID: PMC6046459 DOI: 10.3389/fimmu.2018.01574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Background Resident memory T cells have emerged as key players in the immune response generated against a number of pathogens. Their ability to take residence in non-lymphoid peripheral tissues allows for the rapid deployment of secondary effector responses at the site of pathogen entry. This ability to provide enhanced regional immunity has gathered much attention, with the generation of resident memory T cells being the goal of many novel vaccines. Objectives This review aimed to systematically analyze published literature investigating the role of resident memory T cells in human infectious diseases. Known effector responses mounted by these cells are summarized and key strategies that are potentially influential in the rational design of resident memory T cell inducing vaccines have also been highlighted. Methods A Boolean search was applied to Medline, SCOPUS, and Web of Science. Studies that investigated the effector response generated by resident memory T cells and/or evaluated strategies for inducing these cells were included irrespective of published date. Studies must have utilized an established technique for identifying resident memory T cells such as T cell phenotyping. Results While over 600 publications were revealed by the search, 147 articles were eligible for inclusion. The reference lists of included articles were also screened for other eligible publications. This resulted in the inclusion of publications that studied resident memory T cells in the context of over 25 human pathogens. The vast majority of studies were conducted in mouse models and demonstrated that resident memory T cells mount protective immune responses. Conclusion Although the role resident memory T cells play in providing immunity varies depending on the pathogen and anatomical location they resided in, the evidence overall suggests that these cells are vital for the timely and optimal protection against a number of infectious diseases. The induction of resident memory T cells should be further investigated and seriously considered when designing new vaccines.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Harindra D Sathkumara
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Severine Navarro
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Kupz
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
49
|
Listeria Monocytogenes: A Model Pathogen Continues to Refine Our Knowledge of the CD8 T Cell Response. Pathogens 2018; 7:pathogens7020055. [PMID: 29914156 PMCID: PMC6027175 DOI: 10.3390/pathogens7020055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes (Lm) infection induces robust CD8 T cell responses, which play a critical role in resolving Lm during primary infection and provide protective immunity to re-infections. Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm infection. In this review, the generation of the CD8 T cell response to Lm infection will be discussed. The role of dendritic cell subsets in acquiring and presenting Lm antigens to CD8 T cells and the events that occur during T cell priming and activation will be addressed. CD8 T cell expansion, differentiation and contraction as well as the signals that regulate these processes during Lm infection will be explored. Finally, the formation of memory CD8 T cell subsets in the circulation and in the intestine will be analyzed. Recently, the study of CD8 T cell responses to Lm infection has begun to shift focus from the intravenous infection model to a natural oral infection model as the humanized mouse and murinized Lm have become readily available. Recent findings in the generation of CD8 T cell responses to oral infection using murinized Lm will be explored throughout the review. Finally, CD8 T cell-mediated protective immunity against Lm infection and the use of Lm as a vaccine vector for cancer immunotherapy will be highlighted. Overall, this review will provide detailed knowledge on the biology of CD8 T cell responses after Lm infection that may shed light on improving rational vaccine design.
Collapse
|
50
|
Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts 2018; 9:64-79. [PMID: 29856726 DOI: 10.1515/bmc-2018-0007] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
A key player in driving cellular immunity, IFN-γ is capable of orchestrating numerous protective functions to heighten immune responses in infections and cancers. It can exhibit its immunomodulatory effects by enhancing antigen processing and presentation, increasing leukocyte trafficking, inducing an anti-viral state, boosting the anti-microbial functions and affecting cellular proliferation and apoptosis. A complex interplay between immune cell activity and IFN-γ through coordinated integration of signals from other pathways involving cytokines and Pattern Recognition Receptors (PRRs) such as Interleukin (IL)-4, TNF-α, Lipopolysaccharide (LPS), Type-I Interferons (IFNS) etc. leads to initiation of a cascade of pro-inflammatory responses. Microarray data has unraveled numerous genes whose transcriptional regulation is influenced by IFN-γ. Consequently, IFN-γ stimulated cells display altered expression of many such target genes which mediate its downstream effector functions. The importance of IFN-γ is further reinforced by the fact that mice possessing disruptions in the IFN-γ gene or its receptor develop extreme susceptibility to infectious diseases and rapidly succumb to them. In this review, we attempt to elucidate the biological functions and physiological importance of this versatile cytokine. The functional implications of its biological activity in several infectious diseases and autoimmune pathologies are also discussed. As a counter strategy, many virulent pathogenic species have devised ways to thwart IFN-γ endowed immune-protection. Thus, IFN-γ mediated host-pathogen interactions are critical for our understanding of disease mechanisms and these aspects also manifest enormous therapeutic importance for the annulment of various infections and autoimmune conditions.
Collapse
Affiliation(s)
- Gunjan Kak
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Mohsin Raza
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, 110021, India
| | - Brijendra K Tiwari
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| |
Collapse
|