1
|
Yu H, Gu X, Wang D, Wang Z. Brucella infection and Toll-like receptors. Front Cell Infect Microbiol 2024; 14:1342684. [PMID: 38533384 PMCID: PMC10963510 DOI: 10.3389/fcimb.2024.1342684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Brucella consists of gram-negative bacteria that have the ability to invade and replicate in professional and non-professional phagocytes, and its prolonged persistence in the host leads to brucellosis, a serious zoonosis. Toll-like receptors (TLRs) are the best-known sensors of microorganisms implicated in the regulation of innate and adaptive immunity. In particular, TLRs are transmembrane proteins with a typical structure of an extracellular leucine-rich repeat (LRR) region and an intracellular Toll/interleukin-1 receptor (TIR) domain. In this review, we discuss Brucella infection and the aspects of host immune responses induced by pathogens. Furthermore, we summarize the roles of TLRs in Brucella infection, with substantial emphasis on the molecular insights into its mechanisms of action.
Collapse
Affiliation(s)
- Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xinyi Gu
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Danfeng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
3
|
Jiao H, Li B, Zheng Z, Zhou Z, Li W, Gu G, Liu J, Luo Y, Shuai X, Zhao Y, Liu Y, Wang Y, Wang X, Hu X, Wu L, Chen J, Huang Q. Transcriptome Landscape of Intracellular Brucella ovis Surviving in RAW264.7 Macrophage Immune System. Inflammation 2021; 43:1649-1666. [PMID: 32430895 PMCID: PMC7235551 DOI: 10.1007/s10753-020-01239-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brucella ovis infection results in genital damage and epididymitis in rams, placental inflammation and rare abortion in ewes, and neonatal mortality in lambs. However, the mechanism underlying B. ovis infection remains unclear. In the present study, we used prokaryotic transcriptome sequencing to identify the differentially expressed genes (DEGs) between wild-type B. ovis and intracellular B. ovis in RAW264.7 macrophages. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed, and quantitative reverse transcriptase PCR (qRT-PCR) was used to validate the top 10 upregulated and downregulated DEGs. The results showed that 212 genes were differentially expressed, including 68 upregulated and 144 downregulated genes, which were mainly enriched in 30 GO terms linked to biological process, cellular component, and molecular function. KEGG analysis showed that the DEGs were enriched in the hypoxia-inducible factor 1 (HIF-1) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, beta-alanine metabolism, and quorum sensing pathway. BME_RS01160, BME_RS04270, BME_RS08185, BME_RS12880, BME_RS25875, predicted_RNA865, and predicted_RNA953 were confirmed with the transcriptome sequencing data. Hence, our findings not only reveal the intracellular parasitism of B. ovis in the macrophage immune system, but also help to understand the mechanism of chronic B. ovis infection.
Collapse
Affiliation(s)
- Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, People's Republic of China. .,College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China. .,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China.
| | - Bowen Li
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, People's Republic of China.,College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Zonglin Zheng
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Zhixiong Zhou
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, People's Republic of China.,College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Wenjie Li
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, People's Republic of China.,College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Guojing Gu
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, People's Republic of China.,College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Juan Liu
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, People's Republic of China.,College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Yichen Luo
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, People's Republic of China.,College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Xuehong Shuai
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, People's Republic of China.,College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Yu Zhao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, People's Republic of China.,College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Yuxuan Liu
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Yidan Wang
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Xinglong Wang
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Xiaoyan Hu
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Li Wu
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Jixuan Chen
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| | - Qingzhou Huang
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, 402460, People's Republic of China
| |
Collapse
|
6
|
Chen R, Xi L, Huang X, Ma T, Ren H, Ji G. Effect of Jun N-terminal kinase 1 and 2 on the replication of Penicillium marneffei in human macrophages. Microb Pathog 2015; 82:1-6. [PMID: 25792289 DOI: 10.1016/j.micpath.2015.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 11/15/2022]
Abstract
Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To clarify the mechanisms involved, we evaluated the effect of c-Jun N-terminal kinase 1 and 2 (JNK1/2) on cytokine expression, phagosomal maturation and multiplication of P. marneffei in P. marneffei-stimulated human macrophages. P. marneffei induced the rapid phosphorylation of JNK1/2. Using the specific inhibitor of JNK1/2 (SP600125), we found that the inhibition of JNK1/2 suppressed P. marneffei-induced tumor necrosis factor-α and IL-10 production. In addition, the presence of SP600125 increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that JNK1/2 may play an important role in promoting the replication of P. marneffei. Our findings further indicate that the pathogen through the JNK1/2 pathway may attenuate the immune response and macrophage antifungal function.
Collapse
Affiliation(s)
- Renqiong Chen
- Department of Dermatology, Lianyungang First People's Hospital, Lianyungang 222002, China
| | - Liyan Xi
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaowen Huang
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tuan Ma
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Ren
- Department of Dermatology, Lianyungang First People's Hospital, Lianyungang 222002, China
| | - Guangquan Ji
- Department of Dermatology, Lianyungang First People's Hospital, Lianyungang 222002, China.
| |
Collapse
|
9
|
Gorvel L, Textoris J, Banchereau R, Ben Amara A, Tantibhedhyangkul W, von Bargen K, Ka MB, Capo C, Ghigo E, Gorvel JP, Mege JL. Intracellular bacteria interfere with dendritic cell functions: role of the type I interferon pathway. PLoS One 2014; 9:e99420. [PMID: 24915541 PMCID: PMC4051653 DOI: 10.1371/journal.pone.0099420] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/14/2014] [Indexed: 01/18/2023] Open
Abstract
Dendritic cells (DCs) orchestrate host defenses against microorganisms. In infectious diseases due to intracellular bacteria, the inefficiency of the immune system to eradicate microorganisms has been attributed to the hijacking of DC functions. In this study, we selected intracellular bacterial pathogens with distinct lifestyles and explored the responses of monocyte-derived DCs (moDCs). Using lipopolysaccharide as a control, we found that Orientia tsutsugamushi, the causative agent of scrub typhus that survives in the cytosol of target cells, induced moDC maturation, as assessed by decreased endocytosis activity, the ability to induce lymphocyte proliferation and the membrane expression of phenotypic markers. In contrast, Coxiella burnetii, the agent of Q fever, and Brucella abortus, the agent of brucellosis, both of which reside in vacuolar compartments, only partly induced the maturation of moDCs, as demonstrated by a phenotypic analysis. To analyze the mechanisms used by C. burnetii and B. abortus to alter moDC activation, we performed microarray and found that C. burnetii and B. abortus induced a specific signature consisting of TLR4, TLR3, STAT1 and interferon response genes. These genes were down-modulated in response to C. burnetii and B. abortus but up-modulated in moDCs activated by lipopolysaccharide and O. tsutsugamushi. This transcriptional alteration was associated with the defective interferon-β production. This study demonstrates that intracellular bacteria specifically affect moDC responses and emphasizes how C. burnetii and B. abortus interfere with moDC activation and the antimicrobial immune response. We believe that comparing infection by several bacterial species may be useful for defining new pathways and biomarkers and for developing new treatment strategies.
Collapse
Affiliation(s)
- Laurent Gorvel
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
| | - Julien Textoris
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
| | - Romain Banchereau
- Baylor Institute for Immunology Research, Dallas, Texas, United States of America
| | - Amira Ben Amara
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
| | - Wiwit Tantibhedhyangkul
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kristin von Bargen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, INSERM, U1104, CNRS, UMR7280, Marseille, France
| | - Mignane B. Ka
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
| | - Christian Capo
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
| | - Eric Ghigo
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, INSERM, U1104, CNRS, UMR7280, Marseille, France
| | - Jean-Louis Mege
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
- * E-mail:
| |
Collapse
|
10
|
Rossetti CA, Drake KL, Siddavatam P, Lawhon SD, Nunes JES, Gull T, Khare S, Everts RE, Lewin HA, Adams LG. Systems biology analysis of Brucella infected Peyer's patch reveals rapid invasion with modest transient perturbations of the host transcriptome. PLoS One 2013; 8:e81719. [PMID: 24349118 PMCID: PMC3857238 DOI: 10.1371/journal.pone.0081719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/21/2013] [Indexed: 01/12/2023] Open
Abstract
Brucella melitensis causes the most severe and acute symptoms of all Brucella species in human beings and infects hosts primarily through the oral route. The epithelium covering domed villi of jejunal-ileal Peyer's patches is an important site of entry for several pathogens, including Brucella. Here, we use the calf ligated ileal loop model to study temporal in vivo Brucella-infected host molecular and morphological responses. Our results document Brucella bacteremia occurring within 30 min after intraluminal inoculation of the ileum without histopathologic traces of lesions. Based on a system biology Dynamic Bayesian Network modeling approach (DBN) of microarray data, a very early transient perturbation of the host enteric transcriptome was associated with the initial host response to Brucella contact that is rapidly averted allowing invasion and dissemination. A detailed analysis revealed active expression of Syndecan 2, Integrin alpha L and Integrin beta 2 genes, which may favor initial Brucella adhesion. Also, two intestinal barrier-related pathways (Tight Junction and Trefoil Factors Initiated Mucosal Healing) were significantly repressed in the early stage of infection, suggesting subversion of mucosal epithelial barrier function to facilitate Brucella transepithelial migration. Simultaneously, the strong activation of the innate immune response pathways would suggest that the host mounts an appropriate protective immune response; however, the expression of the two key genes that encode innate immunity anti-Brucella cytokines such as TNF-α and IL12p40 were not significantly changed throughout the study. Furthermore, the defective expression of Toll-Like Receptor Signaling pathways may partially explain the lack of proinflammatory cytokine production and consequently the absence of morphologically detectable inflammation at the site of infection. Cumulatively, our results indicate that the in vivo pathogenesis of the early infectious process of Brucella is primarily accomplished by compromising the mucosal immune barrier and subverting critical immune response mechanisms.
Collapse
Affiliation(s)
- Carlos A. Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kenneth L. Drake
- Seralogix, Limited Liability Corporation, Austin, Texas, United States of America
| | - Prasad Siddavatam
- Seralogix, Limited Liability Corporation, Austin, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jairo E. S. Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Leslie Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|