1
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wu Y, Jiao J, Wu S, Jiang J. Strategies for the enhancement of IL-21 mediated antitumor activity in solid tumors. Cytokine 2024; 184:156787. [PMID: 39467483 DOI: 10.1016/j.cyto.2024.156787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Solid tumors significantly impact global health, necessitating enhanced prevention, early diagnosis, and treatment approaches. Tumor immunotherapy, notably through programmed cell death protein 1 (PD-1) and programmed cell death-ligand 1 (PD-L1), offers new hope to patients with advanced tumors, although many still do not benefit. Interleukin-21 (IL-21), a cytokine produced by certain immune cells, performs various biological functions by activating the JAK/STAT signaling pathway. Currently, recombinant IL-21 demonstrates promising antitumor activity and acceptable toxicity in several clinical trials. However, challenges such as side effects, off-target reactions, and a short half-life limit the effectiveness of cytokine-based immunotherapies. Therefore, researching enhanced IL-21 treatment strategies in solid tumors is crucial. Integrating IL-21 with various treatment modalities, including immune checkpoint inhibitors, additional cytokines, vaccines, or radiotherapy, is essential for improving response rates and prolonging patient survival. This review explores the specific mechanisms of IL-21 in prevalent high-incidence tumors, examines improved strategies for IL-21 in solid tumors, and aims to provide a theoretical basis for developing targeted treatment strategies.
Collapse
Affiliation(s)
- You Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jing Jiao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
3
|
Moss RB. T-cells and precision medicine for allergic bronchopulmonary aspergillosis. Eur Respir J 2024; 63:2400549. [PMID: 38754948 DOI: 10.1183/13993003.00549-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Richard B Moss
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Ke Y, Khaliq H, Jiafu L, Waqas MY, Javid MA, Basit MA, Bhatti SA, Saleem MU, Farooq AA, Murtaza S. Distribution and developmental changes of IL-21 immunopositive cells in the bursa of Fabricius of Jinhu silky chicken. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:41-47. [PMID: 37877181 DOI: 10.1002/jez.2759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Bursa of Fabricius (BOF) is a unique immune organ of birds. It is the place where lymphocytes develop, differentiate and mature. Young chicken BOF is susceptible to infection and damage, and even atrophy, causing immune suppression, and bringing huge economic losses to chicken production. Therefore, studying the regulatory mechanism of chicken bursa development is of great practical significance for disease prevention and diagnosis. Jinhu silky chicken (JSC) is a local excellent breed in the Fujian Province of China and with strong disease resistance. However, studies on the disease resistance of JSC are scarce. This study aimed to provide a theoretical basis for reproduction and disease control of JSC. Developmental features of the structure and the IL-21-positive cell (IL-21 PC) distribution on the BOF in JSC were measured from 7 to 300 days of age. Bursas of chicken (n = 36) were taken at 7, 35, 70, 150, 240, and 300 days of age for preparation of paraffin sections and stained with hematoxylin-eosin (HE) and immunohistochemistry. The microstructure of JSC's BOF was similar to that of other poultry. The cortical-medullary boundary of the bursa nodule was not obvious at 7 days of age, but it was evident after 35 days of age. Before 70 days of age, IL-21 positive cells (PC) were scattered on the BOF. At 150 days of age, the number of IL-21 PC in the bursa were the highest and the nuclei were clear. The level of IL-21 PC gradually decreased with age. The BOF degenerated and disappeared in 300-day-old JSC. The histological structure of the BOF was similar to that of other poultry. IL-21 PC were widespread in the BOF at different ages, but the numbers were different.
Collapse
Affiliation(s)
- Yanyan Ke
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Haseeb Khaliq
- Department of Anatomy & Histology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Lin Jiafu
- Department of Basic Medical Science, Fujian Health College, Fuzhou, China
| | - Muhammad Yasir Waqas
- Department of Physiology & Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Arshad Javid
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Abdul Basit
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Usman Saleem
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Abdul Asim Farooq
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saeed Murtaza
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| |
Collapse
|
5
|
Yuan G, Zhao W, Zhang Y, Jia Z, Chen K, Wang J, Feng H, Zou J. The Biological Functions and Intestinal Inflammation Regulation of IL-21 in Grass Carp ( Ctenopharyngodon idella) during Infection with Aeromonas hydrophila. Cells 2023; 12:2276. [PMID: 37759501 PMCID: PMC10528265 DOI: 10.3390/cells12182276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin (IL) 21 is a pleiotropic cytokine that plays an important role in regulating innate and adaptive immune responses. In fish, the biological functions and cell source of IL-21 remain largely unknown. In this study, we performed qRT-PCR, Western blotting and immunofluorescent microscopy to examine the expression of IL-21 at the mRNA and protein levels. We found that il21 expression was induced in the primary head kidney leukocytes of grass carp (Ctenopharyngodon idella) by heat-inactivated Aeromonas hydrophila (A. hydrophila) and LPS and in tissues after infection with A. hydrophila. Recombinant IL-21 protein produced in the CHO-S cells was effective in elevating the expression of antibacterial genes, including β-defensin and lysozyme, and, interestingly, inhibited the NF-κB signaling pathway. Furthermore, we investigated the response of the IL-21 expressing cells to A. hydrophila infection. Immunofluorescent assay showed that IL-21 protein was detected in the CD3γ/δ T cells and was markedly accumulated in the anterior, middle and posterior intestine. Collectively, the results indicate that IL-21 plays an important role in regulating the intestinal inflammation induced by bacterial infection in grass carp.
Collapse
Affiliation(s)
- Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Weihua Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| |
Collapse
|
6
|
Gao S, Han C, Ye H, Chen Q, Huang J. Transcriptome analysis of the spleen provides insight into the immunoregulation of Scortum barcoo under Streptococcus agalactiae infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114095. [PMID: 36116237 DOI: 10.1016/j.ecoenv.2022.114095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Jade perch (Scortum barcoo) is a freshwater fish with substantial economic value, which has been widely cultivated all over the world. However, with the intensification and expansion of farming, several bacterial and viral diseases have occurred in jade perch. To understand the immune response of jade perch against Streptococcus agalactiae (Group B Streptococcus, GBS), we performed a histopathological examination and transcriptome sequencing of jade perch spleen after artificial bacterial infection. GBS infection can cause structural changes and even necrosis of the jade perch spleen, which may affect the survival of infected individuals. A total of 144,458 unigenes were obtained through de novo assembly of spleen transcriptome. Among them, 1821 unigenes were identified as DEGs, including 1415 up-regulated and 406 down-regulated unigenes in the infection group. Moreover, the analysis of GO and KEGG revealed that many GO terms and pathways were involved in the host immune response, such as Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and TNF signaling pathway. In addition, according to transcriptome data and qRT-PCR analysis, the expression levels of many cytokines that participate in the inflammatory response changed a lot after GBS infection. Overall, this transcriptomic analysis provided valuable information for studying the immune response of jade perch against bacterial infection.
Collapse
Affiliation(s)
- Songze Gao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 51006, PR China.
| | - Hangyu Ye
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Qinghua Chen
- South China Institute of Environmental Science, MEE, Guangzhou 510610, PR China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
7
|
IL-21 plays an important role in modulating “Th17-Treg” cell axis in leprosy Type 1 reactions. Cytokine 2022; 152:155821. [PMID: 35151928 DOI: 10.1016/j.cyto.2022.155821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
|
8
|
Czarnowicki T, Kim HJ, Villani AP, Glickman J, Duca ED, Han J, Pavel AB, Lee BH, Rahman AH, Merad M, Krueger JG, Guttman‐Yassky E. High-dimensional analysis defines multicytokine T-cell subsets and supports a role for IL-21 in atopic dermatitis. Allergy 2021; 76:3080-3093. [PMID: 33818809 DOI: 10.1111/all.14845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Flow cytometry is a well-accepted approach for immune profiling; however, its value is restricted by the limited number of markers that can be analyzed simultaneously. Mass cytometry/CyTOF offers broad-scale immune characterization integrating large number of parameters. While partial blood phenotyping was reported in atopic dermatitis (AD), patients' comprehensive profiling, critical for leveraging new targeted treatments, is not available. IL-21 may be involved in inflammatory skin diseases but its role in AD is not well established. METHODS We studied T-cell polarization in the blood of 20 moderate-to-severe AD and 15 controls. Using CyTOF and an unsupervised analysis, we measured the frequencies and mean metal intensities of activated polar CD4+ /CD8+ T-cell subsets. Immunohistochemistry, immunofluorescence, and qRT-PCR were used to analyze skin samples. RESULTS Examining 24 surface, intracellular markers, and transcription factors, we identified six CD4+ and five CD8+ T-cell metaclusters. A CD4+ skin-homing IL-13+ monocytokine and a novel IL-13+ IL-21+ multicytokine metaclusters were increased in AD vs. controls (p < .01). While IL-13 signature characterized both clusters, levels were significantly higher in the IL-21+ group. Both clusters correlated with AD severity (r = 0.49, p = .029). Manual gating corroborated these results and identified additional multicytokine subsets in AD. Immunohistochemistry and immunofluorescence, validated by mRNA expression, displayed significantly increasedIL-21 counts and colocalization with IL-13/IL-4R in AD skin. CONCLUSION A multicytokine signature characterizes moderate-to-severe AD, possibly explaining partial therapeutic responses to one cytokine targeting, particularly in severe patients. Prominent IL-21 signature in blood and skin hints for a potential pathogenic role of IL-21 in AD.
Collapse
Affiliation(s)
- Tali Czarnowicki
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Hyun Je Kim
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Axel P. Villani
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Jacob Glickman
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Ester Del Duca
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Joseph Han
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Ana B. Pavel
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Brian H. Lee
- Human Immune Monitoring Center Icahn School of Medicine at Mt. Sinai New York NY USA
| | - Adeeb H. Rahman
- Human Immune Monitoring Center Icahn School of Medicine at Mt. Sinai New York NY USA
- Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York NY USA
| | - Miriam Merad
- Department of Oncological Sciences Icahn School of Medicine at Mount Sinai New York NY USA
- Icahn School of Medicine at Mount Sinai The Precision Immunology Institute New York NY USA
- Icahn School of Medicine at Mount Sinai The Tisch Cancer Institute New York NY USA
| | - James G. Krueger
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Emma Guttman‐Yassky
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
9
|
SELMAN AE, GÖRGÜLÜ NG, DOĞAN B. Salivary Levels of IL-21 as a Potential Marker of Stage III Grade C Periodontitis. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.989487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Xu J, Wang J, Min Q, Wang W, Qin Y, Lei L, Gao Q, Zou J. Characterisation of IL-21 and IL-21Rα in grass carp: IL-21-producing cells are upregulated during Flavobacterium columnare infection. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Niogret J, Berger H, Rebe C, Mary R, Ballot E, Truntzer C, Thibaudin M, Derangère V, Hibos C, Hampe L, Rageot D, Accogli T, Joubert P, Routy B, Harker J, Vegran F, Ghiringhelli F, Chalmin F. Follicular helper-T cells restore CD8 +-dependent antitumor immunity and anti-PD-L1/PD-1 efficacy. J Immunother Cancer 2021; 9:jitc-2020-002157. [PMID: 34103351 PMCID: PMC8190041 DOI: 10.1136/jitc-2020-002157] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Background T follicular helper cells (Tfh) are essential to shape B cell response during germinal center formation. Tfh accumulation has been reported in various human cancers, with positive or negative prognostic roles. However, the mechanisms explaining the accumulation of Tfh and their role in cancer remain obscure. Methods In vitro differentiated and mouse cell sorted Tfh phenotype was evaluated by flow cytometry and quantitative PCR (qPCR). Antitumor effect of Tfh was evaluated by adoptive transfer in different tumor-bearing mice models. The involvement of immune cells, cytokines and chemokines was evaluated, using depleting antibodies. Chemokines and cytokines expression and production were evaluated by qPCR and ELISA. In human, the impact of immune cells and chemokines on survival was evaluated by analyzing transcriptomic data from public databases and from our own patient cohorts. Results In this study, we show that Tfh exert an antitumor immune effect in a CD8+-dependent manner. Tfh produce interleukin-21, which sustains proliferation, viability, cytokine production and cytotoxic functions of exhausted T cells. The presence of Tfh is required for efficacy of antiprogrammed cell death ligand-1 therapy. Tfh accumulate in the tumor bed and draining lymph nodes in different mouse cancer models. This recruitment is due to the capacity of transforming growth factor β to drive Chemokine (C-X-C motif) Ligand 13 expression, a chemoattractant of Tfh, by intratumor CD8+ T cells. Accumulation of Tfh and exhausted CD8+ T cells predicts cancer outcome in various cancer types. In patients treated with anti-programmed cell death-1 mAb, accumulation of Tfh and CD8+ at the tumor site is associated with outcome. Conclusion This study provides evidence that CD8+/Tfh crosstalk is important in shaping antitumor immune response generated by immunotherapy.
Collapse
Affiliation(s)
- Julie Niogret
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Hélène Berger
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Cédric Rebe
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Romain Mary
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Elise Ballot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Caroline Truntzer
- Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Marion Thibaudin
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Valentin Derangère
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Christophe Hibos
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Léa Hampe
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| | | | - Théo Accogli
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - James Harker
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Frederique Vegran
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France
| | - Francois Ghiringhelli
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France .,Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France.,Univ Burgundy Franche Comte, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France.,Genetic and Immunology Medical Institute, Dijon, France
| | - Fanny Chalmin
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.,Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
12
|
The Roles of IL-17, IL-21, and IL-23 in the Helicobacter pylori Infection and Gastrointestinal Inflammation: A Review. Toxins (Basel) 2021; 13:toxins13050315. [PMID: 33924897 PMCID: PMC8147029 DOI: 10.3390/toxins13050315] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Although millions of people have been infected by Helicobacter pylori (H. pylori), only a small proportion of infected individuals will develop adverse outcomes, ranging from chronic gastritis to gastric cancer. Advanced development of the disease has been well-linked with chronic inflammation, which is significantly impacted by the adaptive and humoral immunity response. From the perspective of cellular immunity, this review aims to clarify the intricate axis between IL-17, IL-21, and IL-23 in H. pylori-related diseases and the pathogenesis of inflammatory gastrointestinal diseases. CD4+ helper T (Th)-17 cells, with the hallmark pleiotropic cytokine IL-17, can affect antimicrobial activity and the pathogenic immune response in the gut environment. These circumstances cannot be separated, as the existence of affiliated cytokines, including IL-21 and IL-23, help maintain Th17 and accommodate humoral immune cells. Comprehensive understanding of the dynamic interaction between molecular host responses in H. pylori-related diseases and the inflammation process may facilitate further development of immune-based therapy.
Collapse
|
13
|
Bremner A, Kim S, Morris KM, Nolan MJ, Borowska D, Wu Z, Tomley F, Blake DP, Hawken R, Kaiser P, Vervelde L. Kinetics of the Cellular and Transcriptomic Response to Eimeria maxima in Relatively Resistant and Susceptible Chicken Lines. Front Immunol 2021; 12:653085. [PMID: 33841436 PMCID: PMC8027475 DOI: 10.3389/fimmu.2021.653085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Eimeria maxima is a common cause of coccidiosis in chickens, a disease that has a huge economic impact on poultry production. Knowledge of immunity to E. maxima and the specific mechanisms that contribute to differing levels of resistance observed between chicken breeds and between congenic lines derived from a single breed of chickens is required. This study aimed to define differences in the kinetics of the immune response of two inbred lines of White Leghorn chickens that exhibit differential resistance (line C.B12) or susceptibility (line 15I) to infection by E. maxima. Line C.B12 and 15I chickens were infected with E. maxima and transcriptome analysis of jejunal tissue was performed at 2, 4, 6 and 8 days post-infection (dpi). RNA-Seq analysis revealed differences in the rapidity and magnitude of cytokine transcription responses post-infection between the two lines. In particular, IFN-γ and IL-10 transcript expression increased in the jejunum earlier in line C.B12 (at 4 dpi) compared to line 15I (at 6 dpi). Line C.B12 chickens exhibited increases of IFNG and IL10 mRNA in the jejunum at 4 dpi, whereas in line 15I transcription was delayed but increased to a greater extent. RT-qPCR and ELISAs confirmed the results of the transcriptomic study. Higher serum IL-10 correlated strongly with higher E. maxima replication in line 15I compared to line C.B12 chickens. Overall, the findings suggest early induction of the IFN-γ and IL-10 responses, as well as immune-related genes including IL21 at 4 dpi identified by RNA-Seq, may be key to resistance to E. maxima.
Collapse
Affiliation(s)
- Abi Bremner
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Sungwon Kim
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom.,Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Katrina M Morris
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Matthew John Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Dominika Borowska
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Zhiguang Wu
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Fiona Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Rachel Hawken
- Cobb-Vantress Inc., Siloam Springs, AR, United States
| | - Pete Kaiser
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| |
Collapse
|
14
|
Plasma interleukin-21 levels and genetic variants are associated with susceptibility to rheumatoid arthritis. BMC Musculoskelet Disord 2021; 22:246. [PMID: 33673829 PMCID: PMC7936495 DOI: 10.1186/s12891-021-04111-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Rheumatoid Arthritis (RA) is a chronic inflammatory condition characterized by autoantibodies development and an elevated spectrum of pro-inflammatory cytokines. Previous reports highlighted a relationship between IL-21and the pathogenesis of RA. Although elevated IL-21 levels have been reported in RA patients, the association of common IL-21 genetic variants with a predisposition to RA development in the Chinese population lacks. Materials and methods Five hundred and fourteen Chinese subjects (healthy controls: 303 and rheumatoid arthritis patients: 211) were enrolled in the study. Clinical data of patients were collected from medical records, and patients were treated as per the guidelines. Common single nucleotide polymorphisms in the IL-21 gene (rs907715, rs2221903, rs2055979 and rs6822844) were genotyped by TaqMan SNPs genotyping method. IL-21 level in plasma of RA patients and healthy subjects was measured by ELISA. Results The plasma level of IL-21 was significantly higher in subjects with rheumatoid arthritis relative to healthy controls (p < 0.0001). A positive correlation was observed between IL-21 level and DAS28 score, indicating the association of the cytokine with the worsening of the disease (Spearman r = 0.61, p < 0.0001). The prevalence of AA genotype (rs2055979) was significantly higher in RA subjects than in the controls (p < 0.0001, χ2 = 34.73, OR = 4.34, 95% CI = 2.623 to 7.219). Furthermore, elevated plasma IL-21 was observed in the rs2055979-AA genotype compared to CC type (p < 0.0001). Conclusion IL-21 plays a crucial function in rheumatoid arthritis pathogenesis. IL-21 rs2055979 polymorphism is associated with IL-21 plasma levels and is predisposed to RA development in the Chinese population.
Collapse
|
15
|
Kesselring R, Jauch D, Fichtner-Feigl S. Interleukin 21 impairs tumor immunosurveillance of colitis-associated colorectal cancer. Oncoimmunology 2021; 1:537-538. [PMID: 22754778 PMCID: PMC3382907 DOI: 10.4161/onci.19407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pathogenesis of colitis-associated colorectal cancer is strongly influenced by immune cells, cytokines and other immune mediators present in the inflamed colon. Current research has emerged that T helper cell associated cytokines play a prominent role in tumor growth. In our recent manuscript we have revealed that the Th17 associated cytokine IL-21 prominently influences tumor development and immunosurveillance of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Rebecca Kesselring
- Laboratory of Chronic Immunopathology; Department of Surgery; University Medical Center Regensburg; Regensburg, Germany
| | | | | |
Collapse
|
16
|
Moretto MM, Hwang S, Chen K, Khan IA. Complex and Multilayered Role of IL-21 Signaling during Thymic Development. THE JOURNAL OF IMMUNOLOGY 2019; 203:1242-1251. [PMID: 31341076 DOI: 10.4049/jimmunol.1800743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/28/2019] [Indexed: 12/28/2022]
Abstract
Unlike IL-7, which is known to be critical for T cell thymic development, the role of IL-21 in this process is still controversial. IL-21 has been shown to accelerate thymic recovery in mice treated with glucocorticoids and revives the peripheral T cell pool in aged animals. However, mice with a defect in IL-21 signaling exhibit normal thymic cellularity, challenging the importance of this cytokine in the thymic developmental process. Using mixed bone marrow chimeric mice, our studies describe a multilayered role for IL-21 in thymopoiesis. In this system, IL-21R-deficient cells are unable to compete with wild-type populations at different stages of the thymic development. Using a mixed bone marrow chimeric animal model, IL-21 seems to be involved as early as the double-negative 1 stage, and the cells from the knockout compartment have problems transitioning to subsequent double-negative stages. Also, similar to IL-7, IL-21 seems to be involved in the positive selection of double-positive lymphocytes and appears to play a role in the migration of single-positive T cells to the periphery. Although not as critical as IL-7, based on our studies, IL-21 plays an important complementary role in thymic T cell development, which, to date, has been underrecognized.
Collapse
Affiliation(s)
- Magali M Moretto
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037; and
| | - SuJin Hwang
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | - Keer Chen
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037; and
| | - Imtiaz A Khan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037; and
| |
Collapse
|
17
|
Lokhande RV, Ambekar JG, Bhat KG, Dongre NN. Interleukin-21 and its association with chronic periodontitis. J Indian Soc Periodontol 2019; 23:21-24. [PMID: 30692738 PMCID: PMC6334551 DOI: 10.4103/jisp.jisp_410_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Context: Interleukin-21 (IL-21) is a pleiotropic cytokine, well documented to contribute to the development of Th17 cells which have been shown to play an important role in the pathogenesis of periodontitis. Periodontal disease is a chronic infection of tooth-supporting tissue. Aim: This study evaluates the saliva and serum levels of IL-21 in patients with chronic periodontitis and periodontally healthy individuals. Settings and Design: The present study was carried out in the Department of Microbiology in association with Department of Oral Medicine and Radiology, Maratha Mandal's N.G.H Institute of Dental Sciences and Research Centre, Belgavi, Karnataka. Materials and Methods: Fifty samples of each group were included in the present study. The levels of IL-21 were assessed using a commercially available enzyme-linked immunosorbent assay (ELISA) kit and the results were expressed as pg/mL. Statistical Analysis Used: Statistical analysis was performed using SPSS 17.0 software. Data were expressed as mean ± standard deviation and interquartile ranges and comparison of controls and cases by Mann–Whitney test. Results: Serum and salivary levels of IL-21 were significantly higher in chronic periodontitis group than in controls (P < 0.001). Clinical periodontal parameters correlated positively with serum IL-21 levels. Conclusions: IL-21 is highly expressed in patients with chronic periodontitis and correlated well with clinical parameters of periodontal destruction. Therefore, IL-21 appears to play a role in tissue destruction and can be used as diagnostic biomarker in chronic periodontitis. Saliva can be considered to be a useful alternative to serum as a diagnostic sample.
Collapse
Affiliation(s)
- Rani Vilas Lokhande
- Department of Biochemistry, Shri B. M. Patil Medical College, Vijayapura, Karnataka, India
| | | | - Kishore Gajanan Bhat
- Department of Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | | |
Collapse
|
18
|
Kwun J, Park J, Yi JS, Farris AB, Kirk AD, Knechtle SJ. IL-21 Biased Alemtuzumab Induced Chronic Antibody-Mediated Rejection Is Reversed by LFA-1 Costimulation Blockade. Front Immunol 2018; 9:2323. [PMID: 30374350 PMCID: PMC6196291 DOI: 10.3389/fimmu.2018.02323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022] Open
Abstract
Despite its excellent efficacy in controlling T cell mediated acute rejection, lymphocyte depletion may promote a humoral response. While T cell repopulation after depletion has been evaluated in many aspects, the B cell response has not been fully elucidated. We tested the hypothesis that the mechanisms also involve skewed T helper phenotype after lymphocytic depletion. Post-transplant immune response was measured from alemtuzumab treated hCD52Tg cardiac allograft recipients with or without anti-LFA-1 mAb. Alemtuzumab induction promoted serum DSA, allo-B cells, and CAV in humanized CD52 transgenic (hCD52Tg) mice after heterotopic heart transplantation. Additional anti-LFA-1 mAb treatment resulted in reduced DSA (Fold increase 4.75 ± 6.9 vs. 0.7 ± 0.5; p < 0.01), allo-specific B cells (0.07 ± 0.06 vs. 0.006 ± 0.002 %; p < 0.01), neo-intimal hyperplasia (56 ± 14% vs. 23 ± 13%; p < 0.05), arterial disease (77.8 ± 14.2 vs. 25.8 ± 20.1%; p < 0.05), and fibrosis (15 ± 23.3 vs. 4.3 ± 1.65%; p < 0.05) in this alemtuzumab-induced chronic antibody-mediated rejection (CAMR) model. Surprisingly, elevated serum IL-21 levels in alemtuzumab-treated mice was reduced with LFA-1 blockade. In accordance with the increased serum IL-21 level, alemtuzumab treated mice showed hyperplastic germinal center (GC) development, while the supplemental anti-LFA-1 mAb significantly reduced the GC frequency and size. We report that the incomplete T cell depletion inside of the GC leads to a systemic IL-21 dominant milieu with hyperplastic GC formation and CAMR. Conventional immunosuppression, such as tacrolimus and rapamycin, failed to reverse AMR, while co-stimulation blockade with LFA-1 corrected the GC hyperplastic response. The identification of IL-21 driven chronic AMR elucidates a novel mechanism that suggests a therapeutic approach with cytolytic induction.
Collapse
Affiliation(s)
- Jean Kwun
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Jaeberm Park
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Alton B Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allan D Kirk
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
19
|
Interleukin-21 Induces Short-Lived Effector CD8 + T Cells but Does Not Inhibit Their Exhaustion after Mycobacterium bovis BCG Infection in Mice. Infect Immun 2018; 86:IAI.00147-18. [PMID: 29844233 DOI: 10.1128/iai.00147-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Interleukin 21 (IL-21) is a pleiotropic common cytokine receptor γ chain cytokine that promotes the effector functions of NK cells and CD8+ T cells and inhibits CD8+ T cell exhaustion during chronic infection. We found that the absolute number of short-lived effector CD8+ T cells (SLECs) (KLRG1high CD127low) decreased significantly in IL-21 receptor-deficient (IL-21R-/-) mice during Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. Early effector CD8+ T cells (EECs) (KLRG1low CD127low) were normally generated in IL-21R-/- mice after infection. Exhausted CD8+ T cells (PD-1high KLRG1low) were also normally generated in IL-21R-/- mice after infection. Mixed bone marrow (BM) chimera and transfer experiments showed that IL-21R on CD8+ T cells was essential for the proliferation of EECs, allowing them to differentiate into SLECs after BCG infection. On the other hand, the number of SLECs increased significantly after infection with recombinant BCG (rBCG) that secreted an antigen 85B (Ag85B)-IL-21 fusion protein (rBCG-Ag85B-IL-21), but the number of exhausted CD8+ T cells did not change after rBCG-Ag85B-IL-21 infection. These results suggest that IL-21 signaling drives the differentiation of SLECs from EECs but does not inhibit the exhaustion of CD8+ T cells following BCG infection in mice.
Collapse
|
20
|
Afanasyeva A, Bockwoldt M, Cooney CR, Heiland I, Gossmann TI. Human long intrinsically disordered protein regions are frequent targets of positive selection. Genome Res 2018; 28:975-982. [PMID: 29858274 PMCID: PMC6028134 DOI: 10.1101/gr.232645.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species, it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here, we address this question by investigating the evolutionary pattern of more than 6600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a priori knowledge of disordered protein regions, and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs fourfold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts.
Collapse
Affiliation(s)
- Arina Afanasyeva
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S102TN, United Kingdom.,Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg 195251, Russia.,Petersburg Nuclear Physics Institute, B.P. Konstantinov NRC Kurchatov Institute, Gatchina, Leningrad District 188300, Russia.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Osaka 567-0085, Japan
| | - Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S102TN, United Kingdom
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S102TN, United Kingdom
| |
Collapse
|
21
|
Abstract
Memory cytotoxic T lymphocytes (CTLs) are able to provide protections to the host against repeated insults from intracellular pathogens. However, it has not been completely understood how the effector functions of memory CTLs are induced upon antigen challenge, which is directly related to the efficacy of their protection. Third signal cytokines, such as IL-12 and type I interferon, have been suggested to be involved in the protective function of memory CTLs, but direct evidence is warranted. In this report, we found that memory CTLs need to be reactivated to exert effector functions. Infusion of a large population of quiescent memory CTLs did not lead to cancer control in tumor-bearing mice, whereas infusion of a reactivated memory CTL population did. This reactivation of memory CTLs requires cytokines such as IL-12 in addition to antigen but was less dependent upon costimulation and IL-2 compared to naive CTLs. Memory CTLs responded more quickly and with greater strength than their naive counterparts upon stimulation, which is associated with higher upregulation of important transcription factors such as T-bet and phosphorylated STAT4. In addition, memory CTLs underwent less expansion than naive CTLs upon pathogen challenge. In conclusion, effector functions of established memory CTLs may be affected by certain cytokines such as IL-12 and type I IFN. Thus, a pathogen's ability to induce cytokines could contribute to the efficacy of protection of an established memory CTL population.
Collapse
|
22
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Attia SM, Zoheir KMA, Al-Ayadhi LY, Alzahrani MZ, Alsaad AMS, Alotaibi MR, Abd-Allah ARA. Imbalance between the anti- and pro-inflammatory milieu in blood leukocytes of autistic children. Mol Immunol 2017; 82:57-65. [PMID: 28027499 DOI: 10.1016/j.molimm.2016.12.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023]
Abstract
Accumulating evidence suggests an association between immune dysfunction and autism disorders in a significant subset of children. In addition, an imbalance between pro- and anti-inflammatory pathways has been proposed to play an important role in the pathogenesis of several neurodevelopmental disorders including autism; however, the role of anti-inflammatory molecules IL-27 and CTLA-4 and pro-inflammatory cytokines IL-21 and IL-22 has not previously been explored in autistic children. In the current study, we investigated the expression of IL-21, IL-22, IL-27, and CD152 (CTLA-4) following an in-vitro immunological challenge of peripheral blood mononuclear cells (PBMCs) from children with autism (AU) or typically-developing children (TD) with phorbol-12-myristate 13-acetate (PMA) and ionomycin. In our study, cells from children with AU had increased IL-21 and IL-22 and decreased CTLA-4 expression on CD4+ T cells as compared with cells from the TD control. Similarly, AU cells showed decreased IL-27 production by CD14+ cells compared to that of TD control cells. These results were confirmed by real-time PCR and western blot analyses. Our study shows dysregulation of the immune balance in cells from autistic children as depicted by enhanced pro-inflammatory cytokines, 'IL-21/IL-22' and decreased anti-inflammatory molecules, 'IL-27/CTLA-4'. Thus, further study of this immune imbalance in autistic children is warranted in order to facilitate development of biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khairy M A Zoheir
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Cell Biology, National Research Center, Cairo, Egypt
| | - Laila Yousef Al-Ayadhi
- Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz M S Alsaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adel R A Abd-Allah
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Huang Y, Matsumura Y, Hatano S, Noguchi N, Murakami T, Iwakura Y, Sun X, Ohara N, Yoshikai Y. IL-21 inhibits IL-17A-producing γδ T-cell response after infection with Bacillus Calmette-Guérin via induction of apoptosis. Innate Immun 2016; 22:588-597. [PMID: 27554052 DOI: 10.1177/1753425916664125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Innate γδ T cells expressing Vγ6 produce IL-17A at an early stage following infection with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In this study, we used IL-21 receptor knockout (IL-21R KO) mice and IL-21-producing recombinant BCG mice (rBCG-Ag85B-IL-21) to examine the role of IL-21 in the regulation of IL-17A-producing innate γδ T-cell response following BCG infection. IL-17A-producing Vγ6+ γδ T cells increased in the peritoneal cavity of IL-21R KO mice more than in wild type mice after BCG infection. In contrast, the number of IL-17A-producing Vγ6+ γδ T cells was significantly lower after inoculation with rBCG-Ag85B-IL-21 compared with control rBCG-Ag85B. Notably, exogenous IL-21 selectively induced apoptosis of IL-17A-producing Vγ6+ γδ T cells via Bim. Thus, these results suggest that IL-21 acts as a potent inhibitor of a IL-17A-producing γδ T-cell subset during BCG infection.
Collapse
Affiliation(s)
- Yinxia Huang
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,2 Beijing Key Laboratory of Drug Resistance Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yumiko Matsumura
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Hatano
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Naoto Noguchi
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tesshin Murakami
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoichiro Iwakura
- 3 Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Xun Sun
- 4 Department of Immunology, China Medical University, Shenyang, China
| | - Naoya Ohara
- 5 Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasunobu Yoshikai
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Xiao L, Jia L, Bai L, He L, Yang B, Wu C, Li H. Phenotypic and functional characteristics of IL-21-expressing CD8(+) T cells in human nasal polyps. Sci Rep 2016; 6:30362. [PMID: 27468819 PMCID: PMC4965861 DOI: 10.1038/srep30362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
Although CD4+ T cells are recognized to play an important role in the inflammatory response of nasal polyps (NPs), the biological functions of CD8+ T cells in polypogenesis remain unclear. In this study, we analyzed cell markers, cytokine expression and transcription factors in IL-21-expressing CD8+ T cells in polyp tissues of NP patients. The results showed that the majority of IL-21-producing CD8+ T cells were effector memory cells and they co-expressed IFN-γ. IL-21-expressing CD8+ T cells in polyp tissues expressed higher CXCR5, PD-1, and ICOS levels than cells in control tissues and showed significantly higher T-bet and Bcl-6 expression levels compared with IL-21−CD8+ T cells. Purified polyp CD8+ T cells promoted IgG production from isolated polyp B cells in vitro, and recombinant IL-12 modulated the expression of IL-21, IFN-γ and CD40L in purified polyp CD8+ T cells. Moreover, the percentage of IL-21+CD8+ T cells in polyp tissues was positively correlated with endoscopic and CT scan scores in NP patients. These findings indicated that polyp CD8+ T cells, by co-expressing IL-21 and IFN-γ and other markers, display a Tfh cell functionality, which is associated with the clinical severity of NP patients.
Collapse
Affiliation(s)
- Li Xiao
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lei Jia
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Allergy Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lu Bai
- Department of Otolaryngology, Guangdong General Hospital, Guangzhou, China
| | - Long He
- Department of Otolaryngology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Binyan Yang
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Allergy Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Huabin Li
- Allergy Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Department of Otolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Tian Y, Zajac AJ. IL-21 and T Cell Differentiation: Consider the Context. Trends Immunol 2016; 37:557-568. [PMID: 27389961 DOI: 10.1016/j.it.2016.06.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022]
Abstract
Accumulating studies demonstrate that IL-21 modulates the differentiation of various CD4 and CD8 T cell subsets and provide insights into the underlying cellular and molecular processes that are influenced by this cytokine. Intriguingly, the effects of IL-21 on T cells can be complex and vary depending on the experimental system used. We review our current understanding of the roles of IL-21 in the generation of phenotypically distinct CD4 and CD8 T cell populations and discuss the potential environmental cues, cellular factors, and molecular mediators that impact the actions of IL-21. We propose that IL-21 acts in a context-dependent manner to accentuate T cell subset development.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Allan J Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
26
|
Marenholz I, Esparza-Gordillo J, Lee YA. The genetics of the skin barrier in eczema and other allergic disorders. Curr Opin Allergy Clin Immunol 2016; 15:426-34. [PMID: 26226353 DOI: 10.1097/aci.0000000000000194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We summarize current knowledge on the genetic determinants of skin barrier deficiency in relation to eczema and disease progression to other allergic manifestations. RECENT FINDINGS There is increasing evidence that impairment of epidermal barrier function is not only a risk factor for the development of eczema but also for disease progression to allergic airway disease and food allergy. Support comes from recent association studies linking genetic variants in epidermal genes with eczema and food allergy, from monogenic diseases with severe skin barrier defects which display multiple allergic manifestations, and from mouse models providing a mechanism from skin inflammation to allergic reactions in the lung and intestine. SUMMARY The key role of the skin barrier defect in the development of eczema and eczema-associated allergic diseases may have important implications for prevention and treatment strategies. Initial clinical trials with moisturizing creams revealed promising results for the prevention of eczema in early infancy. Their long-term effects will be critical to demonstrate the potential benefit of barrier repair therapy in allergic disease prevention.
Collapse
Affiliation(s)
- Ingo Marenholz
- Pediatric Allergology, Experimental and Clinical Research Center, Charité University Medicine and Max Delbrück Center for Molecular Medicine, Berlin, Germany *These authors contributed equally to this work
| | | | | |
Collapse
|
27
|
Phares TW, DiSano KD, Stohlman SA, Segal BM, Bergmann CC. CXCL13 promotes isotype-switched B cell accumulation to the central nervous system during viral encephalomyelitis. Brain Behav Immun 2016; 54:128-139. [PMID: 26795429 PMCID: PMC4828287 DOI: 10.1016/j.bbi.2016.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 11/28/2022] Open
Abstract
Elevated CXCL13 within the central nervous system (CNS) correlates with humoral responses in several neuroinflammatory diseases, yet its role is controversial. During coronavirus encephalomyelitis CXCL13 deficiency impaired CNS accumulation of memory B cells and antibody-secreting cells (ASC) but not naïve/early-activated B cells. However, despite diminished germinal center B cells and follicular helper T cells in draining lymph nodes, ASC in bone marrow and antiviral serum antibody were intact in the absence of CXCL13. The data demonstrate that CXCL13 is not essential in mounting effective peripheral humoral responses, but specifically promotes CNS accumulation of differentiated B cells.
Collapse
Affiliation(s)
- Timothy W Phares
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA.
| | - Krista D DiSano
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| | - Stephen A Stohlman
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA.
| | - Benjamin M Segal
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Cornelia C Bergmann
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA.
| |
Collapse
|
28
|
Tian Y, Cox MA, Kahan SM, Ingram JT, Bakshi RK, Zajac AJ. A Context-Dependent Role for IL-21 in Modulating the Differentiation, Distribution, and Abundance of Effector and Memory CD8 T Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2016; 196:2153-66. [PMID: 26826252 DOI: 10.4049/jimmunol.1401236] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/31/2015] [Indexed: 12/21/2022]
Abstract
The activation of naive CD8 T cells typically results in the formation of effector cells (TE) as well as phenotypically distinct memory cells that are retained over time. Memory CD8 T cells can be further subdivided into central memory, effector memory (TEM), and tissue-resident memory (TRM) subsets, which cooperate to confer immunological protection. Using mixed bone marrow chimeras and adoptive transfer studies in which CD8 T cells either do or do not express IL-21R, we discovered that under homeostatic or lymphopenic conditions IL-21 acts directly on CD8 T cells to favor the accumulation of TE/TEM populations. The inability to perceive IL-21 signals under competitive conditions also resulted in lower levels of TRM phenotype cells and reduced expression of granzyme B in the small intestine. IL-21 differentially promoted the expression of the chemokine receptor CX3CR1 and the integrin α4β7 on CD8 T cells primed in vitro and on circulating CD8 T cells in the mixed bone marrow chimeras. The requirement for IL-21 to establish CD8 TE/TEM and TRM subsets was overcome by acute lymphocytic choriomeningitis virus infection; nevertheless, memory virus-specific CD8 T cells remained dependent on IL-21 for optimal accumulation in lymphopenic environments. Overall, this study reveals a context-dependent role for IL-21 in sustaining effector phenotype CD8 T cells and influencing their migratory properties, accumulation, and functions.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Maureen A Cox
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Shannon M Kahan
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Jennifer T Ingram
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Rakesh K Bakshi
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Allan J Zajac
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
29
|
Mendoza L, Méndez A. A dynamical model of the regulatory network controlling lymphopoiesis. Biosystems 2015; 137:26-33. [PMID: 26408858 DOI: 10.1016/j.biosystems.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/22/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022]
Abstract
Due to the large number of diseases associated to a malfunction of the hematopoietic system, there is an interest in knowing the molecular mechanisms controlling the differentiation of blood cell lineages. However, the structure and dynamical properties of the underlying regulatory network controlling this process is not well understood. This manuscript presents a regulatory network of 81 nodes, representing several types of molecules that regulate each other during the process of lymphopoiesis. The regulatory interactions were inferred mostly from published experimental data. However, 15 out of 159 regulatory interactions are predictions arising from the present study. The network is modelled as a continuous dynamical system, in the form of a set of differential equations. The dynamical behaviour of the model describes the differentiation process from the common lymphocyte precursor (CLP) to several mature B and T cell types; namely, plasma cell (PC), cytotoxic T lymphocyte (CTL), T helper 1 (Th1), Th2, Th17, and T regulatory (Treg) cells. The model qualitatively recapitulates key cellular differentiation events, being able to represent the directional and branched nature of lymphopoiesis, going from a multipotent progenitor to fully differentiated cell types.
Collapse
Affiliation(s)
- Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico.
| | - Akram Méndez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico; Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, México, Mexico
| |
Collapse
|
30
|
Human IL-21+IFN-γ+CD4+ T cells in nasal polyps are regulated by IL-12. Sci Rep 2015; 5:12781. [PMID: 26239551 PMCID: PMC4523938 DOI: 10.1038/srep12781] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
In the previous study, we found that the levels of IL-21 in nasal polyps (NPs) were significantly increased and associated with polyp size and recurrence. However, it is unclear that the cell source of IL-21 and the regulation of IL-21 in NP tissues. In the present study, we isolated the lymphocytes from NP tissues, uncinate tissues and peripheral blood of patients with NPs. The cells were analyzed for cell surface markers, cytokines and transcriptional factors by flow cytometry. The results indicated that CD4+ T cells were the major IL-21-exprssing cells in NP tissues and the majority of IL-21 producing CD4+ T cells co-expressed IFN-γ or IL-17A. IL-21+IFN-γ+CD4+ T cells in NP tissues exhibited the features of both Tfh and Th1 cells which co-expressed significantly higher amount of CXCR5, ICOS, PD-1, Bcl-6 and T-bet than did IL-21+IFN-γ−CD4+ T cells (p < 0.05). Treatment of the lymphocytes from NP tissues with IL-12 enhanced the production of IL-21 and IFN-γ, especially the frequency of IL-21+IFN−γ+CD4+ T cells (p < 0.05). The blockade of IL-12 inhibited the production of IL-21 and IFN-γ (p < 0.05). These findings indicated that IL-12 positively enhanced the generation of IL-21+IFN-γ+CD4+ T cells having the features of both Tfh and Th1 cells in NP tissues.
Collapse
|
31
|
Pérez-Mazliah D, Ng DHL, Freitas do Rosário AP, McLaughlin S, Mastelic-Gavillet B, Sodenkamp J, Kushinga G, Langhorne J. Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria. PLoS Pathog 2015; 11:e1004715. [PMID: 25763578 PMCID: PMC4370355 DOI: 10.1371/journal.ppat.1004715] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022] Open
Abstract
Interleukin-21 signaling is important for germinal center B-cell responses, isotype switching and generation of memory B cells. However, a role for IL-21 in antibody-mediated protection against pathogens has not been demonstrated. Here we show that IL-21 is produced by T follicular helper cells and co-expressed with IFN-γ during an erythrocytic-stage malaria infection of Plasmodium chabaudi in mice. Mice deficient either in IL-21 or the IL-21 receptor fail to resolve the chronic phase of P. chabaudi infection and P. yoelii infection resulting in sustained high parasitemias, and are not immune to re-infection. This is associated with abrogated P. chabaudi-specific IgG responses, including memory B cells. Mixed bone marrow chimeric mice, with T cells carrying a targeted disruption of the Il21 gene, or B cells with a targeted disruption of the Il21r gene, demonstrate that IL-21 from T cells signaling through the IL-21 receptor on B cells is necessary to control chronic P. chabaudi infection. Our data uncover a mechanism by which CD4+ T cells and B cells control parasitemia during chronic erythrocytic-stage malaria through a single gene, Il21, and demonstrate the importance of this cytokine in the control of pathogens by humoral immune responses. These data are highly pertinent for designing malaria vaccines requiring long-lasting protective B-cell responses. The importance of antibody and B-cell responses for control of the erythrocytic-stage of the malaria parasite, Plasmodium, was first described when immune serum, passively transferred into Plasmodium falciparum-infected children, reduced parasitemia. This was later confirmed in experimental models in which mice deficient in B cells were unable to eliminate erythrocytic-stage infections. The signals required to activate these protective long-lasting B cell responses towards Plasmodium have not been investigated. IL-21 has been shown to be important for development of B-cell responses after immunization; however, a direct requirement for IL-21 in the control of infection via B-cell dependent mechanisms has never been demonstrated. In this paper, we have used mouse models of erythrocytic P. chabaudi and P. yoelii 17X(NL) infections in combination with IL-21/IL-21R deficiency to show that IL-21 from CD4+ T cells is required to eliminate Plasmodium infection by activating protective, long-lasting B-cell responses. Disruption of IL-21 signaling in B cells prevents the elimination of the parasite resulting in sustained high parasitemias, with no development of memory B-cells, lack of antigen-specific plasma cells and antibodies, and thus no protective immunity against a second challenge infection. Our data demonstrate the absolute requirement of IL-21 for B-cell control of this systemic infection. This has important implications for the design of vaccines against Plasmodium.
Collapse
Affiliation(s)
- Damián Pérez-Mazliah
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Dorothy Hui Lin Ng
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | | | - Sarah McLaughlin
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Béatris Mastelic-Gavillet
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Jan Sodenkamp
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Garikai Kushinga
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
T cell exhaustion during persistent viral infections. Virology 2015; 479-480:180-93. [PMID: 25620767 DOI: 10.1016/j.virol.2014.12.033] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control.
Collapse
|
33
|
Zhou M, Zou R, Gan H, Liang Z, Li F, Lin T, Luo Y, Cai X, He F, Shen E. The effect of aging on the frequency, phenotype and cytokine production of human blood CD4 + CXCR5 + T follicular helper cells: comparison of aged and young subjects. IMMUNITY & AGEING 2014; 11:12. [PMID: 25177353 PMCID: PMC4148677 DOI: 10.1186/1742-4933-11-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022]
Abstract
Background T cell-dependent B-cell responses decline with age, indicating declined cognate helper activity of aged CD4 + T cells for B cells. However, the mechanisms remain unclear. T follicular helper (Tfh) cells, a novel T helper subset, play an essential role in helping B cells differentiation into long-lived plasma cells in germinal center (GC) or short-lived plasma cells. In the present study, we proposed that there might existe changes of proportion, phenotype or cytokine production of blood Tfh cells in healthy elderly individuals compared with healthy young individuals. Results The results showed that frequencies of aged blood CXCR5 + CD4 + Tfh cells increased compared with young subjects. Both aged and young blood CXCR5 + CD4 + Tfh cells constitutively expressed CD45RO, CCR7 and CD28, and few of these cells expressed CD69 or HLA-DR, which indicated that they were resting memory cells. There was no significant difference of IL-21 frequency production by aged blood CXCR5 + CD4 + Tfh determined by FACS compared with young individuals, however, aged PBMCs produced significantly higher levels of IL-21 evaluated by ELISA. Furthermore, there were no significant differences of percentages of IFN-γ, IL-4, IL-17 or IL-22 production by aged Tfh cells compared with their counterparts of young individuals respectively. However, frequencies of IL-17+ cells within aged CD4 + CXCR5-T cells were markedly lower than in the young individuals. Furthermore we observed different frequencies of IFN-γ, IL-17, IL-4 or IL-22 production by Tfh or by CD4 + CXCR5- cells in aged and young subjects respectively. Conclusions Our data demonstrated that the frequencies of blood memory CXCR5 + CD4 + Tfh cells increased in the elderly population. There were similar frequencies of Th characterized cytokine production such as IL-21, IFN-γ, IL-4, IL-17 or IL-22 in aged and young Tfh cells. However, aged PBMCs produced a significantly higher amount of IL-21 compare to young subjects.
Collapse
Affiliation(s)
- Maohua Zhou
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ruqiong Zou
- Department of Pathogenic Biology and Immunology, Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Huiquan Gan
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhimei Liang
- Department of Pathogenic Biology and Immunology, Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Fujun Li
- Department of Pathogenic Biology and Immunology, Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Ting Lin
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yanfei Luo
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaoming Cai
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Fang He
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Erxia Shen
- Department of Pathogenic Biology and Immunology, Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
34
|
Monjazeb AM, Tietze JK, Grossenbacher SK, Hsiao HH, Zamora AE, Mirsoian A, Koehn B, Blazar BR, Weiss JM, Wiltrout RH, Sckisel GD, Murphy WJ. Bystander activation and anti-tumor effects of CD8+ T cells following Interleukin-2 based immunotherapy is independent of CD4+ T cell help. PLoS One 2014; 9:e102709. [PMID: 25119341 PMCID: PMC4131875 DOI: 10.1371/journal.pone.0102709] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
We have previously demonstrated that immunotherapy combining agonistic anti-CD40 and IL-2 (IT) results in synergistic anti-tumor effects. IT induces expansion of highly cytolytic, antigen-independent “bystander-activated” (CD8+CD44high) T cells displaying a CD25−NKG2D+ phenotype in a cytokine dependent manner, which were responsible for the anti-tumor effects. While much attention has focused on CD4+ T cell help for antigen-specific CD8+ T cell expansion, little is known regarding the role of CD4+ T cells in antigen-nonspecific bystander-memory CD8+ T cell expansion. Utilizing CD4 deficient mouse models, we observed a significant expansion of bystander-memory T cells following IT which was similar to the non-CD4 depleted mice. Expanded bystander-memory CD8+ T cells upregulated PD-1 in the absence of CD4+ T cells which has been published as a hallmark of exhaustion and dysfunction in helpless CD8+ T cells. Interestingly, compared to CD8+ T cells from CD4 replete hosts, these bystander expanded cells displayed comparable (or enhanced) cytokine production, lytic ability, and in vivo anti-tumor effects suggesting no functional impairment or exhaustion and were enriched in an effector phenotype. There was no acceleration of the post-IT contraction phase of the bystander memory CD8+ response in CD4-depleted mice. The response was independent of IL-21 signaling. These results suggest that, in contrast to antigen-specific CD8+ T cell expansion, CD4+ T cell help is not necessary for expansion and activation of antigen-nonspecific bystander-memory CD8+ T cells following IT, but may play a role in regulating conversion of these cells from a central memory to effector phenotype. Additionally, the expression of PD-1 in this model appears to be a marker of effector function and not exhaustion.
Collapse
Affiliation(s)
- Arta M. Monjazeb
- Department of Radiation Oncology School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Julia K. Tietze
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Steven K. Grossenbacher
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Hui-Hua Hsiao
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Anthony E. Zamora
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Annie Mirsoian
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Brent Koehn
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, Massachusetts, United States of America
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, Massachusetts, United States of America
| | - Jonathan M. Weiss
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Robert H. Wiltrout
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Gail D. Sckisel
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Immune activation is associated with CD8 T cell interleukin-21 production in HIV-1-infected individuals. J Virol 2014; 88:10259-63. [PMID: 24942568 DOI: 10.1128/jvi.00764-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interleukin-21 (IL-21) can be produced by CD8 T cells from HIV-1-infected individuals and those with autoimmune disease, but the mechanism remains poorly understood. Here we demonstrate that IL-21-producing CD8 T cells are not associated with CD4 depletion and are absent in patients with idiopathic CD4 lymphocytopenia. Instead, IL-21 production by CD8 T cells was associated with high levels of activation, suggesting that these cells emerge as a consequence of excessive chronic immune activation rather than CD4 lymphopenia.
Collapse
|
36
|
Pan Q, Yu Y, Tang Z, Xi M, Jiang H, Xun Y, Liu X, Liu H, Hu J, Zang G. Increased levels of IL-21 responses are associated with the severity of liver injury in patients with chronic active hepatitis B. J Viral Hepat 2014; 21:e78-88. [PMID: 24611989 DOI: 10.1111/jvh.12242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/22/2014] [Indexed: 12/11/2022]
Abstract
Interleukin-21 (IL-21) participates in tissue damage in various immune-mediated diseases. Its role in the pathogenesis of chronic active hepatitis B (CAHB) has not been clarified. The frequency of circulating IL-21(+) T cells and the levels of serum and intrahepatic IL-21 have been characterized in 70 CAHB patients, 32 inactive carrier (IC), 18 chronic hepatitis C (CHC) and 20 healthy controls (HC). Their potential association with liver injury was analysed. The percentages of IL-21(+) CD3(+) CD8(-) and IL-21(+) CD3(+) CD8(+) T cells and the levels of serum IL-21 in CAHB patients were significantly higher than that in the IC, CHC patients and HC (P < 0.001) and were correlated positively with the levels of serum alanine aminotransferase (ALT, r = 0.424, P < 0.001; r = 0.392, P = 0.001) and aspartate aminotransferase (AST, r = 0.388, P = 0.001; r = 0.329, P = 0.005) in CAHB patients, respectively. The levels of IL-21 expression in the liver tissues were associated significantly with increased degrees of inflammation and fibrosis in CAHB patients (P < 0.01 or P < 0.05). Our findings suggest that aberrant IL-21 responses may be associated with the progression of CHB.
Collapse
Affiliation(s)
- Q Pan
- Department of Infectious Disease, Shanghai Sixth People's Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Misumi I, Whitmire JK. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1597-608. [PMID: 24453250 PMCID: PMC3925510 DOI: 10.4049/jimmunol.1302661] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dynamic interactions between CD4(+) T cells and B cells are needed for humoral immunity and CD4(+) T cell memory. It is not known whether B cells are needed early on to induce the formation of memory precursor cells or are needed later to sustain memory cells. In this study, primary and memory CD4(+) T cells responses were followed in wild-type mice that were depleted of mature B cells by anti-CD20 before or different times after acute lymphocytic choriomeningitis virus infection. The Ab treatment led to a 1000-fold reduction in B cell number that lasted 6 wk. Primary virus-specific CD4(+) Th1 cells were generated in B cell-depleted mice; however, there was a decrease in the CD4(+)Ly6C(lo)Tbet(+) memory precursor population and a corresponding 4-fold reduction in CD4(+) memory cell number. Memory T cells showed impaired cytokine production when they formed without B cells. B cell depletion had no effect on established memory populations. During disseminating virus infection, B cell depletion led to sustained weight loss and functional exhaustion of CD4(+) and CD8(+) T cells, and prevented mice from resolving the infection. Thus, B cells contribute to the establishment and survival of memory CD4(+) T cells post-acute infection and play an essential role in immune protection against disseminating virus infection.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599
| | - Jason K. Whitmire
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599
- Department of Microbiology & Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
38
|
Ng CT, Snell LM, Brooks DG, Oldstone MBA. Networking at the level of host immunity: immune cell interactions during persistent viral infections. Cell Host Microbe 2013; 13:652-64. [PMID: 23768490 DOI: 10.1016/j.chom.2013.05.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Persistent viral infections are the result of a series of connected events that culminate in diminished immunity and the inability to eliminate infection. By building our understanding of how distinct components of the immune system function both individually and collectively in productive versus abortive responses, new potential therapeutic targets can be developed to overcome immune dysfunction and thus fight persistent infections. Using lymphocytic choriomeningitis virus (LCMV) as a model of a persistent virus infection and drawing parallels to persistent human viral infections such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV), we describe the cellular relationships and interactions that determine the outcome of initial infection and highlight immune targets for therapeutic intervention to prevent or treat persistent infections. Ultimately, these findings will further our understanding of the immunologic basis of persistent viral infection and likely lead to strategies to treat human viral infections.
Collapse
Affiliation(s)
- Cherie T Ng
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
39
|
Bhadra R, Cobb DA, Khan IA. CD40 signaling to the rescue: A CD8 exhaustion perspective in chronic infectious diseases. Crit Rev Immunol 2013; 33:361-78. [PMID: 23971530 DOI: 10.1615/critrevimmunol.2013007444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic infectious diseases such as HIV, HBV, and HCV, among others, cause severe morbidity and mortality globally. Progressive decline in CD8 functionality, survival, and proliferative potential-a phenomenon referred to as CD8 exhaustion-is believed to be responsible for poor pathogen control in chronic infectious diseases. While the role of negative inhibitory receptors such as PD-1 in augmenting CD8 exhaustion has been extensively studied, the role of positive costimulatory receptors remains poorly understood. In this review, we discuss how one such costimulatory pathway, CD40-CD40L, regulates CD8 dysfunction and rescue. While the significance of this pathway has been extensively investigated in models of autoimmunity, acute infectious diseases, and tumor models, the role played by CD40-CD40L in regulating CD8 exhaustion in chronic infectious diseases is just beginning to be understood. Considering that monotherapy with blocking antibodies targeting inhibitory PD-1-PD-L1 pathway is only partially effective at ameliorating CD8 exhaustion and that humanized CD40 agonist antibodies are currently available, a better understanding of the role of the CD40-CD40L pathway in chronic infectious diseases will pave the way for the development of more robust immunotherapeutic and prophylactic vaccination strategies.
Collapse
Affiliation(s)
- Rajarshi Bhadra
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
40
|
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1703-1718. [PMID: 24036335 DOI: 10.1016/j.fsi.2013.08.030] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 05/28/2023]
Abstract
Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
41
|
Zhao CC, Gao XQ, Xue J, Cong Z, Zhang WL, Chen T, Wu FX, Xiong J, Ju B, Su A, Wei Q, Qin C. Interleukin-21 up-regulates interleukin-21R expression and interferon gamma production by CD8+ cells in SHIV-infected macaques. Exp Biol Med (Maywood) 2013; 238:400-9. [PMID: 23760006 DOI: 10.1177/1535370213477978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Interleukin-21 (IL-21) is produced primarily by CD4+ T cells and regulates immunity against human/simian immunodeficiency virus (HIV/SIV) infection. Activated CD8+ cells and their secreted interferon-gamma (IFN-γ) are crucial for the control of acute HIV/SIV infection. However, whether IL-21 can regulate IFN-γ production by CD8+ cells remains controversial. Rhesus macaques (RMs, n = 8) were infected with SHIV and the levels of plasma IL-21, IFN-γ and the frequency of peripheral blood activated T cells were measured longitudinally. Following infection with SHIV, the levels of plasma IL-21 and IFN-γ increased, peaked at 17 days postinfection and declined later. Furthermore, IL-21 induced IL-21 receptor (IL-21R) and IFN-γ, perforin, but not granmyze B, expression in CD8+ cells from four selected SHIV-infected RMs. The regulatory effect of IL-21 on CD8+ cell function appeared to be associated with increased levels of STAT3, but not STAT5, phosphorylation in CD8+ cells from SHIV-infected RMs. In parallel, treatment with soluble IL-21R/Fc, an inhibitor of IL-21-induced activation of JAK1/3 and STAT3, abrogated IL-21-induced STAT3 activation and IFN-γ production in CD8+ cells from SHIV-infected RMs in vitro. Our data indicated that IL-21 was a positive regulator of IFN-γ-secreting CD8+ cells and increased the STAT3 phosphorylation, regulating T-cell immunity against acute SHIV infection in RMs. Our findings may provide a new basis for the development of immunotherapies for the control of SHIV/HIV infection.
Collapse
Affiliation(s)
- Chang-cheng Zhao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang Dist, Beijing 100021
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Phares TW, DiSano KD, Hinton DR, Hwang M, Zajac AJ, Stohlman SA, Bergmann CC. IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis. J Neuroimmunol 2013; 263:43-54. [PMID: 23992866 PMCID: PMC3796038 DOI: 10.1016/j.jneuroim.2013.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
Acute coronavirus encephalomyelitis is controlled by T cells while humoral responses suppress virus persistence. This study defines the contribution of interleukin (IL)-21, a regulator of T and B cell function, to central nervous system (CNS) immunity. IL-21 receptor deficiency did not affect peripheral T cell activation or trafficking, but dampened granzyme B, gamma interferon and IL-10 expression by CNS T cells and reduced serum and intrathecal humoral responses. Viral control was already lost prior to humoral CNS responses, but demyelination remained comparable. These data demonstrate a critical role of IL-21 in regulating CNS immunity, sustaining viral persistence and preventing mortality. IL-21 optimizes CNS CD4 and CD8 T cell responses during viral encephalomyelitis. IL-21 promotes peripheral and CNS humoral immunity. IL-21 promotes CNS viral control and prevents mortality.
Collapse
Affiliation(s)
- Timothy W. Phares
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Krista D. DiSano
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - David R. Hinton
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mihyun Hwang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Allan J. Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen A. Stohlman
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Corresponding author at: Department of Neuroscience, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, NC30, Cleveland, OH 44195, USA. Tel.: + 1 216 444 5922; fax: + 1 216 444 7927.
| |
Collapse
|
43
|
Dorfmeier CL, Tzvetkov EP, Gatt A, McGettigan JP. Investigating the role for IL-21 in rabies virus vaccine-induced immunity. PLoS Negl Trop Dis 2013; 7:e2129. [PMID: 23516660 PMCID: PMC3597479 DOI: 10.1371/journal.pntd.0002129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/08/2013] [Indexed: 12/18/2022] Open
Abstract
Over two-thirds of the world's population lives in regions where rabies is endemic, resulting in over 15 million people receiving multi-dose post-exposure prophylaxis (PEP) and over 55,000 deaths per year globally. A major goal in rabies virus (RABV) research is to develop a single-dose PEP that would simplify vaccination protocols, reduce costs associated with RABV prevention, and save lives. Protection against RABV infections requires virus neutralizing antibodies; however, factors influencing the development of protective RABV-specific B cell responses remain to be elucidated. Here we used a mouse model of IL-21 receptor-deficiency (IL-21R-/-) to characterize the role for IL-21 in RABV vaccine-induced immunity. IL-21R-/- mice immunized with a low dose of a live recombinant RABV-based vaccine (rRABV) produced only low levels of primary or secondary anti-RABV antibody response while wild-type mice developed potent anti-RABV antibodies. Furthermore, IL-21R-/- mice immunized with low-dose rRABV were only minimally protected against pathogenic RABV challenge, while all wild-type mice survived challenge, indicating that IL-21R signaling is required for antibody production in response to low-dose RABV-based vaccination. IL-21R-/- mice immunized with a higher dose of vaccine produced suboptimal anti-RABV primary antibody responses, but showed potent secondary antibodies and protection similar to wild-type mice upon challenge with pathogenic RABV, indicating that IL-21 is dispensable for secondary antibody responses to live RABV-based vaccines when a primary response develops. Furthermore, we show that IL-21 is dispensable for the generation of Tfh cells and memory B cells in the draining lymph nodes of immunized mice but is required for the detection of optimal GC B cells or plasma cells in the lymph node or bone marrow, respectively, in a vaccine dose-dependent manner. Collectively, our preliminary data show that IL-21 is critical for the development of optimal vaccine-induced primary but not secondary antibody responses against RABV infections.
Collapse
Affiliation(s)
- Corin L. Dorfmeier
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Evgeni P. Tzvetkov
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Anthony Gatt
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James P. McGettigan
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Cox MA, Kahan SM, Zajac AJ. Anti-viral CD8 T cells and the cytokines that they love. Virology 2013; 435:157-69. [PMID: 23217625 DOI: 10.1016/j.virol.2012.09.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 12/01/2022]
Abstract
Viral infections cause an immunological disequilibrium that provokes CD8 T cell responses. These cells play critical roles in purging acute infections, limiting persistent infections, and conferring life-long protective immunity. At every stage of the response anti-viral CD8 T cells are sensitive to signals from cytokines. Initially cytokines operate as immunological warning signs that inform of the presence of an infection, and also influence the developmental choices of the responding cells. Later during the course of the response other sets of cytokines support the survival and maintenance of the differentiated anti-viral CD8 T cells. Although many cytokines promote virus-specific CD8 T cells, other cytokines can suppress their activities and thus favor viral persistence. In this review we discuss how select cytokines act to regulate anti-viral CD8 T cells throughout the response and influence the outcome of viral infections.
Collapse
Affiliation(s)
- Maureen A Cox
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
45
|
Xing T, Xu H, Yu W. Role of T follicular helper cells and their associated molecules in the pathogenesis of chronic hepatitis B virus infection. Exp Ther Med 2012; 5:885-889. [PMID: 23407366 PMCID: PMC3570220 DOI: 10.3892/etm.2012.864] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023] Open
Abstract
In this study, we investigated the roles of T follicular helper (TFH) cells and related molecules in the pathogenesis of chronic hepatitis B virus (HBV) infection. The levels of circulating TFH cells and their surface CD40 ligand (CD40L), as well as CD19+ B cells and their surface CD40 expression were detected by flow cytometry. Peripheral blood plasma interleukin (IL)-21 levels were detected by enzyme-linked immunosorbent assay (ELISA). Compared with hepatitis B surface antibody (HBsAb)− and HBsAb+ healthy controls, the percentage of TFH cells and their surface CD40L expression significantly increased in patients with chronic HBV infection, particularly those with chronic hepatitis B (P<0.05). The percentage of CD19+ B cells significantly increased in chronic hepatitis B patients and CD40 expression levels on the CD19+ B cell surface in chronic HBV infection decreased compared with those in the healthy controls (P<0.05). Compared with the healthy controls, the plasma IL-21 level in chronic hepatitis B patients was significantly increased in chronic HBV carriers and decreased in inactive hepatitis B surface antigen (HBsAg) carriers (P<0.05). The TFH cell percentage, B cell percentage and IL-21 expression did not significantly differ between the hepatitis B e-antigen (HBeAg)− and HBeAg+ chronic hepatitis B groups (P>0.05). The abnormal expression of TFH cells and IL-21 is related to the dysfunction of immune response during chronic HBV infection. The interaction of CD19+ B cells with TFH cells via their CD40 and CD40L molecules may also play an important role in this process.
Collapse
Affiliation(s)
- Tongjing Xing
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | | | | |
Collapse
|
46
|
Micci L, Cervasi B, Ende ZS, Iriele RI, Reyes-Aviles E, Vinton C, Else J, Silvestri G, Ansari AA, Villinger F, Pahwa S, Estes JD, Brenchley JM, Paiardini M. Paucity of IL-21-producing CD4(+) T cells is associated with Th17 cell depletion in SIV infection of rhesus macaques. Blood 2012; 120:3925-35. [PMID: 22990011 PMCID: PMC3496953 DOI: 10.1182/blood-2012-04-420240] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/31/2012] [Indexed: 12/21/2022] Open
Abstract
IL-21 regulates Th17 cell homeostasis, enhances the differentiation of memory B cells and antibody-secreting plasma cells, and promotes the maintenance of CD8(+) T-cell responses. In this study, we investigated the phenotype, function, and frequency of blood and intestinal IL-21-producing cells in nonhuman primates that are hosts of progressive (rhesus macaques [RMs]) and nonprogressive (sooty mangabeys [SMs]) SIV infection. We found that, in both species, memory CD4(+)CD95(+)CCR6(-) T cells are the main IL-21 producers, and that only a small fraction of CD4(+)IL-21(+) T cells produce IL-17. During chronic SIV infection of RMs, CD4(+)IL-21(+) T cells were significantly depleted in both blood and rectal mucosa, with the extent of this depletion correlating with the loss of Th17 cells. Furthermore, treatment with IL-21 increased the in vivo levels of Th17 cells in SIV-infected RMs. In contrast, normal levels of CD4(+)IL-21(+) T cells were found in SIV-infected SMs. Collectively, these data indicate that depletion of IL-21-producing CD4(+) T cells distinguishes progressive from nonprogressive SIV infection of RMs and SMs, and suggest that depletion of CD4(+)IL-21(+) T cells is involved in the preferential loss of Th17 cells that is associated with SIV disease progression. Further preclinical studies of IL-21 as a potential immunotherapeutic agent for HIV infection may be warranted.
Collapse
Affiliation(s)
- Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Reynolds LA, Filbey KJ, Maizels RM. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin Immunopathol 2012; 34:829-46. [PMID: 23053394 PMCID: PMC3496515 DOI: 10.1007/s00281-012-0347-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
Heligmosomoides polygyrus is a natural intestinal parasite of mice, which offers an excellent model of the immunology of gastrointestinal helminth infections of humans and livestock. It is able to establish long-term chronic infections in many strains of mice, exerting potent immunomodulatory effects that dampen both protective immunity and bystander reactions to allergens and autoantigens. Immunity to the parasite develops naturally in some mouse strains and can be induced in others through immunization; while the mechanisms of protective immunity are not yet fully defined, both antibodies and a host cellular component are required, with strongest evidence for a role of alternatively activated macrophages. We discuss the balance between resistance and susceptibility in this model system and highlight new themes in innate and adaptive immunity, immunomodulation, and regulation of responsiveness in helminth infection.
Collapse
Affiliation(s)
- Lisa A. Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Kara J. Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT UK
| |
Collapse
|
48
|
Hemdan NYA, Birkenmeier G, Wichmann G. Key molecules in the differentiation and commitment program of T helper 17 (Th17) cells up-to-date. Immunol Lett 2012; 148:97-109. [PMID: 23036716 DOI: 10.1016/j.imlet.2012.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/02/2023]
Abstract
The mechanisms underlying autoimmunity and cancer remain elusive. However, perpendicular evidence has been evolved in the past decade that T helper (Th)17 cells and their related molecules are implicated in initiation and induction of various disease settings including both diseases. Meanwhile, extensive research on Th17 cells elucidated various molecules including cytokines and transcription factors as well as signaling pathways involved in the differentiation, maturation, survival and ultimate commitment of Th17 cells. In the current review, we revise the mechanistic underpinnings delivered by recent research on these molecules in the Th17 differentiation/commitment concert. We emphasize on those molecules proposed as targets for attaining potential therapies of various autoimmune disorders and cancer, aiming both at dampening the dark-side of Th17 repertoire and simultaneously potentiating its benefits in the roster of the antimicrobial response.
Collapse
Affiliation(s)
- Nasr Y A Hemdan
- ENT-Research Lab, Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Leipzig, Liebig Str. 21, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
49
|
Meresse B, Malamut G, Cerf-Bensussan N. Celiac disease: an immunological jigsaw. Immunity 2012; 36:907-19. [PMID: 22749351 DOI: 10.1016/j.immuni.2012.06.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Indexed: 12/20/2022]
Abstract
Celiac disease (CD) is a chronic enteropathy induced by dietary gluten in genetically predisposed people. The keystone of CD pathogenesis is an adaptive immune response orchestrated by the interplay between gluten and MHC class II HLA-DQ2 and DQ8 molecules. Yet, other factors that impair immunoregulatory mechanisms and/or activate the large population of intestinal intraepithelial lymphocytes (IEL) are indispensable for driving tissue damage. Herein, we summarize our current understanding of the mechanisms and consequences of the undesirable immune response initiated by gluten peptides. We show that CD is a model disease to decipher the role of MHC class II molecules in human immunopathology, to analyze the mechanisms that link tolerance to food proteins and autoimmunity, and to investigate how chronic activation of IEL can lead to T cell lymphomagenesis.
Collapse
Affiliation(s)
- Bertrand Meresse
- INSERM, U989, Université Paris Descartes, Paris Sorbonne Centre, Institut IMAGINE, Paris, France.
| | | | | |
Collapse
|
50
|
Andersen KG, Shylakhter I, Tabrizi S, Grossman SR, Happi CT, Sabeti PC. Genome-wide scans provide evidence for positive selection of genes implicated in Lassa fever. Philos Trans R Soc Lond B Biol Sci 2012; 367:868-77. [PMID: 22312054 PMCID: PMC3267117 DOI: 10.1098/rstb.2011.0299] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapidly evolving viruses and other pathogens can have an immense impact on human evolution as natural selection acts to increase the prevalence of genetic variants providing resistance to disease. With the emergence of large datasets of human genetic variation, we can search for signatures of natural selection in the human genome driven by such disease-causing microorganisms. Based on this approach, we have previously hypothesized that Lassa virus (LASV) may have been a driver of natural selection in West African populations where Lassa haemorrhagic fever is endemic. In this study, we provide further evidence for this notion. By applying tests for selection to genome-wide data from the International Haplotype Map Consortium and the 1000 Genomes Consortium, we demonstrate evidence for positive selection in LARGE and interleukin 21 (IL21), two genes implicated in LASV infectivity and immunity. We further localized the signals of selection, using the recently developed composite of multiple signals method, to introns and putative regulatory regions of those genes. Our results suggest that natural selection may have targeted variants giving rise to alternative splicing or differential gene expression of LARGE and IL21. Overall, our study supports the hypothesis that selective pressures imposed by LASV may have led to the emergence of particular alleles conferring resistance to Lassa fever, and opens up new avenues of research pursuit.
Collapse
Affiliation(s)
- Kristian G Andersen
- Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | |
Collapse
|