1
|
de Souza RM, dos Santos MI, Gomes LC, de Melo BBP, Separovic EPM, Murillo O, Wunderlich G, Clark TG, Campino S, Epiphanio S, Marinho CRF, Dombrowski JG. Association of the humoral immune response with the inflammatory profile in Plasmodium vivax infections in pregnant women. PLoS Negl Trop Dis 2024; 18:e0012636. [PMID: 39495782 PMCID: PMC11563365 DOI: 10.1371/journal.pntd.0012636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/14/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Plasmodium vivax infection, when it occurs during pregnancy, has often been associated with serious adverse pregnancy outcomes. However, immunological alterations in pregnancy and their consequences have been little explored. We characterized the humoral immune response in pregnant women exposed to malaria by P. vivax antigens and its association with the maternal inflammatory profile and poor pregnancy outcomes. METHODS An observational cohort study in the Brazilian Amazon was conducted between 2013 and 2015. After applying exclusion criteria, 242 mother-child pairs were included in the analysis. Data on maternal infection, gestational outcomes, and inflammatory factors were evaluated in the maternal peripheral plasma. In samples from the first infection, the presence of total IgG and its subclasses in plasma against PvMSP119 protein were also quantified. RESULTS Previous exposure to malaria, observed by anti-total IgG antibodies to the PvMSP119 antigen, increased the inflammatory response to infection when the pregnant woman had malaria during pregnancy. IL-6 and IL-10 levels were positively correlated with parasitemia and with total IgG levels; but they were negatively correlated with the gestational age at delivery from Pv-infected woman. In multivariate linear regression analyses, IgG 1, 2 and 4 was negatively and positively associated with cytokines IL-6 and IL-10, respectively, in P. vivax-infection. CONCLUSIONS An association between the humoral immune response and the peripheral inflammatory cytokine profile with the adverse outcomes in malaria in pregnancy by P. vivax was observed. Previous exposure to the parasite can influence the IL-6 and IL-10 response, which is associated with increased parasitemia, reduced maternal weight gain and premature delivery.
Collapse
Affiliation(s)
| | - Maria Inês dos Santos
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Laura Cordeiro Gomes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Oscar Murillo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Taane Gregory Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
2
|
Marzano-Miranda A, Pereira Cardoso-Oliveira G, Carla de Oliveira I, Carvalho Mourão L, Reis Cussat L, Gomes Fraga V, Delfin Chávez Olórtegui C, Jesus Fernandes Fontes C, Castanheira Bartholomeu D, Braga EM. Identification and serological responses to a novel Plasmodium vivax merozoite surface protein 1 ( PvMSP-1) derived synthetic peptide: a putative biomarker for malaria exposure. PeerJ 2024; 12:e17632. [PMID: 38948214 PMCID: PMC11212635 DOI: 10.7717/peerj.17632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Background The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.
Collapse
Affiliation(s)
- Aline Marzano-Miranda
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Luiza Carvalho Mourão
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Letícia Reis Cussat
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa Gomes Fraga
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Erika M. Braga
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Kuamsab N, Putaporntip C, Kakino A, Kosuwin R, Songsaigath S, Tachibana H, Jongwutiwes S. Anti-Plasmodium vivax merozoite surface protein 3 ϒ (PvMSP3 ϒ) antibodies upon natural infection. Sci Rep 2024; 14:9595. [PMID: 38671033 PMCID: PMC11053162 DOI: 10.1038/s41598-024-59153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Merozoite surface protein 3 of Plasmodium vivax (PvMSP3) contains a repertoire of protein members with unique sequence organization. While the biological functions of these proteins await elucidation, PvMSP3 has been suggested to be potential vaccine targets. To date, studies on natural immune responses to this protein family have been confined to two members, PvMSP3α and PvMSP3β. This study analyzed natural IgG antibody responses to PvMSP3γ recombinant proteins derived from two variants: one containing insert blocks (CT1230nF) and the other without insert domain (NR25nF). The former variant was also expressed as two subfragment proteins: one encompassing variable domain I and insert block A (CT1230N) and the other spanning from insert block B to conserved block III (CT1230C). Serum samples were obtained from 246 symptomatic vivax malaria patients in Tak (n = 50) and Ubon Ratchathani (n = 196) Provinces. In total, 176 (71.5%) patients could mount antibodies to at least one recombinant PvMSP3γ antigen. IgG antibodies directed against antigens CT1230nF, CT1230N, CT1230C and NR25nF occurred in 96.6%, 61.4%, 71.6% and 68.2% of samples, respectively, suggesting the widespread occurrence of B-cell epitopes across PvMSP3γ. The rates of seropositivity seemed to correlate with the number of previous malaria episodes. Isotype analysis of anti-PvMSP3γ antibodies has shown predominant cytophilic subclass responses, accounting for 75.4-81.7% for IgG1 and 63.6-77.5% for IgG3. Comparing with previous studies in the same cohort, the numbers of serum samples reactive to antigens derived from P. vivax merozoite surface protein 9 (PvMSP9) and thrombospondin-related anonymous protein (PvTRAP) were higher than those to PvMSP3γ, being 92.7% and 87.0% versus 71.5%, respectively. Three (1.22%) serum samples were nonresponsive to all these malarial proteins. Nevertheless, the relevance of naturally acquired antibodies to PvMSP3γ in host protection requires further studies.
Collapse
Affiliation(s)
- Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Community Public Health Program, Faculty of Health Science and Technology, Southern College of Technology, Nakorn Si Thammarat, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Azumi Kakino
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Rattiporn Kosuwin
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Health Promotion, Faculty of Physical Therapy, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Sunisa Songsaigath
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Health Promotion, Faculty of Physical Therapy, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
5
|
Bourgard C, Lopes SCP, Lacerda MVG, Albrecht L, Costa FTM. A suitable RNA preparation methodology for whole transcriptome shotgun sequencing harvested from Plasmodium vivax-infected patients. Sci Rep 2021; 11:5089. [PMID: 33658571 PMCID: PMC7930272 DOI: 10.1038/s41598-021-84607-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
Plasmodium vivax is a world-threatening human malaria parasite, whose biology remains elusive. The unavailability of in vitro culture, and the difficulties in getting a high number of pure parasites makes RNA isolation in quantity and quality a challenge. Here, a methodological outline for RNA-seq from P. vivax isolates with low parasitemia is presented, combining parasite maturation and enrichment with efficient RNA extraction, yielding ~ 100 pg.µL−1 of RNA, suitable for SMART-Seq Ultra-Low Input RNA library and Illumina sequencing. Unbiased coding transcriptome of ~ 4 M reads was achieved for four patient isolates with ~ 51% of transcripts mapped to the P. vivax P01 reference genome, presenting heterogeneous profiles of expression among individual isolates. Amongst the most transcribed genes in all isolates, a parasite-staged mixed repertoire of conserved parasite metabolic, membrane and exported proteins was observed. Still, a quarter of transcribed genes remain functionally uncharacterized. In parallel, a P. falciparum Brazilian isolate was also analyzed and 57% of its transcripts mapped against IT genome. Comparison of transcriptomes of the two species revealed a common trophozoite-staged expression profile, with several homologous genes being expressed. Collectively, these results will positively impact vivax research improving knowledge of P. vivax biology.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Stefanie C P Lopes
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz-Fiocruz, Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado-FMT-HVD, Gerência de Malária, Manaus, AM, Brazil
| | - Marcus V G Lacerda
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz-Fiocruz, Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado-FMT-HVD, Gerência de Malária, Manaus, AM, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil. .,Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil.
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
6
|
Rivera-Correa J, Yasnot-Acosta MF, Tovar NC, Velasco-Pareja MC, Easton A, Rodriguez A. Atypical memory B-cells and autoantibodies correlate with anemia during Plasmodium vivax complicated infections. PLoS Negl Trop Dis 2020; 14:e0008466. [PMID: 32687495 PMCID: PMC7392348 DOI: 10.1371/journal.pntd.0008466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/30/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Malaria caused by Plasmodium vivax is a highly prevalent infection world-wide, that was previously considered mild, but complications such as anemia have been highly reported in the past years. In mice models of malaria, anti-phosphatidylserine (anti-PS) autoantibodies, produced by atypical B-cells, bind to uninfected erythrocytes and contribute to anemia. In human patients with P. falciparum malaria, the levels of anti-PS, atypical B-cells and anemia are strongly correlated to each other. In this study, we focused on assessing the relationship between autoantibodies, different B-cell populations and hemoglobin levels in two different cohorts of P. vivax patients from Colombia, South America. In a first longitudinal cohort, our results show a strong inverse correlation between different IgG autoantibodies tested (anti-PS, anti-DNA and anti-erythrocyte) and atypical memory B-cells (atMBCs) with hemoglobin in both P. vivax and P. falciparum patients over time. In a second cross-sectional cohort, we observed a stronger relation between hemoglobin levels, atMBCs and autoantibodies in complicated P. vivax patients compared to uncomplicated ones. Altogether, these data constitute the first evidence of autoimmunity associating with anemia and complicated P. vivax infections, suggesting a role for its etiology through the expansion of autoantibody-secreting atMBCs. Malaria is one of the top global infections causing high mortality and morbidity every year. Plasmodium vivax is the most prevalent malarial infection, particularly in the region of the Americas. Complications associated with P. vivax, such as anemia, are a growing reported phenomenon, but the mechanisms leading to them are poorly understood. Here, we report the first evidence of autoantibodies and Atypical Memory B-cells correlating with anemia in two different cohorts of P. vivax patients, particularly during complicated infections. These findings point to Atypical Memory B-cells as key pathological players, possibly through the secretion of autoantibodies, and attributes a role for autoimmunity in mediating complications during P. vivax infections.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- New York University School of Medicine, New York, United States of America
- * E-mail: (JRC); (AR)
| | | | - Nubia Catalina Tovar
- New York University School of Medicine, New York, United States of America
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, Colombia
- Universidad del Sinú, Montería, Colombia
- Universidad de Cartagena, Bolívar, Colombia
| | | | - Alice Easton
- New York University School of Medicine, New York, United States of America
| | - Ana Rodriguez
- New York University School of Medicine, New York, United States of America
- * E-mail: (JRC); (AR)
| |
Collapse
|
7
|
Insights into the molecular diversity of Plasmodium vivax merozoite surface protein-3γ (pvmsp3γ), a polymorphic member in the msp3 multi-gene family. Sci Rep 2020; 10:10977. [PMID: 32620822 PMCID: PMC7335089 DOI: 10.1038/s41598-020-67222-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Plasmodium vivax merozoite surface protein 3 (PvMSP3) is encoded by a multi-gene family. Of these, PvMSP3α, PvMSP3β and PvMSP3γ, are considered to be vaccine targets. Despite comprehensive analyses of PvMSP3α and PvMSP3β, little is known about structural and sequence diversity in PvMSP3γ. Analysis of 118 complete pvmsp3γ sequences from diverse endemic areas of Thailand and 9 reported sequences has shown 86 distinct haplotypes. Based on variation in insert domains, pvmsp3γ can be classified into 3 types, i.e. Belem, Salvador I and NR520. Imperfect nucleotide repeats were found in six regions of the gene; none encoded tandem amino acid repeats. Predicted coiled-coil heptad repeats were abundant in the protein and displayed variation in length and location. Interspersed phase shifts occurred in the heptad arrays that may have an impact on protein structure. Polymorphism in pvmsp3γ seems to be generated by intragenic recombination and driven by natural selection. Most P. vivax isolates in Thailand exhibit population structure, suggesting limited gene flow across endemic areas. Phylogenetic analysis has suggested that insert domains could have been subsequently acquired during the evolution of pvmsp3γ. Sequence and structural diversity of PvMSP3γ may complicate vaccine design due to alteration in predicted immunogenic epitopes among variants.
Collapse
|
8
|
Kuamsab N, Putaporntip C, Jongwutiwes S. Polymorphism and natural selection in the merozoite surface protein 3F2 (PVX_97710) locus of Plasmodium vivax among field isolates. INFECTION GENETICS AND EVOLUTION 2019; 78:104058. [PMID: 31706081 DOI: 10.1016/j.meegid.2019.104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 11/24/2022]
Abstract
Plasmodium vivax, the chronic relapsing human malaria parasite with the most widespread distribution, possesses proteins associated with the merozoite surface that could be targets for host immune responses and potential vaccine candidates. Of these, the merozoite surface protein 3 of P. vivax (PvMSP3) is an attractive vaccine target as well as a genetic marker for epidemiological surveillance. PvMSP3 comprises a group of protein members encoded by a multigene family. Although some protein members, i.e. PvMSP3α and PvMSP3β, have been targets for molecular and immunological investigations, the most abundantly expressed protein member during late asexual erythrocytic stages, PvMSP3F2 (PVX_97710), remains unexplored. To address domain organization and evolution of this locus, the complete coding sequences of 31 P. vivax isolates from diverse malaria endemic areas of Thailand were analyzed and compared with 10 previously reported sequences. Results revealed that all PvMSP3F2 sequences differed but could be divided into 5 repeat-containing domains flanked by 6 non-repeat domains. Repeat domains II and IV at the 5' portion and domain X at the 3' portion exhibited extensive sequence and length variation whereas repeat domains VI and VIII located at the central region were relatively conserved. Despite a repertoire of PvMSP3F2 variants, predicted coiled-coil tertiary structure and predicted B-cell epitopes seem to be maintained. Evidence of intragenic recombination has been detected among field isolates in Thailand that could enhance sequence diversity at this locus. Non-repeat domains I and IX located at the 5' end and at the 3' portion, respectively, seem to have evolved under purifying selection. Evidence of positive selection was found in non-repeat domains III, V and VII where a number of predicted HLA class I epitopes were identified. Amino acid substitutions in these predicted epitopes could alter predicted peptide binding affinity or abolish peptide epitope property, suggesting that polymorphism in these epitopes conferred host immune evasion. Further studies on PvMSP3F2 are warranted, particularly on interaction with host immune system and the potential role of this PvMSP3 protein member as a vaccine target.
Collapse
Affiliation(s)
- Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Mourão LC, Baptista RDP, de Almeida ZB, Grynberg P, Pucci MM, Castro-Gomes T, Fontes CJF, Rathore S, Sharma YD, da Silva-Pereira RA, Bemquerer MP, Braga ÉM. Anti-band 3 and anti-spectrin antibodies are increased in Plasmodium vivax infection and are associated with anemia. Sci Rep 2018; 8:8762. [PMID: 29884876 PMCID: PMC5993813 DOI: 10.1038/s41598-018-27109-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/18/2018] [Indexed: 11/09/2022] Open
Abstract
Clearance of non-infected red blood cells (nRBCs) is one of the main components of anemia associated with Plasmodium vivax malaria. Recently, we have shown that anemic patients with P. vivax infection had elevated levels of anti-RBCs antibodies, which could enhance in vitro phagocytosis of nRBCs and decrease their deformability. Using immunoproteomics, here we characterized erythrocytic antigens that are differentially recognized by autoantibodies from anemic and non-anemic patients with acute vivax malaria. Protein spots exclusively recognized by anemic P. vivax-infected patients were identified by mass spectrometry revealing band 3 and spectrin as the main targets. To confirm this finding, antibody responses against these specific proteins were assessed by ELISA. In addition, an inverse association between hemoglobin and anti-band 3 or anti-spectrin antibodies levels was found. Anemic patients had higher levels of IgG against both band 3 and spectrin than the non-anemic ones. To determine if these autoantibodies were elicited because of molecular mimicry, we used in silico analysis and identified P. vivax proteins that share homology with human RBC proteins such as spectrin, suggesting that infection drives autoimmune responses. These findings suggest that band 3 and spectrin are potential targets of autoantibodies that may be relevant for P. vivax malaria-associated anemia.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Maíra Mazzoni Pucci
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yagya D Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Érika Martins Braga
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Menezes RADO, Gomes MDSM, Mendes AM, Couto ÁARDA, Nacher M, Pimenta TS, de Sousa ACP, Baptista ARDS, de Jesus MI, Enk MJ, Cunha MG, Machado RLD. Enteroparasite and vivax malaria co-infection on the Brazil-French Guiana border: Epidemiological, haematological and immunological aspects. PLoS One 2018; 13:e0189958. [PMID: 29293589 PMCID: PMC5749708 DOI: 10.1371/journal.pone.0189958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022] Open
Abstract
Malaria-enteroparasitic co-infections are known for their endemicity. Although they are prevalent, little is known about their epidemiology and effect on the immune response. This study evaluated the effect of enteroparasite co-infections with malaria caused by Plasmodium vivax in a border area between Brazil and French Guiana. The cross sectional study took place in Oiapoque, a municipality of Amapá, on the Amazon border. Malaria was diagnosed using thick blood smears, haemoglobin dosage by an automated method and coproparasitology by the Hoffman and Faust methods. The anti-PvMSP-119 IgG antibodies in the plasma were evaluated using ELISA and Th1 (IFN-γ, TNF-α and IL-2), and Th2 (IL-4, IL-5 and IL-10) cytokine counts were performed by flow cytometry. The participants were grouped into those that were monoinfected with vivax malaria (M), vivax malaria-enteroparasite co-infected (CI), monoinfected with enteroparasite (E) and endemic controls (EC), who were negative for both diseases. 441 individuals were included and grouped according to their infection status: [M 6.9% (30/441)], [Cl 26.5% (117/441)], [E 32.4% (143/441)] and [EC 34.2% (151/441)]. Males prevailed among the (M) 77% (23/30) and (CI) 60% (70/117) groups. There was a difference in haemoglobin levels among the different groups under study for [EC-E], [EC-Cl], [E-M] and [Cl-M], with (p < 0.01). Anaemia was expressed as a percentage between individuals [CI-EC (p < 0.05)]. In terms of parasitaemia, there were differences for the groups [CI-M (p < 0.05)]. Anti-PvMSP-119 antibodies were detected in 51.2% (226/441) of the population. The level of cytokines evaluation revealed a large variation in TNF-α and IL-10 concentrations in the co-infected group. In this study we did not observe any influence of coinfection on the acquisition of IgG antibodies against PvMSP119, as well as on the profile of the cytokines that characterize the Th1 and Th2 patterns. However, co-infection increased TNF-α and IL-10 levels.
Collapse
Affiliation(s)
- Rubens Alex de Oliveira Menezes
- Postgraduate Program in the Biology of Infectious and Parasitic Agents, Federal University of Pará (UFPA), Belém, Pará State, Brazil
- Laboratory of morphofunctional and parasitic studies with impact on health (LEMPIS), Federal University of Amapá (UNIFAP), Macapa, Amapá State, Brazil
- * E-mail:
| | | | - Anapaula Martins Mendes
- UNIFAP/Oiapoque Binational Campus, Federal University of Amapá, Oiapoque, Amapá State, Brazil
| | | | - Mathieu Nacher
- Centre d’Investigation Clinique, CIC INSERM 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Tamirys Simão Pimenta
- Postgraduate Program in Neuroscience and Cell Biology, UFPA, Belém, Pará State, Brazil
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | - Aline Collares Pinheiro de Sousa
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | | | - Maria Izabel de Jesus
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | - Martin Johannes Enk
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | - Maristela Gomes Cunha
- Postgraduate Program in the Biology of Infectious and Parasitic Agents, Federal University of Pará (UFPA), Belém, Pará State, Brazil
- Laboratory of Microbiology and Immunology, Federal University of Pará (UFPA), Belém, Pará State, Brazil
| | - Ricardo Luiz Dantas Machado
- Postgraduate Program in the Biology of Infectious and Parasitic Agents, Federal University of Pará (UFPA), Belém, Pará State, Brazil
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
- Fluminense Federal University, Niterói, Rio de Janeiro State, Brazil
| |
Collapse
|
11
|
Sullivan KE, Bassiri H, Bousfiha AA, Costa-Carvalho BT, Freeman AF, Hagin D, Lau YL, Lionakis MS, Moreira I, Pinto JA, de Moraes-Pinto MI, Rawat A, Reda SM, Reyes SOL, Seppänen M, Tang MLK. Emerging Infections and Pertinent Infections Related to Travel for Patients with Primary Immunodeficiencies. J Clin Immunol 2017; 37:650-692. [PMID: 28786026 PMCID: PMC5693703 DOI: 10.1007/s10875-017-0426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Abstract
In today's global economy and affordable vacation travel, it is increasingly important that visitors to another country and their physician be familiar with emerging infections, infections unique to a specific geographic region, and risks related to the process of travel. This is never more important than for patients with primary immunodeficiency disorders (PIDD). A recent review addressing common causes of fever in travelers provides important information for the general population Thwaites and Day (N Engl J Med 376:548-560, 2017). This review covers critical infectious and management concerns specifically related to travel for patients with PIDD. This review will discuss the context of the changing landscape of infections, highlight specific infections of concern, and profile distinct infection phenotypes in patients who are immune compromised. The organization of this review will address the environment driving emerging infections and several concerns unique to patients with PIDD. The first section addresses general considerations, the second section profiles specific infections organized according to mechanism of transmission, and the third section focuses on unique phenotypes and unique susceptibilities in patients with PIDDs. This review does not address most parasitic diseases. Reference tables provide easily accessible information on a broader range of infections than is described in the text.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Hamid Bassiri
- Division of Infectious Diseases and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ahmed A Bousfiha
- Clinical Immunology Unit, Infectious Department, Hopital d'Enfant Abderrahim Harouchi, CHU Ibn Rochd, Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergie LICIA, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, Morocco
| | - Beatriz T Costa-Carvalho
- Department of Pediatrics, Federal University of São Paulo, Rua dos Otonis, 725, São Paulo, SP, 04025-002, Brazil
| | - Alexandra F Freeman
- NIAID, NIH, Building 10 Room 12C103, 9000 Rockville, Pike, Bethesda, MD, 20892, USA
| | - David Hagin
- Division of Allergy and Immunology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, University of Tel Aviv, 6 Weizmann St, 64239, Tel Aviv, Israel
| | - Yu L Lau
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Rm 106, 1/F New Clinical Building, Pok Fu Lam, Hong Kong.,Queen Mary Hospital, 102 Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD, 20892, USA
| | - Ileana Moreira
- Immunology Unit, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, 1425, Buenos Aires, Argentina
| | - Jorge A Pinto
- Division of Immunology, Department of Pediatrics, Federal University of Minas Gerais, Av. Alfredo Balena 190, room # 161, Belo Horizonte, MG, 30130-100, Brazil
| | - M Isabel de Moraes-Pinto
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Federal University of São Paulo, Rua Pedro de Toledo, 781/9°andar, São Paulo, SP, 04039-032, Brazil
| | - Amit Rawat
- Pediatric Allergy and Immunology, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shereen M Reda
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Saul Oswaldo Lugo Reyes
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Av Iman 1, Torre de Investigacion, Piso 9, Coyoacan, 04530, Mexico City, Mexico
| | - Mikko Seppänen
- Harvinaissairauksien yksikkö (HAKE), Rare Disease Center, Helsinki University Hospital (HUH), Helsinki, Finland
| | - Mimi L K Tang
- Murdoch Children's Research Institute, The Royal Children's Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Kang JM, Lee J, Kim TI, Koh EH, Kim TS, Sohn WM, Na BK. PCR-RFLP for Rapid Subtyping of Plasmodium vivax Korean Isolates. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:159-165. [PMID: 28506038 PMCID: PMC5450958 DOI: 10.3347/kjp.2017.55.2.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/08/2017] [Accepted: 02/19/2017] [Indexed: 11/23/2022]
Abstract
Vivax malaria reemerged in Korea in 1993 and the outbreak has been continued with fluctuating numbers of annual indigenous cases. Understanding the nature of the genetic population of Plasmodium vivax circulating in Korea is beneficial for the knowledge of the nationwide parasite heterogeneity and in the implementation of malaria control programs in the country. Previously, we analyzed polymorphic nature of merozoite surface protein-1 (MSP-1) and MSP-3α in Korean P. vivax population and identified the Korean P. vivax population has been diversifying rapidly, with the appearance of parasites with new genetic subtypes, despite the recent reduction of the disease incidence. In the present study, we developed simple PCR-RFLP methods for rapid subtyping of MSP-1 and MSP-3α of Korean P. vivax isolates. These PCR-RFLP methods were able to easily distinguish each subtype of Korean P. vivax MSP-1 and MSP-3α with high accuracy. The PCR-RFLP subtyping methods developed here would be easily applied to massive epidemiological studies for molecular surveillance to understand genetic population of P. vivax and to supervise the genetic variation of the parasite circulating in Korea.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Tae Im Kim
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Eun-Ha Koh
- Department of Laboratory Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 22212, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
13
|
Sepúlveda N, Morais CG, Mourão LC, Freire MF, Fontes CJF, Lacerda MVG, Drakeley CJ, Braga ÉM. Allele-specific antibodies to Plasmodium vivax merozoite surface protein-1: prevalence and inverse relationship to haemoglobin levels during infection. Malar J 2016; 15:559. [PMID: 27852258 PMCID: PMC5112628 DOI: 10.1186/s12936-016-1612-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Antigenic polymorphisms are considered as one of the main strategies employed by malaria parasites to escape from the host immune responses after infections. Merozoite surface protein-1 (MSP-1) of Plasmodium vivax, a promising vaccine candidate, is a highly polymorphic protein whose immune recognition is not well understood. Methods and results The IgG responses to conserved (MSP-119) and polymorphic (block 2 and block 10) epitopes of PvMSP-1 were evaluated in 141 P. vivax infected patients. Ten recombinant proteins corresponding to block 2 (variants BR07, BP29, BP39, BP30, BEL) and block 10 (BR07, BP29, BP39, BP01, BP13) often observed in Brazilian P. vivax isolates were assessed by ELISA in order to determine levels of specific antibodies and their respective seroprevalence. The magnitude and the frequency of variant-specific responses were very low, except for BR07 variant (>40%), which was the predominant haplotype as revealed by block 10 PvMSP-1 gene sequencing. By contrast, 89% of patients had IgG against the C-terminal conserved domain (PvMSP-119), confirming the high antigenicity of this protein. Using multiple linear and logistic regression models, there was evidence for a negative association between levels of haemoglobin and several IgG antibodies against block 2 variant antigens, with the strongest association being observed for BP39 allelic version. This variant was also found to increase the odds of anaemia in these patients. Conclusions These findings may have implications for vaccine development and represent an important step towards a better understanding of the polymorphic PvMSP-1 domain as potential targets of vaccine development. These data highlight the importance of extending the study of these polymorphic epitopes of PvMSP-1 to different epidemiological settings. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1612-z) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Verma A, Joshi H, Singh V, Anvikar A, Valecha N. Plasmodium vivax msp-3α polymorphisms: analysis in the Indian subcontinent. Malar J 2016; 15:492. [PMID: 27663527 PMCID: PMC5035448 DOI: 10.1186/s12936-016-1524-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the most widely distributed human malaria parasite and accounts for approximately the same number of malaria cases as Plasmodium falciparum in India. Compared with P. falciparum, P. vivax is difficult to eradicate because of its tendency to cause relapses, which impacts treatment and control strategies. The genetic diversity of these parasites, particularly of the merozoite surface protein-3 alpha (msp-3α) gene, can be used to help develop a potential vaccine. The present study aimed to investigate the genetic diversity of P. vivax using the highly polymorphic antigen gene msp-3α and to assess the suitability of using this gene for population genetic studies of P. vivax isolates and was carried out in 2004-06. No recent study has been reported for MSP 3α in the recent decade in India. Limited reports are available on the genetic diversity of the P. vivax population in India; hence, this report aimed to improve the understanding of the molecular epidemiology of the parasite by studying the P. vivax msp-3α (Pvmsp-3α) marker from P. vivax field isolates from India. METHODS Field isolates were collected from different sites distributed across eight states in India. A total of 182 blood samples were analysed by a nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the HhaI and AluI restriction enzymes to determine genetic msp-3α variation among clinical P. vivax isolates. RESULTS Based on the length variants of the PCR products of Pvmsp-3α gene, three allele sizes, Type A (1.8 kb), Type B (1.5 kb) and Type C (1.2 kb) were detected among the 182 samples. Type A PCR amplicon was more predominant (75.4 %) in the samples compared with the Type B (14.3 %) and Type C (10.0 %) polymorphisms. Among all of the samples analysed, 8.2 % were mixed infections detected by PCR alone. Restriction fragment length polymorphism (RFLP) analysis involving the restriction enzymes AluI and HhaI generated fragment sizes that were highly polymorphic and revealed substantial diversity at the nucleotide level. CONCLUSIONS The present study is the first extensive study in India using the Pvmsp-3α marker. The results indicated that Pvmps-3α, a polymorphic genetic marker of P. vivax, exhibited considerable variability in infection prevalence in field isolates from India. Additionally, the mean multiplicity of infection observed at all of the study sites indicated that P. vivax is highly diverse in nature in India, and Pvmsp-3α is likely an effective and promising epidemiological marker.
Collapse
Affiliation(s)
- Anju Verma
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Hema Joshi
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077, India
| | - Vineeta Singh
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077, India
| | - Anup Anvikar
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077, India
| | - Neena Valecha
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077, India
| |
Collapse
|
15
|
Dinzouna-Boutamba SD, Lee S, Son UH, Song SM, Yun HS, Joo SY, Kwak D, Rhee MH, Chung DI, Hong Y, Goo YK. Distribution of Antibodies Specific to the 19-kDa and 33-kDa Fragments of Plasmodium vivax Merozoite Surface Protein 1 in Two Pathogenic Strains Infecting Korean Vivax Malaria Patients. Osong Public Health Res Perspect 2016; 7:213-9. [PMID: 27635370 PMCID: PMC5014746 DOI: 10.1016/j.phrp.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 11/04/2022] Open
Abstract
Objectives Plasmodium vivax merozoite surface protein 1 (PvMSP1) is the most intensively studied malaria vaccine candidate. Although high antibody response-inducing two C-terminal fragments of PvMSP1 (PvMSP1-19 and PvMSP1-42) are currently being developed as candidate malaria vaccine antigens, their high genetic diversity in various isolates is a major hurdle. The sequence polymorphism of PvMSP1 has been investigated; however, the humoral immune responses induced by different portions of this protein have not been evaluated in Korea. Methods Two fragments of PvMSP1 were selected for this study: (1) PvMSP1-19, which is genetically conserved; and (2) PvMSP1-33, which corresponds to a variable portion. For the latter, two representative strains, Sal 1 and Belem, were included. Thus, three recombinant proteins, PvMSP1-19, PvMSP1-33 Sal 1, and PvMSP1-33 Belem, were produced in Escherichia coli and then tested by enzyme-linked immunosorbent assays using sera from 221 patients with vivax malaria. Results Of the 221 samples, 198, 142, and 106 samples were seropositive for PvMSP1-19, PvMSP1-33 Sal 1, and PvMSP1-33 Belem, respectively. Although 100 samples were simultaneously seropositive for antibodies specific to all the recombinant proteins, 39 and six samples were respectively seropositive for antibodies specific to MSP1-33 Sal 1 and MSP1-33 Belem. Antibodies specific to PvMSP1-19 were the most prevalent. Conclusion Monitoring seroprevalence is essential for the selection of promising vaccine candidates as most of the antigenic proteins in P. vivax are highly polymorphic.
Collapse
|
16
|
Abstract
SUMMARYPlasmodium vivaxis the most geographically widespread of the malaria parasites causing human disease, yet it is comparatively understudied compared withPlasmodium falciparum.In this article we review what is known about naturally acquired immunity toP. vivax, and importantly, how this differs to that acquired againstP. falciparum.Immunity to clinicalP. vivaxinfection is acquired more quickly than toP. falciparum, and evidence suggests humans in endemic areas also have a greater capacity to mount a successful immunological memory response to this pathogen. Both of these factors give promise to the idea of a successfulP. vivaxvaccine. We review what is known about both the cellular and humoral immune response, including the role of cytokines, antibodies, immunoregulation, immune memory and immune dysfunction. Furthermore, we discuss where the future lies in terms of advancing our understanding of naturally acquired immunity toP. vivax, through the use of well-designed longitudinal epidemiological studies and modern tools available to immunologists.
Collapse
|
17
|
Gupta B, Reddy BPN, Fan Q, Yan G, Sirichaisinthop J, Sattabongkot J, Escalante AA, Cui L. Molecular Evolution of PvMSP3α Block II in Plasmodium vivax from Diverse Geographic Origins. PLoS One 2015; 10:e0135396. [PMID: 26266539 PMCID: PMC4534382 DOI: 10.1371/journal.pone.0135396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
Block II of Plasmodium vivax merozoite surface protein 3α (PvMSP3α) is conserved and has been proposed as a potential candidate for a malaria vaccine. The present study aimed to compare sequence diversity in PvMSP3a block II at a local microgeographic scale in a village as well as from larger geographic regions (countries and worldwide). Blood samples were collected from asymptomatic carriers of P. vivax in a village at the western border of Thailand and PvMSP3α was amplified and sequenced. For population genetic analysis, 237 PvMSP3α block II sequences from eleven P. vivax endemic countries were analyzed. PvMSP3α sequences from 20 village-level samples revealed two length variant types with one type containing a large deletion in block I. In contrast, block II was relatively conserved; especially, some non-synonymous mutations were extensively shared among 11 parasite populations. However, the majority of the low-frequency synonymous variations were population specific. The conserved pattern of nucleotide diversity in block II sequences was probably due to functional/structural constraints, which were further supported by the tests of neutrality. Notably, a small region in block II that encodes a predicted B cell epitope was highly polymorphic and showed signs of balancing selection, signifying that this region might be influenced by the immune selection and may serve as a starting point for designing multi-antigen/stage epitope based vaccines against this parasite.
Collapse
Affiliation(s)
- Bhavna Gupta
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - B. P. Niranjan Reddy
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697, United States of America
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
- * E-mail:
| |
Collapse
|
18
|
Putaporntip C, Miao J, Kuamsab N, Sattabongkot J, Sirichaisinthop J, Jongwutiwes S, Cui L. The Plasmodium vivax merozoite surface protein 3β sequence reveals contrasting parasite populations in southern and northwestern Thailand. PLoS Negl Trop Dis 2014; 8:e3336. [PMID: 25412166 PMCID: PMC4238993 DOI: 10.1371/journal.pntd.0003336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malaria control efforts have a significant impact on the epidemiology and parasite population dynamics. In countries aiming for malaria elimination, malaria transmission may be restricted to limited transmission hot spots, where parasite populations may be isolated from each other and experience different selection forces. Here we aim to examine the Plasmodium vivax population divergence in geographically isolated transmission zones in Thailand. METHODOLOGY We employed the P. vivax merozoite surface protein 3β (PvMSP3β) as a molecular marker for characterizing P. vivax populations based on the extensive diversity of this gene in Southeast Asian parasite populations. To examine two parasite populations with different transmission levels in Thailand, we obtained 45 P. vivax isolates from Tak Province, northwestern Thailand, where the annual parasite incidence (API) was more than 2%, and 28 isolates from Yala and Narathiwat Provinces, southern Thailand, where the API was less than 0.02%. We sequenced the PvMSP3β gene and examined its genetic diversity and molecular evolution between the parasite populations. PRINCIPAL FINDINGS Of 58 isolates containing single PvMSP3β alleles, 31 sequence types were identified. The overall haplotype diversity was 0.77 ± 0.06 and nucleotide diversity 0.0877±0.0054. The northwestern vivax malaria population exhibited extensive haplotype diversity (HD) of PvMSP3β (HD=1.0). In contrast, the southern parasite population displayed a single PvMSP3β allele (HD=0), suggesting a clonal population expansion. This result revealed that the extent of allelic diversity in P. vivax populations in Thailand varies among endemic areas. CONCLUSION Malaria parasite populations in a given region may vary significantly in genetic diversity, which may be the result of control and influenced by the magnitude of malaria transmission intensity. This is an issue that should be taken into account for the implementation of P. vivax control measures such as drug policy and vaccine development.
Collapse
Affiliation(s)
- Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jun Miao
- Department of Entomology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Vivax Malaria Research Center, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| |
Collapse
|
19
|
Ferreira AR, Singh B, Cabrera-Mora M, Magri De Souza AC, Queiroz Marques MT, Porto LCS, Santos F, Banic DM, Calvo-Calle JM, Oliveira-Ferreira J, Moreno A, Da Costa Lima-Junior J. Evaluation of naturally acquired IgG antibodies to a chimeric and non-chimeric recombinant species of Plasmodium vivax reticulocyte binding protein-1: lack of association with HLA-DRB1*/DQB1* in malaria exposed individuals from the Brazilian Amazon. PLoS One 2014; 9:e105828. [PMID: 25148251 PMCID: PMC4141821 DOI: 10.1371/journal.pone.0105828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023] Open
Abstract
The development of modular constructs that include antigenic regions targeted by protective immune responses is an attractive approach for subunit vaccine development. However, a main concern of using these vaccine platforms is how to preserve the antigenic identity of conformational B cell epitopes. In the present study we evaluated naturally acquired antibody responses to a chimeric protein engineered to contain a previously defined immunodominant domain of the Plasmodium vivax reticulocyte binding protein-1 located between amino acid positions K435-I777. The construct also includes three regions of the cognate protein (F571-D587, I1745-S1786 and L2235-E2263) predicted to contain MHC class II promiscuous T cell epitopes. Plasma samples from 253 naturally exposed individuals were tested against this chimeric protein named PvRMC-RBP1 and a control protein that includes the native sequence PvRBP123-751 in comparative experiments to study the frequency of total IgG and IgG subclass reactivity. HLA-DRB1 and HLA-DQB1 allelic groups were typed by PCR-SSO to evaluate the association between major HLA class II alleles and antibody responses. We found IgG antibodies that recognized the chimeric PvRMC-RBP1 and the PvRBP123-751 in 47.1% and 60% of the studied population, respectively. Moreover, the reactivity index against both proteins were comparable and associated with time of exposure (p<0.0001) and number of previous malaria episodes (p<0.005). IgG subclass profile showed a predominance of cytophilic IgG1 over other subclasses against both proteins tested. Collectively these studies suggest that the chimeric PvRMC-RBP1 protein retained antigenic determinants in the PvRBP1435–777 native sequence. Although 52.9% of the population did not present detectable titers of antibodies to PvRMC-RBP1, genetic restriction to this chimeric protein does not seem to occur, since no association was observed between the HLA-DRB1* or HLA-DQB1* alleles and the antibody responses. This experimental evidence strongly suggests that the identity of the conformational B cell epitopes is preserved in the chimeric protein.
Collapse
Affiliation(s)
- Amanda Ribeiro Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Alana Cristina Magri De Souza
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | | | - Fatima Santos
- National Health Foundation, Department of Entomology, Central Laboratory, Porto Velho, RO, Brazil
| | - Dalma Maria Banic
- Laboratory for Simuliidae and Onchocerciasis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - J. Mauricio Calvo-Calle
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joseli Oliveira-Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (AM); (JCLJ)
| | - Josué Da Costa Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (AM); (JCLJ)
| |
Collapse
|
20
|
Potential immune mechanisms associated with anemia in Plasmodium vivax malaria: a puzzling question. Infect Immun 2014; 82:3990-4000. [PMID: 25092911 DOI: 10.1128/iai.01972-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of malaria is complex, generating a broad spectrum of clinical manifestations. One of the major complications and concerns in malaria is anemia, which is responsible for considerable morbidity in the developing world, especially in children and pregnant women. Despite its enormous health importance, the immunological mechanisms involved in malaria-induced anemia remain incompletely understood. Plasmodium vivax, one of the causative agents of human malaria, is known to induce a strong inflammatory response with a robust production of immune effectors, including cytokines and antibodies. Therefore, it is possible that the extent of the immune response not only may facilitate the parasite killing but also may provoke severe illness, including anemia. In this review, we consider potential immune effectors and their possible involvement in generating this clinical outcome during P. vivax infections.
Collapse
|
21
|
The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites. Mol Phylogenet Evol 2014; 78:172-84. [PMID: 24862221 DOI: 10.1016/j.ympev.2014.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/22/2022]
Abstract
The genus Plasmodium is a diversified group of parasites with more than 200 known species that includes those causing malaria in humans. These parasites use numerous proteins in a complex process that allows them to invade the red blood cells of their vertebrate hosts. Many of those proteins are part of multi-gene families; one of which is the merozoite surface protein-3 (msp3) family. The msp3 multi-gene family is considered important in the two main human parasites, Plasmodium vivax and Plasmodium falciparum, as its paralogs are simultaneously expressed in the blood stage (merozoite) and are immunogenic. There are large differences among Plasmodium species in the number of paralogs in this family. Such differences have been previously explained, in part, as adaptations that allow the different Plasmodium species to invade their hosts. To investigate this, we characterized the array containing msp3 genes among several Plasmodium species, including P. falciparum and P. vivax. We first found no evidence indicating that the msp3 family of P. falciparum was homologous to that of P. vivax. Subsequently, by focusing on the diverse clade of nonhuman primate parasites to which P. vivax is closely related, where homology was evident, we found no evidence indicating that the interspecies variation in the number of paralogs was an adaptation related to changes in host range or host switches. Overall, we hypothesize that the evolution of the msp3 family in P. vivax is consistent with a model of multi-allelic diversifying selection where the paralogs may have functionally redundant roles in terms of increasing antigenic diversity. Thus, we suggest that the expressed MSP3 proteins could serve as "decoys", via antigenic diversity, during the critical process of invading the host red blood cells.
Collapse
|
22
|
Plasmodium vivax infection induces expansion of activated naïve/memory T cells and differentiation into a central memory profile. Microbes Infect 2013; 15:837-43. [DOI: 10.1016/j.micinf.2013.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/13/2013] [Accepted: 07/25/2013] [Indexed: 02/02/2023]
|
23
|
Riccio EKP, Totino PRR, Pratt-Riccio LR, Ennes-Vidal V, Soares IS, Rodrigues MM, de Souza JM, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Cellular and humoral immune responses against the Plasmodium vivax MSP-1₁₉ malaria vaccine candidate in individuals living in an endemic area in north-eastern Amazon region of Brazil. Malar J 2013; 12:326. [PMID: 24041406 PMCID: PMC3850502 DOI: 10.1186/1475-2875-12-326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plasmodium vivax merozoite surface protein-1 (MSP-1) is an antigen considered to be one of the leading malaria vaccine candidates. PvMSP-1 is highly immunogenic and evidences suggest that it is target for protective immunity against asexual blood stages of malaria parasites. Thus, this study aims to evaluate the acquired cellular and antibody immune responses against PvMSP-1 in individuals naturally exposed to malaria infections in a malaria-endemic area in the north-eastern Amazon region of Brazil. METHODS The study was carried out in Paragominas, Pará State, in the Brazilian Amazon. Blood samples were collected from 35 individuals with uncomplicated malaria. Peripheral blood mononuclear cells were isolated and the cellular proliferation and activation was analysed in presence of 19 kDa fragment of MSP-1 (PvMSP-1₁₉) and Plasmodium falciparum PSS1 crude antigen. Antibodies IgE, IgM, IgG and IgG subclass and the levels of TNF, IFN-γ and IL-10 were measured by enzyme-linked immunosorbent assay. RESULTS The prevalence of activated CD4+ was greater than CD8+ T cells, in both ex-vivo and in 96 h culture in presence of PvMSP-1₁₉ and PSS1 antigen. A low proliferative response against PvMSP-1₁₉ and PSS1 crude antigen after 96 h culture was observed. High plasmatic levels of IFN-γ and IL-10 as well as lower TNF levels were also detected in malaria patients. However, in the 96 h supernatant culture, the dynamics of cytokine responses differed from those depicted on plasma assays; in presence of PvMSP-1₁₉ stimulus, higher levels of TNF were noted in supernatant 96 h culture of malaria patient's cells while low levels of IFN-γ and IL-10 were verified. High frequency of malaria patients presenting antibodies against PvMSP-1₁₉ was evidenced, regardless class or IgG subclass.PvMSP-119-induced antibodies were predominantly on non-cytophilic subclasses. CONCLUSIONS The results presented here shows that PvMSP-1₁₉ was able to induce a high cellular activation, leading to production of TNF and emphasizes the high immunogenicity of PvMSP-1₁₉ in naturally exposed individuals and, therefore, its potential as a malaria vaccine candidate.
Collapse
Affiliation(s)
- Evelyn K P Riccio
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil CEP: 21040-900.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Plasmodium vivax merozoite surface protein-3 (PvMSP3): expression of an 11 member multigene family in blood-stage parasites. PLoS One 2013; 8:e63888. [PMID: 23717506 PMCID: PMC3662707 DOI: 10.1371/journal.pone.0063888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/07/2013] [Indexed: 02/02/2023] Open
Abstract
Background Three members of the Plasmodium vivax merozoite surface protein-3 (PvMSP3) family (PvMSP3-α, PvMSP3-β and PvMSP3-γ) were initially characterized and later shown to be part of a larger highly diverse family, encoded by a cluster of genes arranged head-to-tail in chromosome 10. PvMSP3-α and PvMSP3-β have become genetic markers in epidemiological studies, and are being evaluated as vaccine candidates. This research investigates the gene and protein expression of the entire family and pertinent implications. Methodology/Principal Findings A 60 kb multigene locus from chromosome 10 in P. vivax (Salvador 1 strain) was studied to classify the number of pvmsp3 genes present, and compare their transcription, translation and protein localization patterns during blood-stage development. Eleven pvmsp3 paralogs encode an N-terminal NLRNG signature motif, a central domain containing repeated variable heptad sequences, and conserved hydrophilic C-terminal features. One additional ORF in the locus lacks these features and was excluded as a member of the family. Transcripts representing all eleven pvmsp3 genes were detected in trophozoite- and schizont-stage RNA. Quantitative immunoblots using schizont-stage extracts and antibodies specific for each PvMSP3 protein demonstrated that all but PvMSP3.11 could be detected. Homologs were also detected by immunoblot in the closely related simian species, P. cynomolgi and P. knowlesi. Immunofluorescence assays confirmed that eight of the PvMSP3s are present in mature schizonts. Uniquely, PvMSP3.7 was expressed exclusively at the apical end of merozoites. Conclusion/Significance Specific proteins were detected representing the expression of 10 out of 11 genes confirmed as members of the pvmsp3 family. Eight PvMSP3s were visualized surrounding merozoites. In contrast, PvMSP3.7 was detected at the apical end of the merozoites. Pvmsp3.11 transcripts were present, though no corresponding protein was detected. PvMSP3 functions remain unknown. The ten expressed PvMSP3s are predicted to have unique and complementary functions in merozoite biology.
Collapse
|
25
|
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. ADVANCES IN PARASITOLOGY 2013; 81:77-131. [PMID: 23384622 DOI: 10.1016/b978-0-12-407826-0.00003-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.
Collapse
Affiliation(s)
- Ivo Mueller
- Walter + Eliza Hall Institute, Infection & Immunity Division, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3. PLoS One 2013; 8:e56061. [PMID: 23457498 PMCID: PMC3573074 DOI: 10.1371/journal.pone.0056061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2%) and at least 1 recombinant protein representing PvMSP-3β (79.1%). In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant) and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin). Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential.
Collapse
|
27
|
Costa FT, Lopes SC, Albrecht L, Ataíde R, Siqueira AM, Souza RM, Russell B, Renia L, Marinho CR, Lacerda MV. On the pathogenesis of Plasmodium vivax malaria: Perspectives from the Brazilian field. Int J Parasitol 2012; 42:1099-105. [DOI: 10.1016/j.ijpara.2012.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 01/05/2023]
|