1
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Grund ME, Choi Soo J, Cote CK, Berisio R, Lukomski S. Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells 2021; 10:cells10030495. [PMID: 33668922 PMCID: PMC7996558 DOI: 10.3390/cells10030495] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing antimicrobial resistance due to misuse and overuse of antimicrobials, as well as a lack of new and innovative antibiotics in development has become an alarming global threat. Preventative therapeutics, like vaccines, are combative measures that aim to stop infections at the source, thereby decreasing the overall use of antibiotics. Infections due to Gram-negative pathogens pose a significant treatment challenge because of substantial multidrug resistance that is acquired and spread throughout the bacterial population. Burkholderia spp. are Gram-negative intrinsically resistant bacteria that are responsible for environmental and nosocomial infections. The Burkholderia cepacia complex are respiratory pathogens that primarily infect immunocompromised and cystic fibrosis patients, and are acquired through contaminated products and equipment, or via patient-to-patient transmission. The Burkholderia pseudomallei complex causes percutaneous wound, cardiovascular, and respiratory infections. Transmission occurs through direct exposure to contaminated water, water-vapors, or soil, leading to the human disease melioidosis, or the equine disease glanders. Currently there is no licensed vaccine against any Burkholderia pathogen. This review will discuss Burkholderia vaccine candidates derived from outer membrane proteins, OmpA, OmpW, Omp85, and Bucl8, encompassing their structures, conservation, and vaccine formulation.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Jeon Choi Soo
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80145 Naples, Italy;
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
- Correspondence: ; Tel.: +1-304-293-6405
| |
Collapse
|
3
|
Dyke JS, Huertas-Diaz MC, Michel F, Holladay NE, Hogan RJ, He B, Lafontaine ER. The Peptidoglycan-associated lipoprotein Pal contributes to the virulence of Burkholderia mallei and provides protection against lethal aerosol challenge. Virulence 2020; 11:1024-1040. [PMID: 32799724 PMCID: PMC7567441 DOI: 10.1080/21505594.2020.1804275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 11/07/2022] Open
Abstract
BURKHOLDERIA MALLEI is a highly pathogenic bacterium that causes the fatal zoonosis glanders. The organism specifies multiple membrane proteins, which represent prime targets for the development of countermeasures given their location at the host-pathogen interface. We investigated one of these proteins, Pal, and discovered that it is involved in the ability of B. mallei to resist complement-mediated killing and replicate inside host cells in vitro, is expressed in vivo and induces antibodies during the course of infection, and contributes to virulence in a mouse model of aerosol infection. A mutant in the pal gene of the B. mallei wild-type strain ATCC 23344 was found to be especially attenuated, as BALB/c mice challenged with the equivalent of 5,350 LD50 completely cleared infection. Based on these findings, we tested the hypothesis that a vaccine containing the Pal protein elicits protective immunity against aerosol challenge. To achieve this, the pal gene was cloned in the vaccine vector Parainfluenza Virus 5 (PIV5) and mice immunized with the virus were infected with a lethal dose of B. mallei. These experiments revealed that a single dose of PIV5 expressing Pal provided 80% survival over a period of 40 days post-challenge. In contrast, only 10% of mice vaccinated with a PIV5 control virus construct survived infection. Taken together, our data establish that the Peptidoglycan-associated lipoprotein Pal is a critical virulence determinant of B. mallei and effective target for developing a glanders vaccine.
Collapse
Affiliation(s)
- Jeremy S. Dyke
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | | | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Nathan E. Holladay
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
4
|
Welkos S, Blanco I, Okaro U, Chua J, DeShazer D. A DUF4148 family protein produced inside RAW264.7 cells is a critical Burkholderia pseudomallei virulence factor. Virulence 2020; 11:1041-1058. [PMID: 32835600 PMCID: PMC7549894 DOI: 10.1080/21505594.2020.1806675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Burkholderia pseudomallei: is the etiological agent of the disease melioidosis and is a Tier 1 select agent. It survives and replicates inside phagocytic cells by escaping from the endocytic vacuole, replicating in the cytosol, spreading to other cells via actin polymerization and promoting the fusion of infected and uninfected host cells to form multinucleated giant cells. In this study, we utilized a proteomics approach to identify bacterial proteins produced inside RAW264.7 murine macrophages and host proteins produced in response to B. pseudomallei infection. Cells infected with B. pseudomallei strain K96243 were lysed and the lysate proteins digested and analyzed using nanoflow reversed-phase liquid chromatography and tandem mass spectrometry. Approximately 160 bacterial proteins were identified in the infected macrophages, including BimA, TssA, TssB, Hcp1 and TssM. Several previously uncharacterized B. pseudomallei proteins were also identified, including BPSS1996 and BPSL2748. Mutations were constructed in the genes encoding these novel proteins and their relative virulence was assessed in BALB/c mice. The 50% lethal dose for the BPSS1996 mutant was approximately 55-fold higher than that of the wild type, suggesting that BPSS1996 is required for full virulence. Sera from B. pseudomallei-infected animals reacted with BPSS1996 and it was found to localize to the bacterial surface using indirect immunofluorescence. Finally, we identified 274 host proteins that were exclusively present or absent in infected RAW264.7 cells, including chemokines and cytokines involved in controlling the initial stages of infection.
Collapse
Affiliation(s)
- Susan Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Irma Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Udoka Okaro
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
5
|
Chirakul S, Norris MH, Pagdepanichkit S, Somprasong N, Randall LB, Shirley JF, Borlee BR, Lomovskaya O, Tuanyok A, Schweizer HP. Transcriptional and post-transcriptional regulation of PenA β-lactamase in acquired Burkholderia pseudomallei β-lactam resistance. Sci Rep 2018; 8:10652. [PMID: 30006637 PMCID: PMC6045580 DOI: 10.1038/s41598-018-28843-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/01/2018] [Indexed: 01/15/2023] Open
Abstract
Therapy of Burkholderia pseudomallei acute infections is largely limited to a few β-lactam antibiotics such as ceftazidime or meropenem. Although relatively rare, resistance emergence during therapy leads to treatment failures with high mortality rates. In the absence of acquired external resistance determinants in B. pseudomallei emergence of β-lactam resistance is invariably caused by mutational modification of genomically encoded factors. These include the deletion of the ceftazidime target penicillin-binding protein 3 or amino acid changes in the Class A PenA β-lactamase that expand its substrate spectrum, as well as penA gene duplication and amplification or its overexpression via transcriptional up-regulation. Evidence is presented that penA is co-transcribed with the upstream nlpD1 gene, that the transcriptional terminator for nlpD1 serves as a penA attenuator and that generation of a new promoter immediately upstream of the terminator/attenuator by a conserved G to A transition leads to anti-termination and thus constitutive PenA expression and extended β-lactam resistance. Further evidence obtained with the extensively β-lactam resistant clinical isolate Bp1651 shows that in addition to PenA overexpression and structural mutations other adaptive mechanisms contribute to intrinsic and acquired B. pseudomallei β-lactam resistance.
Collapse
Affiliation(s)
- Sunisa Chirakul
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
| | - Michael H Norris
- University of Florida, College of Veterinary Medicine, Emerging Pathogens Institute, Department of Infectious Diseases and Immunity, Gainesville, FL, 32610, USA
| | - Sirawit Pagdepanichkit
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
- Chulalongkorn University, Faculty of Veterinary Science, Department of Veterinary Public Health, Research Unit in Microbial Food Safety and Antimicrobial Resistance, Bangkok, 10330, Thailand
| | - Nawarat Somprasong
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
| | - Linnell B Randall
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
- Cornell University, Boyd Thompson Institute, Ithaca, NY, 14853, USA
| | - James F Shirley
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
| | - Bradley R Borlee
- Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Fort Collins, CO, 80523, USA
| | | | - Apichai Tuanyok
- University of Florida, College of Veterinary Medicine, Emerging Pathogens Institute, Department of Infectious Diseases and Immunity, Gainesville, FL, 32610, USA
| | - Herbert P Schweizer
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
Nathan S, Chieng S, Kingsley PV, Mohan A, Podin Y, Ooi MH, Mariappan V, Vellasamy KM, Vadivelu J, Daim S, How SH. Melioidosis in Malaysia: Incidence, Clinical Challenges, and Advances in Understanding Pathogenesis. Trop Med Infect Dis 2018; 3:E25. [PMID: 30274422 PMCID: PMC6136604 DOI: 10.3390/tropicalmed3010025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/18/2018] [Accepted: 02/18/2018] [Indexed: 12/12/2022] Open
Abstract
Malaysia is an endemic hot spot for melioidosis; however, a comprehensive picture of the burden of disease, clinical presentations, and challenges faced in diagnosis and treatment of melioidosis is not available. This review provides a nonexhaustive overview of epidemiological data, clinical studies, risk factors, and mortality rates from available literature and case reports. Clinical patterns of melioidosis are generally consistent with those from South and Southeast Asia in terms of common primary presentations with diabetes as a major risk factor. Early diagnosis and appropriate management of Malaysian patients is a key limiting factor, which needs to be addressed to reduce serious complications and high mortality and recurrence rates. Promoting awareness among the local healthcare personnel is crucial to improving diagnostics and early treatment, as well as educating the Malaysian public on disease symptoms and risk factors. A further matter of urgency is the need to make this a notifiable disease and the establishment of a national melioidosis registry. We also highlight local studies on the causative agent, Burkholderia pseudomallei, with regards to bacteriology and identification of virulence factors as well as findings from host⁻pathogen interaction studies. Collectively, these studies have uncovered new correlations and insights for further understanding of the disease.
Collapse
Affiliation(s)
- Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
| | - Sylvia Chieng
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
| | | | - Anand Mohan
- Department of Paediatrics, Bintulu Hospital, Bintulu 97000, Malaysia.
| | - Yuwana Podin
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia.
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia.
- Department of Paediatrics, Sarawak General Hospital, Kuching 93586, Malaysia.
| | - Vanitha Mariappan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Sylvia Daim
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia.
| | - Soon-Hin How
- Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan 25200, Malaysia.
| |
Collapse
|
7
|
Jitprasutwit N, Zainal-Abidin N, Vander Broek C, Kurian D, Korbsrisate S, Stevens MP, Stevens JM. Identification of Candidate Host Cell Factors Required for Actin-Based Motility of Burkholderia pseudomallei. J Proteome Res 2016; 15:4675-4685. [PMID: 27934296 DOI: 10.1021/acs.jproteome.6b00760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intracellular actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires the bacterial factor BimA. Located at one pole of the bacterium, BimA recruits and polymerizes cellular actin to promote bacterial motility within and between cells. Here, we describe an affinity approach coupled with mass spectrometry to identify cellular proteins recruited to BimA-expressing bacteria under conditions that promote actin polymerization. We identified a group of cellular proteins that are recruited to the B. pseudomallei surface in a BimA-dependent manner, a subset of which were independently validated with specific antisera including the ubiquitous scaffold protein Ras GTPase-activating-like protein (IQGAP1). IQGAP1 integrates several key cellular signaling pathways including those involved in actin dynamics and has been shown to be involved in the adhesion of attaching and effacing Escherichia coli to infected cells and invasion of host cells by Salmonella enterica serovar Typhimurium. Although a direct interaction between BimA and IQGAP1 could not be detected using either conventional pulldown or yeast two hybrid techniques, confocal microscopy revealed that IQGAP1 is recruited to B. pseudomallei actin tails in infected cells, and siRNA-mediated knockdown highlighted a role for this protein in controlling the length and actin density of B. pseudomallei actin tails.
Collapse
Affiliation(s)
- Niramol Jitprasutwit
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, 73170 Thailand
| | - Nurhamimah Zainal-Abidin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Charles Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, 73170 Thailand
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
8
|
Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc Natl Acad Sci U S A 2016; 113:E4161-9. [PMID: 27402745 DOI: 10.1073/pnas.1605546113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a large-scale "genomic enzymology" approach, we (i) assigned novel ATP-dependent four-carbon acid sugar kinase functions to members of the DUF1537 protein family (domain of unknown function; Pfam families PF07005 and PF17042) and (ii) discovered novel catabolic pathways for d-threonate, l-threonate, and d-erythronate. The experimentally determined ligand specificities of several solute binding proteins (SBPs) for TRAP (tripartite ATP-independent permease) transporters for four-carbon acids, including d-erythronate and l-erythronate, were used to constrain the substrates for the catabolic pathways that degrade the SBP ligands to intermediates in central carbon metabolism. Sequence similarity networks and genome neighborhood networks were used to identify the enzyme components of the pathways. Conserved genome neighborhoods encoded SBPs as well as permease components of the TRAP transporters, members of the DUF1537 family, and a member of the 4-hydroxy-l-threonine 4-phosphate dehydrogenase (PdxA) oxidative decarboxylase, class II aldolase, or ribulose 1,5-bisphosphate carboxylase/oxygenase, large subunit (RuBisCO) superfamily. Because the characterized substrates of members of the PdxA, class II aldolase, and RuBisCO superfamilies are phosphorylated, we postulated that the members of the DUF1537 family are novel ATP-dependent kinases that participate in catabolic pathways for four-carbon acid sugars. We determined that (i) the DUF1537/PdxA pair participates in a pathway for the conversion of d-threonate to dihydroxyacetone phosphate and CO2 and (ii) the DUF1537/class II aldolase pair participates in pathways for the conversion of d-erythronate and l-threonate (epimers at carbon-3) to dihydroxyacetone phosphate and CO2 The physiological importance of these pathways was demonstrated in vivo by phenotypic and genetic analyses.
Collapse
|
9
|
Vander Broek CW, Chalmers KJ, Stevens MP, Stevens JM. Quantitative proteomic analysis of Burkholderia pseudomallei Bsa type III secretion system effectors using hypersecreting mutants. Mol Cell Proteomics 2015; 14:905-16. [PMID: 25635268 PMCID: PMC4390269 DOI: 10.1074/mcp.m114.044875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/07/2015] [Indexed: 11/06/2022] Open
Abstract
Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS "gatekeeper" family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei.
Collapse
Affiliation(s)
- Charles W Vander Broek
- From the ‡The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Kevin J Chalmers
- §Dundee Cell Products, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, Scotland, UK
| | - Mark P Stevens
- From the ‡The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Joanne M Stevens
- From the ‡The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.;
| |
Collapse
|
10
|
Chieng S, Mohamed R, Nathan S. Transcriptome analysis of Burkholderia pseudomallei T6SS identifies Hcp1 as a potential serodiagnostic marker. Microb Pathog 2015; 79:47-56. [PMID: 25616255 DOI: 10.1016/j.micpath.2015.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is able to survive extreme environments and utilizes various virulence factors for survival and pathogenicity. To compete and survive within these different ecological niches, B. pseudomallei has evolved specialized pathways, including the Type VI secretion systems (T6SSs), that have a role in pathogenesis as well as interbacterial interactions. We examined the expression profile of B. pseudomallei T6SS six gene clusters during infection of U937 macrophage cells. T6SS-5 was robustly transcribed while the other five clusters were not significantly regulated proposing the utility of T6SS-5 as a potential biomarker of exposure to B. pseudomallei. Transcription of T6SS regulators VirAG and BprB was also not significant during infection when compared to bacteria grown in culture. Guided by these findings, three highly expressed T6SS genes, tssJ-4, hcp1 and tssE-5, were expressed as recombinant proteins and screened against melioidosis patient sera by western analysis and ELISA. Only Hcp1 was reactive by both types of analysis. The recombinant Hcp1 protein was further evaluated against a cohort of melioidosis patients (n = 32) and non-melioidosis individuals (n = 20) sera and the data clearly indicates a higher sensitivity (93.7%) and specificity (100%) for Hcp1 compared to bacterial lysate. The detection of anti-Hcp1 antibodies in patients' sera indicating the presence of B. pseudomallei highlights the potential of Hcp1 to be further developed as a serodiagnostic marker for melioidosis.
Collapse
Affiliation(s)
- Sylvia Chieng
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Rahmah Mohamed
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
11
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
12
|
Dennehy R, McClean S. Immunoproteomics: the key to discovery of new vaccine antigens against bacterial respiratory infections. Curr Protein Pept Sci 2013; 13:807-15. [PMID: 23305366 PMCID: PMC3594738 DOI: 10.2174/138920312804871184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/28/2012] [Accepted: 08/03/2012] [Indexed: 02/08/2023]
Abstract
The increase in antibiotic resistance and the shortage of new antimicrobials to prevent difficult bacterial infections underlines the importance of prophylactic therapies to prevent infection by bacterial pathogens. Vaccination has reduced the incidence of many serious diseases, including respiratory bacterial infections. However, there are many pathogens for which no vaccine is available and some vaccines are not effective among all age groups or among immunocompromised individuals. Immunoproteomics is a powerful technique which has been used to identify potential vaccine candidates to protect against pathogenic bacteria. The combination of proteomics with the detection of immunoreactive antigens using serum highlights immunogenic proteins that are expressed during infection. This is particularly useful when patient serum is used as the antigens that promote a humoral response during human infection are identified. This review outlines examples of vaccine candidates that have been identified using immunoproteomics and have successfully protected animals against challenge when tested in immunisation studies. Many immunoreactive proteins are common to several unrelated pathogens, however some of these are not always protective in animal immunisation and challenge studies. Furthermore, examples of well-established immunogens, including Bordetella pertussis antigen FHA were not detected in immunoproteomics studies, indicating that this technology may underrepresent the immunoreactive proteins in a pathogen. Although only one step in the pathway towards an efficacious approved vaccine, immunoproteomics is an important technology in the identification of novel vaccine antigens.
Collapse
Affiliation(s)
- Ruth Dennehy
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Dublin 24, Ireland
| | | |
Collapse
|
13
|
Schell MA, Zhao P, Wells L. Outer membrane proteome of Burkholderia pseudomallei and Burkholderia mallei from diverse growth conditions. J Proteome Res 2011; 10:2417-24. [PMID: 21391724 PMCID: PMC4917286 DOI: 10.1021/pr1012398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia mallei and Burkholderia pseudomallei are closely related, aerosol-infective human pathogens that cause life-threatening diseases. Biochemical analyses requiring large-scale growth and manipulation at biosafety level 3 under select agent regulations are cumbersome and hazardous. We developed a simple, safe, and rapid method to prepare highly purified outer membrane (OM) fragments from these pathogens. Shotgun proteomic analyses of OMs by trypsin shaving and mass spectrometry identified >155 proteins, the majority of which are clearly outer membrane proteins (OMPs). These included: 13 porins, 4 secretins for virulence factor export, 11 efflux pumps, multiple components of a Type VI secreton, metal transport receptors, polysaccharide exporters, and hypothetical OMPs of unknown function. We also identified 20 OMPs in each pathogen that are abundant under a wide variety of conditions, including in serum and with macrophages, suggesting these are fundamental for growth and survival and may represent prime drug or vaccine targets. Comparison of the OM proteomes of B. mallei and B. pseudomallei showed many similarities but also revealed a few differences, perhaps reflecting evolution of B. mallei away from environmental survival toward host-adaptation.
Collapse
Affiliation(s)
- Mark A Schell
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, United States.
| | | | | |
Collapse
|
14
|
Zou YX, Mo ZL, Hao B, Ye XH, Guo DS, Zhang PJ. Screening of genes expressed in vivo after infection by Vibrio anguillarum M3. Lett Appl Microbiol 2010; 51:564-9. [PMID: 20849396 DOI: 10.1111/j.1472-765x.2010.02935.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Genes uniquely expressed in vivo may contribute to the overall pathogenicity of an organism and are likely to serve as potential targets for the development of new vaccine. This study aims to screen the genes expressed in vivo after Vibrio anguillarum infection by in vivo-induced antigen technology (IVIAT). METHODS AND RESULTS The convalescent-phase sera were obtained from turbot (Scophthalmus maximus) survived after infection by the virulent V. anguillarum M3. The pooled sera were thoroughly adsorbed with M3 cells and Escherichia coli BL21 (DE3) cells. A genomic expression library of M3 was constructed and screened for the identification of immunogenic proteins by colony immunoblot analysis with the adsorbed sera. After three rounds of screening, 19 putative in vivo-induced (ivi) genes were obtained. These ivi genes were catalogued into four functional groups: regulator/signalling, metabolism, biological process and hypothetical proteins. Three ivi genes were insertion-mutated, and the growth and 50% lethal dose (LD(50) ) of these mutants were evaluated. CONCLUSIONS The identification of ivi genes in V. anguillarum M3 sheds light on understanding the bacterial pathogenesis and provides novel targets for the development of new vaccines and diagnostic reagents. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report describing in vivo-expressed genes of V. anguillarum using IVIAT. The screened ivi genes in this study could be new virulent factors and targets for the development of vaccine, which may have implications for the development of diagnostic regents.
Collapse
Affiliation(s)
- Y-X Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | |
Collapse
|
15
|
Su YC, Wan KL, Mohamed R, Nathan S. Immunization with the recombinant Burkholderia pseudomallei outer membrane protein Omp85 induces protective immunity in mice. Vaccine 2010; 28:5005-11. [PMID: 20546831 DOI: 10.1016/j.vaccine.2010.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 11/16/2022]
Abstract
Burkholderia pseudomallei is resistant to a wide range of antibiotics, leading to relapse and recrudescence of melioidosis after cessation of antibiotic therapy. More effective immunotherapies are needed for better management of melioidosis. We evaluated the prophylactic potential of the immunogenic outer membrane protein Omp85 as a vaccine against murine melioidosis. Immunization of BALB/c mice with recombinant Omp85 (rOmp85) triggered a Th2-type immune response. Up to 70% of the immunized animals were protected against infectious challenge of B. pseudomallei with reduced bacterial load in extrapulmonary organs. Mouse anti-rOmp85 promoted complement-mediated killing and opsonophagocytosis of B. pseudomallei by human polymorphonuclear cells. In conclusion, we demonstrated that B. pseudomallei Omp85 is potentially able to induce protective immunity against melioidosis.
Collapse
Affiliation(s)
- Yu-Ching Su
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
16
|
|