1
|
Sinton MC, Kajimura S. From fat storage to immune hubs: the emerging role of adipocytes in coordinating the immune response to infection. FEBS J 2025; 292:1868-1883. [PMID: 39428707 PMCID: PMC12001177 DOI: 10.1111/febs.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Adipose tissue is a rich source of diverse cell populations, including immune cells, adipocytes and stromal cells. Interactions between these different cell types are now appreciated to be critical for maintaining tissue structure and function, by governing processes such as adipogenesis, lipolysis and differentiation of white to beige adipocytes. Interactions between these cells also drive inflammation in obesity, leading to an expansion of adipose tissue immune cells, and the secretion of proinflammatory cytokines from immune cells and from adipocytes themselves. However, in evolutionary terms, obesity is a recent phenomenon, raising the question of why adipocytes evolved to express factors that influence the immune response. Studies of various pathogens indicate that adipocytes are highly responsive to infection, altering their metabolic profiles in a way that can be used to release nutrients and fuel the immune response. In the case of infection with the extracellular parasite Trypanosoma brucei, attenuating the ability of adipocytes to sense the cytokine IL-17 results in a loss of control of the local immune response and an increased pathogen load. Intriguingly, comparisons of the adipocyte response to infection suggest that the immune responses of these cells occur in a pathogen-dependent manner, further confirming their complexity. Here, with a focus on murine adipose tissue, we discuss the emerging concept that, in addition to their canonical function, adipocytes are immune signalling hubs that integrate and disseminate signals from the immune system to generate a local environment conducive to pathogen clearance.
Collapse
Affiliation(s)
- Matthew C. Sinton
- Division of Immunology, Immunity to Infection and Respiratory MedicineUniversity of ManchesterUK
- Lydia Becker Institute of Immunology and InflammationUniversity of ManchesterUK
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
2
|
Arya R, Jit BP, Kumar V, Kim JJ. Exploring the Potential of Exosomes as Biomarkers in Tuberculosis and Other Diseases. Int J Mol Sci 2024; 25:2885. [PMID: 38474139 DOI: 10.3390/ijms25052885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Tuberculosis (TB) is a major cause of morbidity and mortality and remains an important public health issue in developing countries worldwide. The existing methods and techniques available for the diagnosis of TB are based on combinations of laboratory (chemical and biological), radiological, and clinical tests. These methods are sophisticated and laborious and have limitations in terms of sensitivity, specificity, and accuracy. Clinical settings need improved diagnostic biomarkers to accurately detect biological changes due to pathogen invasion and pharmacological responses. Exosomes are membrane-bound vesicles and mediators of intercellular signaling processes that play a significant role in the pathogenesis of various diseases, such as tuberculosis, and can act as promising biomarkers for the monitoring of TB infection. Compared to conventional biomarkers, exosome-derived biomarkers are advantageous because they are easier to detect in different biofluids, are more sensitive and specific, and may be useful in tracking patients' reactions to therapy. This review provides insights into the types of biomarkers, methods of exosome isolation, and roles of the cargo (proteins) present in exosomes isolated from patients through omics studies, such as proteomics. These findings will aid in developing new prognostic and diagnostic biomarkers and could lead to the identification of new therapeutic targets in the clinical setting.
Collapse
Affiliation(s)
- Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Zhu C, Dong J, Duan Y, Jia H, Zhang L, Xing A, Du B, Sun Q, Huang Y, Zhang Z, Pan L, Li Z. Comparative analysis of genomic characteristics and immune response between Mycobacterium tuberculosis strains cultured continuously for 25 years and H37Rv. Pathog Dis 2024; 82:ftae014. [PMID: 38845379 PMCID: PMC11187990 DOI: 10.1093/femspd/ftae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Tuberculosis (TB) continues to pose a significant global health challenge, emphasizing the critical need for effective preventive measures. Although many studies have tried to develop new attenuated vaccines, there is no effective TB vaccine. In this study, we report a novel attenuated Mycobacterium tuberculosis (M. tb) strain, CHVAC-25, cultured continuously for 25 years in the laboratory. CHVAC-25 exhibited significantly reduced virulence compared to both the virulent H37Rv strain in C57BL/6J and severe combined immunodeficiency disease mice. The comparative genomic analysis identified 93 potential absent genomic segments and 65 single nucleotide polymorphic sites across 47 coding genes. Notably, the deletion mutation of ppsC (Rv2933) involved in phthiocerol dimycocerosate synthesis likely contributes to CHVAC-25 virulence attenuation. Furthermore, the comparative analysis of immune responses between H37Rv- and CHVAC-25-infected macrophages showed that CHVAC-25 triggered a robust upregulation of 173 genes, particularly cytokines crucial for combating M. tb infection. Additionally, the survival of CHVAC-25 was significantly reduced compared to H37Rv in macrophages. These findings reiterate the possibility of obtaining attenuated M. tb strains through prolonged laboratory cultivation, echoing the initial conception of H37Ra nearly a century ago. Additionally, the similarity of CHVAC-25 to genotypes associated with attenuated M. tb vaccine positions it as a promising candidate for TB vaccine development.
Collapse
Affiliation(s)
- Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jing Dong
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yuheng Duan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Hongyan Jia
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Lanyue Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Aiying Xing
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Boping Du
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Qi Sun
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yinxia Huang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zihui Li
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
4
|
Pesce Viglietti AI, Giambartolomei GH, Quarleri J, Delpino MV. Brucella abortus Infection Modulates 3T3-L1 Adipocyte Inflammatory Response and Inhibits Adipogenesis. Front Endocrinol (Lausanne) 2020; 11:585923. [PMID: 33071987 PMCID: PMC7531218 DOI: 10.3389/fendo.2020.585923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a prevalent global zoonotic infection but has far more impact in developing countries. The adipocytes are the most abundant cell type of adipose tissue and their secreted factors play an important role in several aspects of the innate and adaptive immune response. Here, we demonstrated the ability of Brucella abortus to infect and replicate in both adipocytes and its precursor cells (pre-adipocytes) derived from 3T3-L1 cell line. Additionally, infection of pre-adipocytes also inhibited adipogenesis in a mechanism independent of bacterial viability and dependent on lipidated outer membrane protein (L-Omp19). B. abortus infection was able to modulate the secretion of IL-6 and the matrix metalloproteases (MMPs) -2 and-9 in pre-adipocytes and adipocytes, and also modulated de transcription of adiponectin, leptin, and resistin in differentiated adipocytes. B. abortus-infected macrophages also modulate adipocyte differentiation involving a TNF-α dependent mechanism, thus suggesting a plausible interplay between B. abortus, adipocytes, and macrophages. In conclusion, B. abortus is able to alter adipogenesis process in adipocytes and its precursors directly after their infection, or merely their exposure to the B. abortus lipoproteins, and indirectly through soluble factors released by B. abortus-infected macrophages.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Li Y, Chen H, Li S, Li Y, Liu G, Bai J, Luo H, Lan X, He Z. LncSSBP1 Functions as a Negative Regulator of IL-6 Through Interaction With hnRNPK in Bronchial Epithelial Cells Infected With Talaromyces marneffei. Front Immunol 2020; 10:2977. [PMID: 31998294 PMCID: PMC6966331 DOI: 10.3389/fimmu.2019.02977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Talaromyces marneffei (TM) is an important opportunistic pathogenic fungus capable of causing disseminated lethal infection. In our previous study, we identified host lncRNAs and mRNAs that are dysregulated in TM-infected bronchial epithelial cells. In this report, we verified that IL-6, a key factor in acute inflammatory response, is down-regulated in TM pathogenesis. To elucidate the mechanism of IL-6 regulation, we analyzed the coding/non-coding network, and identified lncSSBP1, a novel lncRNA that is up-regulated by TM. Our results demonstrate that overexpression of lncSSBP1 decreases IL-6 mRNA expression, whereas knockdown of lncSSBP1 enhances IL-6 mRNA expression. Though lncSSBP1 is primarily localized to the nucleus, bioinformatics analysis suggests that it is unlikely to function as competing endogenous RNA or to interact with IL-6 transcription factors. Instead, RNA pull down and RNA immunoprecipitation assays showed that lncSSBP1 binds specifically to heterogenous nuclear ribonucleoprotein K (hnRNPK), which is involved in IL-6 mRNA processing. Our findings suggest that lncSSBP1 may affect IL-6 mRNA expression during TM infection through interaction with hnRNPk in bronchial epithelial cells. Our results suggest a novel pathway by which TM may suppress the immune response to its advantage.
Collapse
Affiliation(s)
- Yinghua Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huan Chen
- Department of Pulmonary and Critical Care Medicine, Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Shuyi Li
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine Research, Guangxi Medical University, Nanning, China
| | - Yu Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangnan Liu
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Honglin Luo
- School of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine Research, Guangxi Medical University, Nanning, China
| | - Zhiyi He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Barron MM, Shaw KM, Bullard KM, Ali MK, Magee MJ. Diabetes is associated with increased prevalence of latent tuberculosis infection: Findings from the National Health and Nutrition Examination Survey, 2011-2012. Diabetes Res Clin Pract 2018; 139:366-379. [PMID: 29574108 DOI: 10.1016/j.diabres.2018.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 01/08/2023]
Abstract
AIMS We aim to determine the association between prediabetes and diabetes with latent TB using National Health and Nutrition Examination Survey data. METHODS We performed a cross-sectional analysis of 2011-2012 National Health and Nutrition Examination Survey data. Participants ≥20 years were eligible. Diabetes was defined by glycated hemoglobin (HbA1c) as no diabetes (≤5.6% [38 mmol/mol]), prediabetes (5.7-6.4% [39-46 mmol/mol]), and diabetes (≥6.5% [48 mmol/mol]) combined with self-reported diabetes. Latent TB infection was defined by the QuantiFERON®-TB Gold In Tube (QFT-GIT) test. Adjusted odds ratios (aOR) of latent TB infection by diabetes status were calculated using logistic regression and accounted for the stratified probability sample. RESULTS Diabetes and QFT-GIT measurements were available for 4958 (89.2%) included participants. Prevalence of diabetes was 11.4% (95%CI 9.8-13.0%) and 22.1% (95%CI 20.5-23.8%) had prediabetes. Prevalence of latent TB infection was 5.9% (95%CI 4.9-7.0%). After adjusting for age, sex, smoking status, history of active TB, and foreign born status, the odds of latent TB infection were greater among adults with diabetes (aOR 1.90, 95%CI 1.15-3.14) compared to those without diabetes. The odds of latent TB in adults with prediabetes (aOR 1.15, 95%CI 0.90-1.47) was similar to those without diabetes. CONCLUSIONS Diabetes is associated with latent TB infection among adults in the United States, even after adjusting for confounding factors. Given diabetes increases the risk of active TB, patients with co-prevalent diabetes and latent TB may be targeted for latent TB treatment.
Collapse
Affiliation(s)
- Marissa M Barron
- Division of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Kate M Shaw
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mohammed K Ali
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Matthew J Magee
- Division of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Ayyappan JP, Vinnard C, Subbian S, Nagajyothi JF. Effect of Mycobacterium tuberculosis infection on adipocyte physiology. Microbes Infect 2017; 20:81-88. [PMID: 29109018 DOI: 10.1016/j.micinf.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) remains as a major threat to human health worldwide despite of the availability of standardized antibiotic therapy. One of the characteristic of pathogenic Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis is its ability to persist in the host in a dormant state and develop latent infection without clinical signs of active disease. However, the mechanisms involved in bacterial persistence and the establishment of latency is not well understood. Adipose tissue is emerging as an important niche that favors actively replicating as well as dormant Mtb during acute and latent infection. This also suggests that Mtb can disseminate from the lungs to adipose tissue during aerosol infection and/or from adipose tissue to lungs during reactivation of latent infection. In this study, we report the interplay between key adipokine levels and the dynamics of Mtb pathogenesis in the lungs and adipose tissue using a rabbit model of pulmonary infection with two clinical isolates that produce divergent outcome in disease progression. Results show that markers of adipocyte physiology and function were significantly altered during Mtb infection and distinct patterns of adipokine expression were noted between adipose tissue and the lungs. Moreover, these markers were differentially expressed between active disease and latent infection. Thus, this study highlights the importance of targeting adipocyte function as potential target for developing better TB intervention strategies.
Collapse
Affiliation(s)
- Janeesh Plakkal Ayyappan
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, Newark, USA
| | - Christopher Vinnard
- Department of Medicine, Public Health Research Institute, New Jersey Medical School, Newark, USA
| | - Selvakumar Subbian
- Department of Medicine, Public Health Research Institute, New Jersey Medical School, Newark, USA.
| | - Jyothi F Nagajyothi
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, Newark, USA.
| |
Collapse
|
8
|
Beigier-Bompadre M, Montagna GN, Kühl AA, Lozza L, Weiner J, Kupz A, Vogelzang A, Mollenkopf HJ, Löwe D, Bandermann S, Dorhoi A, Brinkmann V, Matuschewski K, Kaufmann SHE. Mycobacterium tuberculosis infection modulates adipose tissue biology. PLoS Pathog 2017; 13:e1006676. [PMID: 29040326 PMCID: PMC5695609 DOI: 10.1371/journal.ppat.1006676] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/02/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue. In 2015, tuberculosis (TB) affected 10.4 million individuals causing 1.8 million deaths per year. Yet, a much larger group– 2 billion people–harbors latent TB infection (LTBI) without clinical symptoms, but at lifelong risk of reactivation. The physiological niches of Mycobacterium tuberculosis (Mtb) persistence remain incompletely defined and both pulmonary and extrapulmonary sites have been proposed. Adipose tissue constitutes 15–25% of total body mass and is an active production site for hormones and inflammatory mediators. The increasing prevalence of obesity, has led to greater incidence of type 2 diabetes. These patients suffer from three times higher risk of developing TB, pointing to a potential link between adipose tissue and TB pathogenesis. In individuals with LTBI, Mtb survives in a stressed, non-replicating state with low metabolic activity and resting macrophages serve as preferred habitat and become effectors after appropriate stimulation. Here we demonstrate that Mtb can infect and persist within adipocytes where it upregulates stress-related genes. In vivo, relative proportions of leukocyte subsets infiltrating adipose tissue varied under different conditions of infection. During natural aerosol Mtb infection, distinct leukocyte subsets, including mononuclear phagocytes, Mtb-specific CD8+ T cells and NK cells infiltrated adipose tissue and became activated. Thus, our study shows that adipose tissue is not only a potential reservoir for this pathogen but also undergoes significant alteration during TB infection.
Collapse
Affiliation(s)
| | | | - Anja A. Kühl
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité - University Medicine, Berlin, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Andreas Kupz
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alexis Vogelzang
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Delia Löwe
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Silke Bandermann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
9
|
Bouzid F, Brégeon F, Poncin I, Weber P, Drancourt M, Canaan S. Mycobacterium canettii Infection of Adipose Tissues. Front Cell Infect Microbiol 2017; 7:189. [PMID: 28567368 PMCID: PMC5434109 DOI: 10.3389/fcimb.2017.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 01/17/2023] Open
Abstract
Adipose tissues were shown to host Mycobacterium tuberculosis which is persisting inside mature adipocytes. It remains unknown whether this holds true for Mycobacterium canettii, a rare representative of the M. tuberculosis complex responsible for lymphatic and pulmonary tuberculosis. Here, we infected primary murine white and brown pre-adipocytes and murine 3T3-L1 pre-adipocytes and mature adipocytes with M. canettii and M. tuberculosis as a positive control. Both mycobacteria were able to infect 18–22% of challenged primary murine pre-adipocytes; and to replicate within these cells during a 7-day experiment with the intracellular inoculums being significantly higher in brown than in white pre-adipocytes for M. canettii (p = 0.02) and M. tuberculosis (p = 0.03). Further in-vitro infection of 3T3-L1 mature adipocytes yielded 9% of infected cells by M. canettii and 17% of infected cells by M. tuberculosis (p = 0.001). Interestingly, M. canettii replicated and accumulated intra-cytosolic lipid inclusions within mature adipocytes over a 12-day experiment; while M. tuberculosis stopped replicating at day 3 post-infection. These results indicate that brown pre-adipocytes could be one of the potential targets for M. tuberculosis complex mycobacteria; and illustrate differential outcome of M. tuberculosis complex mycobacteria into adipose tissues. While white adipose tissue is an unlikely sanctuary for M. canettii, it is still an open question whether M. canettii and M. tuberculosis could persist in brown adipose tissues.
Collapse
Affiliation(s)
- Fériel Bouzid
- Aix-Marseille Université, CNRS, EIPL IMM FR3479Marseille, France.,Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée InfectionMarseille, France
| | - Fabienne Brégeon
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée InfectionMarseille, France.,Service des Explorations Fonctionnelles Respiratoires, Centre Hospitalo-Universitaire Nord, Pôle Cardio-Vasculaire et Thoracique, Assistance Publique Hôpitaux de MarseilleMarseille, France
| | - Isabelle Poncin
- Aix-Marseille Université, CNRS, EIPL IMM FR3479Marseille, France
| | - Pascal Weber
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée InfectionMarseille, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée InfectionMarseille, France
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, EIPL IMM FR3479Marseille, France
| |
Collapse
|
10
|
Santucci P, Bouzid F, Smichi N, Poncin I, Kremer L, De Chastellier C, Drancourt M, Canaan S. Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis. Front Cell Infect Microbiol 2016; 6:122. [PMID: 27774438 PMCID: PMC5054039 DOI: 10.3389/fcimb.2016.00122] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022] Open
Abstract
Despite a slight decline since 2014, tuberculosis (TB) remains the major deadly infectious disease worldwide with about 1.5 million deaths each year and with about one-third of the population being latently infected with Mycobacterium tuberculosis, the etiologic agent of TB. During primo-infection, the recruitment of immune cells leads to the formation of highly organized granulomas. Among the different cells, one outstanding subpopulation is the foamy macrophage (FM), characterized by the abundance of triacylglycerol-rich lipid bodies (LB). M. tuberculosis can reside in FM, where it acquires, from host LB, the neutral lipids which are subsequently processed and stored by the bacilli in the form of intracytosolic lipid inclusions (ILI). Although host LB can be viewed as a reservoir of nutrients for the pathogen during latency, the molecular mechanisms whereby intraphagosomal mycobacteria interact with LB and assimilate the LB-derived lipids are only beginning to be understood. Past studies have emphasized that these physiological processes are critical to the M. tuberculosis infectious-life cycle, for propagation of the infection, establishment of the dormancy state and reactivation of the disease. In recent years, several animal and cellular models have been developed with the aim of dissecting these complex processes and of determining the nature and contribution of their key players. Herein, we review some of the in vitro and in vivo models which allowed to gain significant insight into lipid accumulation and consumption in M. tuberculosis, two important events that are directly linked to pathogenicity, granuloma formation/maintenance and survival of the tubercle bacillus under non-replicative conditions. We also discuss the advantages and limitations of each model, hoping that this will serve as a guide for future investigations dedicated to persistence and innovative therapeutic approaches against TB.
Collapse
Affiliation(s)
- Pierre Santucci
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Feriel Bouzid
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPLMarseille, France; Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, URMITEMarseille, France
| | - Nabil Smichi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPLMarseille, France; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique FRE3689, Université de MontpellierMontpellier, France
| | - Isabelle Poncin
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Laurent Kremer
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique FRE3689, Université de MontpellierMontpellier, France; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Institut National de la Santé et de la Recherche MédicaleMontpellier, France
| | - Chantal De Chastellier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, URMITE Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| |
Collapse
|
11
|
Inafuku M, Matsuzaki G, Oku H. Intravenous Mycobacterium Bovis Bacillus Calmette-Guérin Ameliorates Nonalcoholic Fatty Liver Disease in Obese, Diabetic ob/ob Mice. PLoS One 2015; 10:e0128676. [PMID: 26039731 PMCID: PMC4454685 DOI: 10.1371/journal.pone.0128676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
Inflammation and immune response profoundly influence metabolic syndrome and fatty acid metabolism. To analyze influence of systemic inflammatory response to metabolic syndrome, we inoculated an attenuated vaccine strain of Mycobacterium bovis Bacillus Calmette–Guérin (BCG) into leptin-deficient ob/ob mice. BCG administration significantly decreased epididymal white adipose tissue weight, serum insulin levels, and a homeostasis model assessment of insulin resistance. Serum high molecular weight (HMW) adiponectin level and HMW/total adiponectin ratio of the BCG treated mice were significantly higher than those of control mice. Hepatic triglyceride accumulation and macrovesicular steatosis were markedly alleviated, and the enzymatic activities and mRNA levels of lipogenic-related genes in liver were significantly decreased in the BCG injected mice. We also exposed human hepatocellular carcinoma HepG2 cells to high levels of palmitate, which enhanced endoplasmic reticulum stress-related gene expression and impaired insulin-stimulated Akt phosphorylation (Ser473). BCG treatment ameliorated both of these detrimental events. The present study therefore suggested that BCG administration suppressed development of nonalcoholic fatty liver disease, at least partly, by alleviating fatty acid-induced insulin resistance in the liver.
Collapse
Affiliation(s)
- Masashi Inafuku
- Department of Tropical Bio-resources, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- * E-mail:
| | - Goro Matsuzaki
- Department of Infectious Diseases, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hirosuke Oku
- Department of Tropical Bio-resources, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
12
|
Mycobacterium tuberculosis
infection of the ‘non‐classical immune cell’. Immunol Cell Biol 2015; 93:789-95. [PMID: 25801479 DOI: 10.1038/icb.2015.43] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/02/2015] [Accepted: 03/18/2015] [Indexed: 01/29/2023]
|
13
|
Agarwal P, Khan SR, Verma SC, Beg M, Singh K, Mitra K, Gaikwad AN, Akhtar MS, Krishnan MY. Mycobacterium tuberculosis persistence in various adipose depots of infected mice and the effect of anti-tubercular therapy. Microbes Infect 2014; 16:571-80. [PMID: 24819214 DOI: 10.1016/j.micinf.2014.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/13/2014] [Accepted: 04/28/2014] [Indexed: 11/16/2022]
Abstract
The adipocytes are one of the non-professional phagocytes postulated to be a haven for Mycobacterium tuberculosis during persistence in the human host. The adipocyte - M. tuberculosis interaction data available to date are ex vivo. The present study was primarily aimed to investigate M. tuberculosis infection of adipocytes in course of infection of mouse model. Using primary murine adipocytes, the study first confirmed the infection and immunomodulation of natural adipocytes by M. tuberculosis. The bacilli could be isolated form visceral, subcutaneous, peri renal and mesenteric adipose depots of immunocompetent mice infected with M. tuberculosis intravenously. The bacilli could be isolated from adipocytes and the stromal vascular fraction, even though the numbers were significantly higher in the latter. The bacterial burden in the adipose depots was comparable to those in lungs in the early phase of infection. But with time, the burden in the adipose depots was either decreased or kept under control, despite the increasing burden in the lungs. Infected mice treated with standard anti tubercular drugs, despite effective elimination of bacterial loads in the lungs, continued to harbour M. tuberculosis in adipose depots at loads similar to untreated mice in the late infection phase.
Collapse
Affiliation(s)
- Pooja Agarwal
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Shaheb R Khan
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Subash C Verma
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Kavita Singh
- Electron Microscopy Lab, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Kalyan Mitra
- Electron Microscopy Lab, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Md Sohail Akhtar
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Manju Y Krishnan
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India.
| |
Collapse
|
14
|
Gautam US, Mehra S, Ahsan MH, Alvarez X, Niu T, Kaushal D. Role of TNF in the altered interaction of dormant Mycobacterium tuberculosis with host macrophages. PLoS One 2014; 9:e95220. [PMID: 24743303 PMCID: PMC3990579 DOI: 10.1371/journal.pone.0095220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) persists within lung granulomas, despite being subjected to diverse stress conditions, including hypoxia. We hypothesized that the response of host phagocytes to Mtb experiencing hypoxia is radically altered and designed in vitro experiment to study this phenomenon. Hypoxia-stressed (Mtb-H) and aerobically grown Mtb (Mtb-A) were used to infect Rhesus Macaque Bone Marrow Derived Macrophages (Rh-BMDMs) and the comparative host response to Mtb infection studied. Mechanistic insights were gained by employing RNAi. Mtb-H accumulated significantly lower bacterial burden during growth in Rh-BMDMs, concomitantly generating a drastically different host transcriptional profile (with only <2% of all genes perturbed by either infection being shared between the two groups). A key component of this signature was significantly higher TNF and apopotosis in Mtb-H- compared to Mtb-A-infected Rh-BMDMs. Silencing of TNF by RNAi reversed the significant control of Mtb replication. These results indicate a potential mechanism for the rapid clearance of hypoxia-conditioned bacilli by phagocytes. In conclusion, hypoxia-conditioned Mtb undergo significantly different interactions with host macrophages compared to Mtb grown in normoxia. These interactions result in the induction of the TNF signaling pathway, activation of apoptosis, and DNA-damage stress response. Our results show that Mtb-H bacilli are particularly susceptible to killing governed by TNF.
Collapse
Affiliation(s)
- Uma S. Gautam
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Smriti Mehra
- Department of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Muhammad H. Ahsan
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xavier Alvarez
- Department of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
Carow B, Reuschl AK, Gavier-Widén D, Jenkins BJ, Ernst M, Yoshimura A, Chambers BJ, Rottenberg ME. Critical and independent role for SOCS3 in either myeloid or T cells in resistance to Mycobacterium tuberculosis. PLoS Pathog 2013; 9:e1003442. [PMID: 23853585 PMCID: PMC3701707 DOI: 10.1371/journal.ppat.1003442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/06/2013] [Indexed: 02/05/2023] Open
Abstract
Suppressor of cytokine signalling 3 (SOCS3) negatively regulates STAT3 activation in response to several cytokines such as those in the gp130-containing IL-6 receptor family. Thus, SOCS3 may play a major role in immune responses to pathogens. In the present study, the role of SOCS3 in M. tuberculosis infection was examined. All Socs3(fl/fl) LysM cre, Socs3(fl/fl) lck cre (with SOCS3-deficient myeloid and lymphoid cells, respectively) and gp130(F/F) mice, with a mutation in gp130 that impedes binding to SOCS3, showed increased susceptibility to infection with M. tuberculosis. SOCS3 binding to gp130 in myeloid cells conveyed resistance to M. tuberculosis infection via the regulation of IL-6/STAT3 signalling. SOCS3 was redundant for mycobacterial control by macrophages in vitro. Instead, SOCS3 expression in infected macrophages and DCs prevented the IL-6-mediated inhibition of TNF and IL-12 secretion and contributed to a timely CD4+ cell-dependent IFN-γ expression in vivo. In T cells, SOCS3 expression was essential for a gp130-independent control of infection with M. tuberculosis, but was neither required for the control of infection with attenuated M. bovis BCG nor for M. tuberculosis in BCG-vaccinated mice. Socs3(fl/fl) lck cre mice showed an increased frequency of γδ+ T cells in different organs and an enhanced secretion of IL-17 by γδ+ T cells in response to infection. Socs3(fl/fl) lck cre γδ+ T cells impaired the control of infection with M. tuberculosis. Thus, SOCS3 expression in either lymphoid or myeloid cells is essential for resistance against M. tuberculosis via discrete mechanisms.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Kathrin Reuschl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Dolores Gavier-Widén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences and National Veterinary Institute, Uppsala, Sweden
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Matthias Ernst
- Cell Signaling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | | | - Martin E. Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Bengmark S. Gut microbiota, immune development and function. Pharmacol Res 2012; 69:87-113. [PMID: 22989504 DOI: 10.1016/j.phrs.2012.09.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/01/2012] [Indexed: 02/08/2023]
Abstract
The microbiota of Westerners is significantly reduced in comparison to rural individuals living a similar lifestyle to our Paleolithic forefathers but also to that of other free-living primates such as the chimpanzee. The great majority of ingredients in the industrially produced foods consumed in the West are absorbed in the upper part of small intestine and thus of limited benefit to the microbiota. Lack of proper nutrition for microbiota is a major factor under-pinning dysfunctional microbiota, dysbiosis, chronically elevated inflammation, and the production and leakage of endotoxins through the various tissue barriers. Furthermore, the over-comsumption of insulinogenic foods and proteotoxins, such as advanced glycation and lipoxidation molecules, gluten and zein, and a reduced intake of fruit and vegetables, are key factors behind the commonly observed elevated inflammation and the endemic of obesity and chronic diseases, factors which are also likely to be detrimental to microbiota. As a consequence of this lifestyle and the associated eating habits, most barriers, including the gut, the airways, the skin, the oral cavity, the vagina, the placenta, the blood-brain barrier, etc., are increasingly permeable. Attempts to recondition these barriers through the use of so called 'probiotics', normally applied to the gut, are rarely successful, and sometimes fail, as they are usually applied as adjunctive treatments, e.g. in parallel with heavy pharmaceutical treatment, not rarely consisting in antibiotics and chemotherapy. It is increasingly observed that the majority of pharmaceutical drugs, even those believed to have minimal adverse effects, such as proton pump inhibitors and anti-hypertensives, in fact adversely affect immune development and functions and are most likely also deleterious to microbiota. Equally, it appears that probiotic treatment is not compatible with pharmacological treatments. Eco-biological treatments, with plant-derived substances, or phytochemicals, e.g. curcumin and resveratrol, and pre-, pro- and syn-biotics offers similar effects as use of biologicals, although milder but also free from adverse effects. Such treatments should be tried as alternative therapies; mainly, to begin with, for disease prevention but also in early cases of chronic diseases. Pharmaceutical treatment has, thus far, failed to inhibit the tsunami of endemic diseases spreading around the world, and no new tools are in sight. Dramatic alterations, in direction of a paleolithic-like lifestyle and food habits, seem to be the only alternatives with the potential to control the present escalating crisis. The present review focuses on human studies, especially those of clinical relevance.
Collapse
Affiliation(s)
- Stig Bengmark
- Division of Surgery & Interventional Science, University College London, 4th floor, 74 Huntley Street, London WC1E 6AU, United Kingdom.
| |
Collapse
|
17
|
Paracoccidioides brasiliensis induces secretion of IL-6 and IL-8 by lung epithelial cells. Modulation of host cytokine levels by fungal proteases. Microbes Infect 2012; 14:1077-85. [PMID: 22687715 DOI: 10.1016/j.micinf.2012.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022]
Abstract
Paracoccidioides brasiliensis is a pathogenic, dimorphic fungus that causes paracoccidioidomycosis, a systemic human mycosis that is highly prevalent in Latin America. In this study, we demonstrated that P. brasiliensis yeasts induced interleukin (IL)-8 and IL-6 secretion by human lung epithelial A549 cells. However, tumor necrosis factor-α and interferon-γ were undetectable in these cultures. Moreover, P. brasiliensis yeasts induced activation of p38 mitogen-activated protein kinase (MAPK), c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 in A549 cells, and IL-8 and IL-6 secretion promoted by this fungus was dependent on activation of p38 MAPK and ERK 1/2. In addition, IL-8 and IL-6 levels were significantly higher in culture supernatants of A549 cells that were incubated with formaldehyde-fixed P. brasiliensis compared to cultures of cells that were infected with live yeasts. Our results indicate that the observed cytokine level differences were due to protease expression, in live yeasts, that degraded these cytokines. Degradation of human recombinant IL-8 and IL-6 by live P. brasiliensis was inhibited by AEBSF and aprotinin, suggesting that these proteases belong to a family of serine proteases. This is the first report showing that P. brasiliensis may modulate host inflammation by expressing proteases that degrade proinflammatory cytokines.
Collapse
|
18
|
Axelsson-Robertson R, Magalhaes I, Parida SK, Zumla A, Maeurer M. The Immunological Footprint of Mycobacterium tuberculosis T-cell Epitope Recognition. J Infect Dis 2012; 205 Suppl 2:S301-15. [DOI: 10.1093/infdis/jis198] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
19
|
Iona E, Pardini M, Gagliardi MC, Colone M, Stringaro AR, Teloni R, Brunori L, Nisini R, Fattorini L, Giannoni F. Infection of human THP-1 cells with dormant Mycobacterium tuberculosis. Microbes Infect 2012; 14:959-67. [PMID: 22546526 DOI: 10.1016/j.micinf.2012.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/08/2012] [Accepted: 04/03/2012] [Indexed: 11/29/2022]
Abstract
Dormant, non-replicating Mycobacterium tuberculosis H37Rv strain cultured in hypoxic conditions was used to infect THP-1 cells. CFUs counting, Kinyoun staining and electron microscopy showed that dormant bacilli infected THP-1 cells at a rate similar to replicating M. tuberculosis, but failed to grow during the first 6 days of infection. The absence of growth was specific to the intracellular compartment, as demonstrated by efficient growth in liquid medium. Quantification of β-actin mRNA recovered from infected cells showed that, in contrast with log-phase bacteria, infection with dormant bacilli determined a reduced THP-1 cell death. Gene expression of intracellular non-replicating bacteria showed a pattern typical of a dormant state. Intracellular dormant bacteria induced the activation of genes associated to a proinflammatory response in THP-1 cells. Though, higher levels of TNFα, IL-1β and IL-8 mRNAs compared to aerobic H37Rv infected cells were not paralleled by increased cytokine accumulation in the supernatants. Moreover, dormant bacilli induced a higher expression of inducible cox-2 gene, accompanied by increased PGE2 secretion. Overall, our data describe a new model of in vitro infection using dormant M. tuberculosis that could provide the basis for understanding how non-replicating bacilli survive intracellularly and influence the maintenance of the hypoxic granuloma.
Collapse
Affiliation(s)
- Elisabetta Iona
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|