1
|
Freudenberger Catanzaro KC, Lahmers KK, Allen IC, Inzana TJ. Alginate microencapsulation of an attenuated O-antigen mutant of Francisella tularensis LVS as a model for a vaccine delivery vehicle. PLoS One 2022; 17:e0259807. [PMID: 35275912 PMCID: PMC8916679 DOI: 10.1371/journal.pone.0259807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Francisella tularensis is the etiologic agent of tularemia and a Tier I Select Agent. Subspecies tularensis (Type A) is the most virulent of the four subspecies and inhalation of as few as 10 cells can cause severe disease in humans. Due to its niche as a facultative intracellular pathogen, a successful tularemia vaccine must induce a robust cellular immune response, which is best achieved by a live, attenuated strain. F. tularensis strains lacking lipopolysaccharide (LPS) O-antigen are highly attenuated, but do not persist in the host long enough to induce protective immunity. Increasing the persistence of an O-antigen mutant may help stimulate protective immunity. Alginate encapsulation is frequently used with probiotics to increase persistence of bacteria within the gastrointestinal system, and was used to encapsulate the highly attenuated LVS O-antigen mutant WbtIG191V. Encapsulation with alginate followed by a poly-L-lysine/alginate coating increased survival of WbtIG191V in complement-active serum. In addition, BALB/c mice immunized intraperitoneally with encapsulated WbtIG191V combined with purified LPS survived longer than mock-immunized mice following intranasal challenge. Alginate encapsulation of the bacteria also increased antibody titers compared to non-encapsulated bacteria. These data suggest that alginate encapsulation provides a slow-release vehicle for bacterial deposits, as evidenced by the increased antibody titer and increased persistence in serum compared to freely suspended cells. Survival of mice against high-dose intranasal challenge with the LVS wildtype was similar between mice immunized within alginate capsules or with LVS, possibly due to the low number of animals used, but bacterial loads in the liver and spleen were the lowest in mice immunized with WbtIG191V and LPS in beads. However, an analysis of the immune response of surviving mice indicated that those vaccinated with the alginate vehicle upregulated cell-mediated immune pathways to a lesser extent than LVS-vaccinated mice. In summary, this vehicle, as formulated, may be more effective for pathogens that require predominately antibody-mediated immunity.
Collapse
Affiliation(s)
- Kelly C. Freudenberger Catanzaro
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kevin K. Lahmers
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Thomas J. Inzana
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
- * E-mail:
| |
Collapse
|
2
|
Cummings JE, Slayden KW, Slayden RA. TPR1, a novel rifampicin derivative, demonstrates efficacy alone and in combination with doxycycline against the NIAID Category A priority pathogen Francisella tularensis. JAC Antimicrob Resist 2021; 3:dlab058. [PMID: 34223120 PMCID: PMC8210291 DOI: 10.1093/jacamr/dlab058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Background Francisella tularensis is a highly virulent and contagious Gram-negative intracellular bacterium that causes the disease tularaemia in mammals and is classified as a Category A priority pathogen. Methods We utilized a systematic analysis of antibacterial potency, extent of dissemination by analysis of bacterial burden in a secondary vital organ, and survival rates to assess the efficacy of a novel rifampicin derivative, TPR1. The efficacy of TPR1 was evaluated alone and in combination with the standard of care drug, doxycycline, against type A F. tularensis Schu S4 using a lethal pulmonary model of infection in mice. Results TPR1 has an MIC value range of 0.125–4 mg/L against reference laboratory strain Schu S4 and a panel of clinical strains. TPR1 alone reduced the bacterial burden in the lungs and spleen at 40 mg/kg and 80 mg/kg, and no antagonism was observed when co-administered with doxycycline. Dosing at 40 mg/kg doxycycline reduced the bacterial burden by 1 log10 cfu in the lungs and 4 log10 cfu in the spleen in comparison to untreated controls. Co-administration of TPR1 and doxycycline demonstrated efficacy upon treatment withdrawal after 4 days of treatment, and 100% survival. Conclusions Significantly, TPR1 demonstrated efficacy when delivered alone and in combination with doxycycline, which provides compelling evidence of a superior treatment strategy that would normally rely on a single chemotherapeutic for efficacy. In addition, this work substantiates the use of rifampicin derivatives as a platform for the development of novel treatments to other bacterial agents in addition to tularaemia.
Collapse
Affiliation(s)
- Jason E Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Keaton W Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Clark GC, Essex-Lopresti A, Moore KA, Williamson ED, Lukaszewski R, Paszkiewicz K, David J. Common Host Responses in Murine Aerosol Models of Infection Caused by Highly Virulent Gram-Negative Bacteria from the Genera Burkholderia, Francisella and Yersinia. Pathogens 2019; 8:pathogens8040159. [PMID: 31546628 PMCID: PMC6963870 DOI: 10.3390/pathogens8040159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Highly virulent bacterial pathogens cause acute infections which are exceptionally difficult to treat with conventional antibiotic therapies alone. Understanding the chain of events that are triggered during an infection of a host has the potential to lead to new therapeutic strategies. For the first time, the transcriptomic responses within the lungs of Balb/C mice have been compared during an acute infection with the intracellular pathogens Burkholderia pseudomallei, Francisella tularensis and Yersinia pestis. Temporal changes were determined using RNAseq and a bioinformatics pipeline; expression of protein was also studied from the same sample. Collectively it was found that early transcriptomic responses within the infected host were associated with the (a) slowing down of critical cellular functions, (b) production of circulatory system components, (c) lung tissue integrity, and (d) intracellular regulatory processes. One common molecule was identified, Errfi1 (ErbB receptor feedback inhibitor 1); upregulated in response to all three pathogens and a potential novel marker of acute infection. Based upon the pro-inflammatory responses observed, we sought to synchronise each infection and report that 24 h p.i. of B. pseudomallei infection closely aligned with 48 h p.i. of infection with F. tularensis and Y. pestis. Post-transcriptional modulation of RANTES expression occurred across all pathogens, suggesting that these infections directly or indirectly modulate cell trafficking through chemokine expression/detection. Collectively, this unbiased NGS approach has provided an in-depth characterisation of the host transcriptome following infection with these highly virulent pathogens ultimately aiding in the development of host-directed therapies as adjuncts or alternatives to antibiotic treatment.
Collapse
Affiliation(s)
- Graeme C Clark
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| | - Angela Essex-Lopresti
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| | - Karen A Moore
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - E Diane Williamson
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| | - Roman Lukaszewski
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| | - Konrad Paszkiewicz
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Jonathan David
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| |
Collapse
|
4
|
Detrimental Influence of Alveolar Macrophages on Protective Humoral Immunity during Francisella tularensis SchuS4 Pulmonary Infection. Infect Immun 2018; 86:IAI.00787-17. [PMID: 29311236 DOI: 10.1128/iai.00787-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023] Open
Abstract
Opsonizing antibody is a critical component of the host protective immune response against many respiratory pathogens. However, the role of antibodies in protection against pulmonary infection with highly virulent Francisella tularensis strain SchuS4 is unclear, and the mechanism that allows F. tularensis to evade antibody-mediated bacterial clearance is not fully understood. We have now found that depletion of alveolar macrophages reveals an otherwise cryptic protective effect of opsonizing antibody. While antibody opsonization alone failed to confer any survival benefit against SchuS4 lung infection, significant protection was observed when mice were depleted of alveolar macrophages prior to infection. Blood immune signature analyses and bacterial burden measurements indicated that the treatment regimen blocked establishment of productive, systemic infection. In addition, protection was found to be dependent upon neutrophils. The results show for the first time a protective effect of opsonizing antibodies against highly virulent F. tularensis SchuS4 pulmonary infection through depletion of alveolar macrophages, the primary bacterial reservoir, and prevention of systemic dissemination. These findings have important implications for the potential use of therapeutic antibodies against intracellular pathogens that may escape clearance by residing within mucosal macrophages.
Collapse
|
5
|
Knudson SE, Cummings JE, Bommineni GR, Pan P, Tonge PJ, Slayden RA. Formulation studies of InhA inhibitors and combination therapy to improve efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2016; 101:8-14. [PMID: 27865404 DOI: 10.1016/j.tube.2016.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Previously, structure-based drug design was used to develop substituted diphenyl ethers with potency against the Mycobacterium tuberculosis (Mtb) enoyl-ACP reductase (InhA), however, the highly lipophilic centroid compound, SB-PT004, lacked sufficient efficacy in the acute murine Mtb infection model. A next generation series of compounds were designed with improved specificity, potency against InhA, and reduced cytotoxicity in vitro, but these compounds also had limited solubility. Accordingly, solubility and pharmacokinetics studies were performed to develop formulations for this class and other experimental drug candidates with high logP values often encountered in drug discovery. Lead diphenyl ethers were formulated in co-solvent and Self-Dispersing Lipid Formulations (SDLFs) and evaluated in a rapid murine Mtb infection model that assesses dissemination to and bacterial burden in the spleen. In vitro synergy studies were performed with the lead diphenyl ether compounds, SB-PT070 and SB-PT091, and rifampin (RIF), which demonstrated an additive effect, and that guided the in vivo studies. Combinatorial therapy in vivo studies with these compounds delivered in our Self-Micro Emulsifying Drug Delivery System (SMEDDS) resulted in an additional 1.4 log10 CFU reduction in the spleen of animals co-treated with SB-PT091 and RIF and an additional 1.7 log10 reduction in the spleen with animals treated with both SB-PT070 and RIF.
Collapse
Affiliation(s)
- Susan E Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jason E Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gopal R Bommineni
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Pan Pan
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Peter J Tonge
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Walters KA, Olsufka R, Kuestner RE, Wu X, Wang K, Skerrett SJ, Ozinsky A. Prior infection with Type A Francisella tularensis antagonizes the pulmonary transcriptional response to an aerosolized Toll-like receptor 4 agonist. BMC Genomics 2015; 16:874. [PMID: 26510639 PMCID: PMC4625460 DOI: 10.1186/s12864-015-2022-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
Background Francisella infection attenuates immune cell infiltration and expression of selected pro-inflammatory cytokines in response to endogenous LPS, suggesting the bacteria is actively antagonizing at least some part of the response to Toll-like receptor 4 (TLR4) engagement. The ability of different Francisella strains to inhibit the ability of E. coli LPS to induce a pulmonary inflammatory response, as measured by gene expression profiling, was examined to define the scope of modulation and identify of inflammatory genes/pathways that are specifically antagonized by a virulent F. tularensis infection. Results Prior aerosol exposure to F. tularensis subsp. tularensis, but not the live attenuated strain (LVS) of F. tularensis subsp. holarctica or F. novicida, significantly antagonized the transcriptional response in the lungs of infected mice exposed to aerosolized E. coli LPS. The response to E. coli LPS was not completely inhibited, suggesting that the bacteria is targeting further downstream of the TLR4 molecule. Analysis of the promotors of LPS-responsive genes that were perturbed by Type A Francisella infection identified candidate transcription factors that were potentially modulated by the bacteria, including multiple members of the forkhead transcription factor family (FoxA1, Foxa2, FoxD1, Foxd3, Foxf2, FoxI1, Fox03, Foxq1), IRF1, CEBPA, and Mef2. The annotated functional roles of the affected genes suggested that virulent Francisella infection suppressed cellular processes including mRNA processing, antiviral responses, intracellular trafficking, and regulation of the actin cytoskeleton. Surprisingly, despite the broad overall suppression of LPS-induced genes by virulent Francisella, and contrary to what was anticipated from prior studies, Type A Francisella did not inhibit the expression of the majority of LPS-induced cytokines, nor the expression of many classic annotated inflammatory genes. Conclusions Collectively, this analysis demonstrates clear differences in the ability of different Francisella strains to modulate TLR4 signaling and identifies genes/pathways that are specifically targeted by virulent Type A Francisella. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2022-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Rachael Olsufka
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, 98104, USA.
| | - Rolf E Kuestner
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, 98109, USA.
| | - Xiagang Wu
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, 98109, USA.
| | - Kai Wang
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, 98109, USA.
| | - Shawn J Skerrett
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, 98104, USA.
| | - Adrian Ozinsky
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, 98109, USA.
| |
Collapse
|
7
|
Hill TM, Gilchuk P, Cicek BB, Osina MA, Boyd KL, Durrant DM, Metzger DW, Khanna KM, Joyce S. Border Patrol Gone Awry: Lung NKT Cell Activation by Francisella tularensis Exacerbates Tularemia-Like Disease. PLoS Pathog 2015; 11:e1004975. [PMID: 26068662 PMCID: PMC4465904 DOI: 10.1371/journal.ppat.1004975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022] Open
Abstract
The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia—because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice. NKT cells are innate-like lymphocytes with a demonstrated role in a wide range of diseases. Often cited for their ability to rapidly produce a variety of cytokines upon activation, they have long been appreciated for their ability to “jump-start” the immune system and to shape the quality of both the innate and adaptive response. This understanding of their function has been deduced from in vitro experiments or through the in vivo administration of highly potent, chemically synthesized lipid ligands, which may not necessarily reflect a physiologically relevant response as observed in a natural infection. Using a mouse model of pulmonary tularemia, we report that intranasal infection with the live vaccine strain of F. tularensis rapidly activates NKT cells and promotes systemic inflammation, increased tissue damage, and a dysregulated immune response resulting in increased morbidity and mortality in infected mice. Our data highlight the detrimental effects of NKT cell activation and identify a potential new target for therapies against pulmonary tularemia.
Collapse
Affiliation(s)
- Timothy M. Hill
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Basak B. Cicek
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Maria A. Osina
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kelli L. Boyd
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Douglas M. Durrant
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dennis W. Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Kamal M. Khanna
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sebastian Joyce
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
Interleukin-17 protects against the Francisella tularensis live vaccine strain but not against a virulent F. tularensis type A strain. Infect Immun 2013; 81:3099-105. [PMID: 23774604 DOI: 10.1128/iai.00203-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes the zoonotic infection tularemia. While much literature exists on the host response to F. tularensis infection, the vast majority of work has been conducted using attenuated strains of Francisella that do not cause disease in humans. However, emerging data indicate that the protective immune response against attenuated F. tularensis versus F. tularensis type A differs. Several groups have recently reported that interleukin-17 (IL-17) confers protection against the live vaccine strain (LVS) of Francisella. While we too have found that IL-17Rα(-/-) mice are more susceptible to F. tularensis LVS infection, our studies, using a virulent type A strain of F. tularensis (SchuS4), indicate that IL-17Rα(-/-) mice display organ burdens and pulmonary gamma interferon (IFN-γ) responses similar to those of wild-type mice following infection. In addition, oral LVS vaccination conferred equivalent protection against pulmonary challenge with SchuS4 in both IL-17Rα(-/-) and wild-type mice. While IFN-γ was found to be critically important for survival in a convalescent model of SchuS4 infection, IL-17 neutralization from either wild-type or IFN-γ(-/-) mice had no effect on morbidity or mortality in this model. IL-17 protein levels were also higher in the lungs of mice infected with the LVS rather than F. tularensis type A, while IL-23p19 mRNA expression was found to be caspase-1 dependent in macrophages infected with LVS but not SchuS4. Collectively, these results demonstrate that IL-17 is dispensable for host immunity to type A F. tularensis infection, and that induced and protective immunity differs between attenuated and virulent strains of F. tularensis.
Collapse
|
9
|
Walters KA, Olsufka R, Kuestner RE, Cho JH, Li H, Zornetzer GA, Wang K, Skerrett SJ, Ozinsky A. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses. PLoS One 2013; 8:e62412. [PMID: 23690939 PMCID: PMC3653966 DOI: 10.1371/journal.pone.0062412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4). Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis) and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa) pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.
Collapse
|
10
|
Schenkel AR, Kingry LC, Slayden RA. The ly49 gene family. A brief guide to the nomenclature, genetics, and role in intracellular infection. Front Immunol 2013; 4:90. [PMID: 23596445 PMCID: PMC3627126 DOI: 10.3389/fimmu.2013.00090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/04/2013] [Indexed: 12/19/2022] Open
Abstract
Understanding the Ly49 gene family can be challenging in terms of nomenclature and genetic organization. The Ly49 gene family has two major gene nomenclature systems, Ly49 and Killer Cell Lectin-like Receptor subfamily A (klra). Mice from different strains have varying numbers of these genes with strain specific allelic variants, duplications, deletions, and pseudogene sequences. Some members activate NK lymphocytes, invariant NKT (iNKT) lymphocytes and γδ T lymphocytes while others inhibit killing activity. One family member, Ly49Q, is expressed only on myeloid cells and is not found on NK, iNKT, or γδ T cells. There is growing evidence that these receptors may regulate not just the immune response to viruses, but other intracellular pathogens as well. Thus, this review’s primary goal is to provide a guide for researchers first encountering the Ly49 gene family and a foundation for future studies on the role that these gene products play in the immune response, particularly the response to intracellular viral and bacterial pathogens.
Collapse
Affiliation(s)
- Alan Rowe Schenkel
- Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins, CO, USA
| | | | | |
Collapse
|
11
|
Kurtz SL, Foreman O, Bosio CM, Anver MR, Elkins KL. Interleukin-6 is essential for primary resistance to Francisella tularensis live vaccine strain infection. Infect Immun 2013; 81:585-97. [PMID: 23230288 PMCID: PMC3553820 DOI: 10.1128/iai.01249-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/03/2012] [Indexed: 11/20/2022] Open
Abstract
We employed Francisella tularensis live vaccine strain (LVS) to study mechanisms of protective immunity against intracellular pathogens and, specifically, to understand protective correlates. One potential molecular correlate identified previously was interleukin-6 (IL-6), a cytokine with pleotropic roles in immunity, including influences on T and B cell functions. Given its role as an immune modulator and the correlation with successful anti-LVS vaccination, we examined the role IL-6 plays in the host response to LVS. IL-6-deficient (IL-6 knockout [KO]) mice infected with LVS intradermally or intranasally or anti-IL-6-treated mice, showed greatly reduced 50% lethal doses compared to wild-type (WT) mice. Increased susceptibility was not due to altered splenic immune cell populations during infection or decreased serum antibody production, as IL-6 KO mice had similar compositions of each compared to WT mice. Although LVS-infected IL-6 KO mice produced much less serum amyloid A and haptoglobin (two acute-phase proteins) than WT mice, there were no other obvious pathophysiological differences between LVS-infected WT and IL-6 KO mice. IL-6 KO or WT mice that survived primary LVS infection also survived a high-dose LVS secondary challenge. Using an in vitro overlay assay that measured T cell activation, cytokine production, and abilities of primed splenocytes to control intracellular LVS growth, we found that IL-6 KO total splenocytes or purified T cells were slightly defective in controlling intracellular LVS growth but were equivalent in cytokine production. Taken together, IL-6 is an integral part of a successful immune response to primary LVS infection, but its exact role in precipitating adaptive immunity remains elusive.
Collapse
Affiliation(s)
- Sherry L. Kurtz
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Oded Foreman
- The Jackson Laboratory, Sacramento, California, USA
| | - Catharine M. Bosio
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Miriam R. Anver
- Pathology/Histotechnology Laboratory, SAIC—Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Karen L. Elkins
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland, USA
| |
Collapse
|
12
|
The Francisella tularensis FabI enoyl-acyl carrier protein reductase gene is essential to bacterial viability and is expressed during infection. J Bacteriol 2012; 195:351-8. [PMID: 23144254 DOI: 10.1128/jb.01957-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is classified as a category A priority pathogen and causes fatal disseminated disease in humans upon inhalation of less than 50 bacteria. Although drugs are available for treatment, they are not ideal because of toxicity and route of delivery, and in some cases patients relapse upon withdrawal. We have an ongoing program to develop novel FAS-II FabI enoyl-ACP reductase enzyme inhibitors for Francisella and other select agents. To establish F. tularensis FabI (FtFabI) as a clinically relevant drug target, we demonstrated that fatty acid biosynthesis and FabI activity are essential for growth even in the presence of exogenous long-chain lipids and that FtfabI is not transcriptionally altered in the presence of exogenous long-chain lipids. Inhibition of FtFabI or fatty acid synthesis results in loss of viability that is not rescued by exogenous long-chain lipid supplementation. Importantly, whole-genome transcriptional profiling of F. tularensis with DNA microarrays from infected tissues revealed that FtfabI and de novo fatty acid biosynthetic genes are transcriptionally active during infection. This is the first demonstration that the FabI enoyl-ACP-reductase enzyme encoded by F. tularensis is essential and not bypassed by exogenous fatty acids and that de novo fatty acid biosynthetic components encoded in F. tularensis are transcriptionally active during infection in the mouse model of tularemia.
Collapse
|
13
|
Skyberg JA, Rollins MF, Holderness JS, Marlenee NL, Schepetkin IA, Goodyear A, Dow SW, Jutila MA, Pascual DW. Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections. PLoS Pathog 2012; 8:e1002587. [PMID: 22438809 PMCID: PMC3305411 DOI: 10.1371/journal.ppat.1002587] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/30/2012] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|