1
|
Dhorne-Pollet S, Fitzpatrick C, Da Costa B, Bourgon C, Eléouët JF, Meunier N, Burzio VA, Delmas B, Barrey E. Antisense oligonucleotides targeting ORF1b block replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Front Microbiol 2022; 13:915202. [PMID: 36386681 PMCID: PMC9644129 DOI: 10.3389/fmicb.2022.915202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/29/2022] [Indexed: 10/15/2023] Open
Abstract
The ongoing COVID-19 pandemic continues to pose a need for new and efficient therapeutic strategies. We explored antisense therapy using oligonucleotides targeting the severe acute respiratory syndrome coronavirus (SARS-CoV-2) genome. We predicted in silico four antisense oligonucleotides (ASO gapmers with 100% PTO linkages and LNA modifications at their 5' and 3'ends) targeting viral regions ORF1a, ORF1b, N and the 5'UTR of the SARS-CoV-2 genome. Efficiency of ASOs was tested by transfection in human ACE2-expressing HEK-293T cells and monkey VeroE6/TMPRSS2 cells infected with SARS-CoV-2. The ORF1b-targeting ASO was the most efficient, with a 71% reduction in the number of viral genome copies. N- and 5'UTR-targeting ASOs also significantly reduced viral replication by 55 and 63%, respectively, compared to non-related control ASO (ASO-C). Viral titration revealed a significant decrease in SARS-CoV-2 multiplication both in culture media and in cells. These results show that anti-ORF1b ASO can specifically reduce SARS-CoV-2 genome replication in vitro in two different cell infection models. The present study presents proof-of concept of antisense oligonucleotide technology as a promising therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
| | - Christopher Fitzpatrick
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- Universidad Andrés Bello, Santiago, Chile
| | - Bruno Da Costa
- INRAE, UMR VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Bourgon
- INRAE, UMR VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Nicolas Meunier
- INRAE, UMR VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Verónica A. Burzio
- Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia, Vida/Andes Biotechnologies SpA, Santiago, Chile
| | - Bernard Delmas
- INRAE, UMR VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Barrey
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
2
|
Lijuan Z, Fuchang W, Hongri L. A Stochastic SEIRS Epidemic Model with Infection Forces and Intervention Strategies. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4538045. [PMID: 35047150 PMCID: PMC8763553 DOI: 10.1155/2022/4538045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Abstract
The spread of epidemics has been extensively investigated using susceptible-exposed infectious-recovered-susceptible (SEIRS) models. In this work, we propose a SEIRS pandemic model with infection forces and intervention strategies. The proposed model is characterized by a stochastic differential equation (SDE) framework with arbitrary parameter settings. Based on a Markov semigroup hypothesis, we demonstrate the effect of the proliferation number R 0 S on the SDE solution. On the one hand, when R 0 S < 1, the SDE has an illness-free solution set under gentle additional conditions. This implies that the epidemic can be eliminated with a likelihood of 1. On the other hand, when R 0 S > 1, the SDE has an endemic stationary circulation under mild additional conditions. This prompts the stochastic regeneration of the epidemic. Also, we show that arbitrary fluctuations can reduce the infection outbreak. Hence, valuable procedures can be created to manage and control epidemics.
Collapse
Affiliation(s)
- Zhang Lijuan
- Institute of Disaster Prevention, Basic Course Teaching Department, Yanjiao Sanhe 065201, Hebei, China
| | - Wang Fuchang
- Institute of Disaster Prevention, Basic Course Teaching Department, Yanjiao Sanhe 065201, Hebei, China
| | - Liang Hongri
- Institute of Disaster Prevention, Basic Course Teaching Department, Yanjiao Sanhe 065201, Hebei, China
| |
Collapse
|
3
|
Joseph J, Karthika T, Das VRA, Raj VS. The use of pseudotyped coronaviruses for the screening of entry inhibitors: Green tea extract inhibits the entry of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 by blocking receptor-spike interaction. Curr Pharm Biotechnol 2021; 23:1118-1129. [PMID: 34375189 DOI: 10.2174/1389201022666210810111716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Coronaviruses (CoVs) infect a wide range of animals and birds. Their tropism is primarily determined by the ability of the spike protein to bind to a host cell surface receptor. The ongoing outbreak of SARS-CoV-2 inculcates the need for the development of effective intervention strategies. OBJECTIVES In this study, we aim to produce pseudotyped coronaviruses of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 and show its applications, including virus entry, neutralization, and screening of entry inhibitors from natural products. METHODS Here, we generated VSV-based pseudotyped coronaviruses (CoV-PVs) for SARS-CoV-1, MERS-CoV, and SARS-CoV-2. Recombinant spike proteins of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 were transiently expressed in HEK293T cells followed by infection with recombinant VSV. High titer pseudoviruses were harvested and subjected to distinct validation assays, which confirms the proper spike pseudotyping. Further, specific receptor-mediated entry was confirmed by antibody neutralization and soluble form of receptor inhibition assay on Vero E6 cells. Next, these CoV-PVs were used for screening of antiviral activity of natural compounds such as green tea and Spirulina extract. RESULTS Medicinal plants and natural compounds have been traditionally used as antiviral agents. In the first series of experiments, we demonstrated that pseudotyped viruses specifically bind to their receptors for cellular entry. SARS-CoV-1 and MERS-CoV anti-sera neutralize SARS-CoV-1-PV and SARS-CoV-2-PV, and MERS-CoV-PV, respectively. Incubation of soluble ACE2 with CoV-PVs inhibited entry of SARS-CoV-1 and SARS-CoV-2 PVs but not MERS-CoV-PV. Also, transient expression of ACE2 and DPP4 in non-permissive BHK21 cells enabled infection by SARS-CoV-1-PV, SARS-CoV-2-PV, and MERS-CoV-PV, respectively. Next, we showed the antiviral properties of known entry inhibitors of enveloped viruses, Spirulina, and green tea extracts against CoV-PVs. SARS-CoV-1-PV, MERS-CoV-PV, and SARS-CoV-2-PV entry was blocked with higher efficiency when preincubated with either green tea or Spirulina extracts. Green tea provided a better inhibitory effect by binding to the S1 domain of the spike and blocking the spike interaction with its receptor. CONCLUSION In summary, we demonstrated that pseudotyped viruses are an ideal tool for studying viral entry, quantification of neutralizing antibodies, and screening of entry inhibitors in a BSL-2 facility. Moreover, green tea might be a promising natural remedy against emerging coronaviruses.
Collapse
Affiliation(s)
- Jeswin Joseph
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Thankamani Karthika
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - V R Akshay Das
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - V Stalin Raj
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| |
Collapse
|
4
|
Ghosh S, Saha A, Samanta S, Saha RP. Genome structure and genetic diversity in the Ebola virus. Curr Opin Pharmacol 2021; 60:83-90. [PMID: 34364102 DOI: 10.1016/j.coph.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Ebola is a deadly pathogen responsible for Ebola virus disease, first came to prominence in the year 1976. This rapidly evolving virus imposed a serious threat to the human population in the last few decades and also continues to be a probable threat to our race. A better understanding of the virus in terms of its genomic structure is very much needed to develop an effective antiviral therapy against this deadly pathogen. Complete knowledge of its genomic structure and variations will help us and the entire scientific community to design effective therapy in terms of either vaccine development or the development of proper antiviral medicine.
Collapse
Affiliation(s)
- Sanmitra Ghosh
- Department of Microbiology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Rudra P Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| |
Collapse
|
5
|
Sharma AR, Lee YH, Nath S, Lee SS. Recent developments and strategies of Ebola virus vaccines. Curr Opin Pharmacol 2021; 60:46-53. [PMID: 34329960 DOI: 10.1016/j.coph.2021.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
The Filovirus family member, Ebola virus (EBOV), is a highly infectious pathogen responsible for viral hemorrhagic fever. EBOV has a fatality rate in the range 50%-90% in primates. The lethal viral hemorrhagic attack in 2014 by EBOV has forced the human race to look for rapid countermeasures. Fortunately, owing to continuous efforts and several vaccine platforms, few potential vaccine candidates are emerging, such as replicative and non-replicative vectored vaccines, polyepitopic or monovalent vaccines, and DNA vaccines. This article reviewed various kinds of EBOV vaccines in different clinical trial phases and their approval status. Updated knowledge of vaccine development progress might stimulate the researchers to look for more potent and effective vaccine candidates against EBOV.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea.
| | - Yeon-Hee Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Sudarshini Nath
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea.
| |
Collapse
|
6
|
Dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr Med Chem 2021; 28:2887-2942. [PMID: 32787752 DOI: 10.2174/0929867327666200812215852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.
Collapse
|
7
|
Zhao J, Fang S, Liu Y, Zeng L, He Z. A lateral flow biosensor based on gold nanoparticles detects four hemorrhagic fever viruses. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5613-5620. [PMID: 33184619 DOI: 10.1039/d0ay01137a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pathogen of viral hemorrhagic fever (VHF), which is harmful to human health, is a hemorrhagic fever virus. Clinicians have long needed convenient and sensitive point-of-care rapid diagnostic tests (RDTs) for hemorrhagic fever viruses. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. However, these methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive biosensor for the rapid detection of hemorrhagic fever viruses. For this assay, we develop lateral flow biosensors (LFBs) based on magnetic beads and nicking enzyme-assisted isothermal strand-displacement amplification (SDA) for the detection of hemorrhagic fever viruses. The detection limit of this assay is 10 fM.
Collapse
Affiliation(s)
- Jin Zhao
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China. and Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Shuting Fang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China.
| | - Yujie Liu
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China.
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528231, China. and Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guang-zhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhixu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
8
|
Hao D, Wang Y, Li L, Qian G, Liu J, Li M, Zhang Y, Zhou R, Yan D. SHP-1 suppresses the antiviral innate immune response by targeting TRAF3. FASEB J 2020; 34:12392-12405. [PMID: 32779804 PMCID: PMC7404838 DOI: 10.1096/fj.202000600rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Type I interferons play a pivotal role in innate immune response to virus infection. The protein tyrosine phosphatase SHP‐1 was reported to function as a negative regulator of inflammatory cytokine production by inhibiting activation of NF‐κB and MAPKs during bacterial infection, however, the role of SHP‐1 in regulating type I interferons remains unknown. Here, we demonstrated that knockout or knockdown of SHP‐1 in macrophages promoted both HSV‐1‐ and VSV‐induced antiviral immune response. Conversely, overexpression of SHP‐1 in L929 cells suppressed the HSV‐1‐ and VSV‐induced immune response; suppression was directly dependent on phosphatase activity. We identified a direct interaction between SHP‐1 and TRAF3; the association between these two proteins resulted in diminished recruitment of CK1ε to TRAF3 and inhibited its K63‐linked ubiquitination; SHP‐1 inhibited K63‐linked ubiquitination of TRAF3 by promoting dephosphorylation at Tyr116 and Tyr446. Taken together, our results identify SHP‐1 as a negative regulator of antiviral immunity and suggest that SHP‐1 may be a target for intervention in acute virus infection.
Collapse
Affiliation(s)
- Doudou Hao
- Department of Immunology, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yu Wang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China.,Department of Basic Courses, NCO School, Army Medical University, Shijiazhuang, China
| | - Liuyan Li
- Department of Immunology, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Gui Qian
- Department of Immunology, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jing Liu
- Department of Immunology, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Manman Li
- Department of Immunology, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yihua Zhang
- Department of Immunology, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ruixue Zhou
- Department of Immunology, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Abstract
Since its discovery in 1976, Ebola virus (EBOV) has caused numerous outbreaks of fatal hemorrhagic disease in Africa. The biggest outbreak on record is the 2013-2016 epidemic in west Africa with almost 30,000 cases and over 11,000 fatalities, devastatingly affecting Guinea, Liberia, and Sierra Leone. The epidemic highlighted the need for licensed drugs or vaccines to quickly combat the disease. While at the beginning of the epidemic no licensed countermeasures were available, several experimental drugs with preclinical efficacy were accelerated into human clinical trials and used to treat patients with Ebola virus disease (EVD) toward the end of the epidemic. In the same manner, vaccines with preclinical efficacy were administered primarily to known contacts of EVD patients on clinical trial protocols using a ring-vaccination strategy. In this review, we describe the pathogenesis of EBOV and summarize the current status of EBOV vaccine development and treatment of EVD.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| |
Collapse
|
10
|
Liu Y, Wen Z, Carrion R, Nunneley J, Staples H, Ticer A, Patterson JL, Compans RW, Ye L, Yang C. Intradermal Immunization of EBOV VLPs in Guinea Pigs Induces Broader Antibody Responses Against GP Than Intramuscular Injection. Front Microbiol 2020; 11:304. [PMID: 32174901 PMCID: PMC7056717 DOI: 10.3389/fmicb.2020.00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
Ebolavirus (EBOV) infection in humans causes severe hemorrhagic fevers with high mortality rates that range from 30 to 80% as shown in different outbreaks. Thus the development of safe and efficacious EBOV vaccines remains an important goal for biomedical research. We have shown in early studies that immunization with insect cell-produced EBOV virus-like particles (VLPs) is able to induce protect vaccinated mice against lethal EBOV challenge. In the present study, we investigated immune responses induced by Ebola VLPs via two different routes, intramuscular and intradermal immunizations, in guinea pigs. Analyses of antibody responses revealed that similar levels of total IgG antibodies against the EBOV glycoprotein (GP) were induced by the two different immunization methods. However, further characterization showed that the EBOV GP-specific antibodies induced by intramuscular immunization were mainly of the IgG2 subtype whereas both IgG1 and IgG2 antibodies against EBOV GP were induced by intradermal immunization. In contrast, antibody responses against the EBOV matrix protein VP40 induced by intramuscular or intradermal immunizations exhibited similar IgG1 and IgG2 profiles. More interestingly, we found that the sites that the IgG1 antibodies induced by intradermal immunizations bind to in GP are different from those that bind to the IgG2 antibodies induced by intramuscular immunization. Further analyses revealed that sera from all vaccinated guinea pigs exhibited neutralizing activity against Ebola GP-mediated HIV pseudovirion infection at high levels. Moreover, all EBOV VLP-vaccinated guinea pigs survived the challenge by a high dose (1000 pfu) of guinea pig-adapted EBOV, while all control guinea pigs immunized with irrelevant VLPs succumbed to the challenge. The induction of both IgG1 and IgG2 antibody responses that recognized broader sites in GP by intradermal immunization of EBOV VLPs indicates that this approach may represent a more advantageous route of vaccination against virus infection.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
| | - Zhiyuan Wen
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
- Harbin Veterinary Research Institute, Harbin, China
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jerritt Nunneley
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Hilary Staples
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Anysha Ticer
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ling Ye
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chinglai Yang
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Singleton CD, Humby MS, Yi HA, Rizzo RC, Jacobs A. Identification of Ebola Virus Inhibitors Targeting GP2 Using Principles of Molecular Mimicry. J Virol 2019; 93:e00676-19. [PMID: 31092576 PMCID: PMC6639268 DOI: 10.1128/jvi.00676-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
A key step in the Ebola virus (EBOV) replication cycle involves conformational changes in viral glycoprotein 2 (GP2) which facilitate host-viral membrane fusion and subsequent release of the viral genome. Ebola GP2 plays a critical role in virus entry and has similarities in mechanism and structure to the HIV gp41 protein for which inhibitors have been successfully developed. In this work, a putative binding pocket for the C-terminal heptad repeat in the N-terminal heptad repeat trimer was targeted for identification of small molecules that arrest EBOV-host membrane fusion. Two computational structure-based virtual screens of ∼1.7 M compounds were performed (DOCK program) against a GP2 five-helix bundle, resulting in 165 commercially available compounds purchased for experimental testing. Based on assessment of inhibitory activity, cytotoxicity, and target specificity, four promising candidates emerged with 50% inhibitory concentration values in the 3 to 26 μM range. Molecular dynamics simulations of the two most potent candidates in their DOCK-predicted binding poses indicate that the majority of favorable interactions involve seven highly conserved residues that can be used to guide further inhibitor development and refinement targeting EBOV.IMPORTANCE The most recent Ebola virus disease outbreak, from 2014 to 2016, resulted in approximately 28,000 individuals becoming infected, which led to over 12,000 causalities worldwide. The particularly high pathogenicity of the virus makes paramount the identification and development of promising lead compounds to serve as inhibitors of Ebola infection. To limit viral load, the virus-host membrane fusion event can be targeted through the inhibition of the class I fusion glycoprotein of Ebolavirus In the current work, several promising small-molecule inhibitors that target the glycoprotein GP2 were identified through systematic application of structure-based computational and experimental drug design procedures.
Collapse
Affiliation(s)
- Courtney D Singleton
- Department of Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Monica S Humby
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| | - Hyun Ah Yi
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| |
Collapse
|
12
|
Role of the Ebola membrane in the protection conferred by the three-mAb cocktail MIL77. Sci Rep 2018; 8:17628. [PMID: 30514891 PMCID: PMC6279787 DOI: 10.1038/s41598-018-35964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022] Open
Abstract
MIL77, which has a higher manufacturing capacity than ZMapp, comprises MIL77-1, MIL77-2, and MIL77-3. The mechanisms by which these antibodies inhibit glycoprotein are unclear. Infection by viruses with lipid-bilayer envelopes occurs via the fusion of the viral membrane with the membrane of the target cell. Therefore, the interaction between the antibodies and the EBOV membrane is crucial. We examined the interactions between MIL77 and the viral membrane using SPR. MIL77-1 selectively binds to viral membranes, while MIL77-2 and MIL77-3 do not. MIL77-1’s ability to screen the more rigid domains of the membranes results in a locally increased concentration of the drug at the fusion site. Although MIL77-2 recognizes an epitope of GP, it is not necessary in the MIL77 cocktail. These results highlight the importance of EBOV membrane interactions in improving the efficiency of a neutralizing antibody. Furthermore, the viral membrane may be an important target of antibodies against EBOV.
Collapse
|
13
|
Drug Repurposing for Ebola Virus Disease: Principles of Consideration and the Animal Rule. J Pharm Sci 2018; 108:798-806. [PMID: 30244014 DOI: 10.1016/j.xphs.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 11/21/2022]
Abstract
There are no approved drugs or biologics to treat Ebola virus disease (EVD). Literature reviews identified a list of 141 drugs with reports of preliminary in vitro potency and in vivo effectiveness in animals or with reports of clinical use/trials in EVD patients. The majority of these drugs have been individually approved by the U.S. Food and Drug Administration for treating various non-EVD diseases. The anti-Ebola potency data of these drugs were curated from literature and publicly accessible databases, along with their individual biopharmaceutical and pharmacokinetic characteristics. To facilitate the development of antiviral drugs including anti-EVD drugs, highlights include optimization of the exposure-response relationship, design of a safe and effective clinical dosing regimen to achieve an adequate high ratio of clinical Cmin to a plasma protein binding-adjusted EC95, and the pharmacokinetic studies needed in animal models (healthy and affected) and in healthy volunteers. The exposure/response relationship for human dose selection is summarized, as described in the U.S. Food and Drug Administration "Animal Rule'' guidance when human efficacy studies are not ethical or feasible.
Collapse
|
14
|
Jin Y, Lei C, Hu D, Dimitrov DS, Ying T. Human monoclonal antibodies as candidate therapeutics against emerging viruses. Front Med 2017; 11:462-470. [PMID: 29159596 PMCID: PMC7088856 DOI: 10.1007/s11684-017-0596-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
The emergence of new pathogens, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and Ebola virus, poses serious challenges to global public health and highlights the urgent need for novel antiviral approaches. Monoclonal antibodies (mAbs) have been successfully used to treat various diseases, particularly cancer and immunological disorders. Antigen-specific mAbs have been isolated using several different approaches, including hybridoma, transgenic mice, phage display, yeast display, and single B-cell isolation. Consequently, an increasing number of mAbs, which exhibit high potency against emerging viruses in vitro and in animal models of infection, have been developed. In this paper, we summarize historical trends and recent developments in mAb discovery, compare the advantages and disadvantages of various approaches to mAb production, and discuss the potential use of such strategies for the development of antivirals against emerging diseases. We also review the application of recently developed human mAbs against SARS-CoV, MERS-CoV, and Ebola virus and discuss prospects for the development of mAbs as therapeutic agents against emerging viral diseases.
Collapse
Affiliation(s)
- Yujia Jin
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cheng Lei
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Hu
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Development of small-molecule viral inhibitors targeting various stages of the life cycle of emerging and re-emerging viruses. Front Med 2017; 11:449-461. [PMID: 29170916 PMCID: PMC7089273 DOI: 10.1007/s11684-017-0589-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023]
Abstract
In recent years, unexpected outbreaks of infectious diseases caused by emerging and re-emerging viruses have become more frequent, which is possibly due to environmental changes. These outbreaks result in the loss of life and economic hardship. Vaccines and therapeutics should be developed for the prevention and treatment of infectious diseases. In this review, we summarize and discuss the latest progress in the development of small-molecule viral inhibitors against highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, Ebola virus, and Zika virus. These viruses can interfere with the specific steps of viral life cycle by blocking the binding between virus and host cells, disrupting viral endocytosis, disturbing membrane fusion, and interrupting viral RNA replication and translation, thereby demonstrating potent therapeutic effect against various emerging and re-emerging viruses. We also discuss some general strategies for developing small-molecule viral inhibitors.
Collapse
|
16
|
Wang SR, Zhang QY, Wang JQ, Ge XY, Song YY, Wang YF, Li XD, Fu BS, Xu GH, Shu B, Gong P, Zhang B, Tian T, Zhou X. Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene. Cell Chem Biol 2017; 23:1113-1122. [PMID: 27617851 DOI: 10.1016/j.chembiol.2016.07.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/28/2022]
Abstract
In the present study, our bioinformatics analysis first reveals the existence of a conserved guanine-rich sequence within the Zaire ebolavirus L gene. Using various methods, we show that this sequence tends to fold into G-quadruplex RNA. TMPyP4 treatment evidently inhibits L gene expression at the RNA level. Moreover, the mini-replicon assay demonstrates that TMPyP4 effectively inhibits the artificial Zaire ebolavirus mini-genome and is a more potent inhibitor than ribavirin. Although TMPyP4 treatment reduced the replication of the mutant mini-genome when G-quadruplex formation was abolished in the L gene, its inhibitory effect was significantly alleviated compared with wild-type. Our findings thus provide the first evidence that G-quadruplex RNA is present in a negative-sense RNA virus. Finally, G-quadruplex RNA stabilization may represent a new therapeutic strategy against Ebola virus disease.
Collapse
Affiliation(s)
- Shao-Ru Wang
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Qiu-Yan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Jia-Qi Wang
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xing-Yi Ge
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yan-Yan Song
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Ya-Fen Wang
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xiao-Dan Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Guo-Hua Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Bo Shu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Peng Gong
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Bo Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
17
|
Abstract
Under a traditional paradigm, only those with the expected background knowledge consume academic literature. The lay press, as well as government and non-government agencies, play a complementary role of extracting findings of high interest or importance and translating them for general viewing. The need for accurate reporting and public advising is paramount when attempting to tackle epidemic outbreaks through behavior change. Yet, public trust in media outlets is at a historic low. The Crisis and Emergency Risk Communication (CERC) model for media reporting on public health emergencies was established in 2005 and has subsequently been used to analyze media reporting on outbreaks of influenza and measles as well as smoking habits and medication compliance. However, no media analysis had yet been performed on the 2013–2016 Ebola Virus Disease (EVD) outbreak. This study compared the EVD information relayed by lay press sources with general review articles in the academic literature through a mixed-methods analysis. These findings suggest that comprehensive review articles could not serve as a source to clarify and contextualize the uncertainties around the EVD outbreak, perhaps due to adherence to technical accuracy at the expense of clarity within the context of outbreak conditions. This finding does not imply inferiority of the academic literature, nor does it draw direct causation between confusion in review articles and public misunderstanding. Given the erosion of the barriers siloing academia, combined with the demands of today’s fast-paced media environment, contemporary researchers should realize that no study is outside the public forum and to therefore consider shifting the paradigm to take personal responsibility in the process of accurately translating their scientific words into public policy actions to best serve as a source of clarity.
Collapse
|
18
|
Pacheco DADMRA, Rodrigues AAG, Silva CMLD. Ebola virus - from neglected threat to global emergency state. Rev Assoc Med Bras (1992) 2017; 62:458-67. [PMID: 27656857 DOI: 10.1590/1806-9282.62.05.458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/11/2015] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This review aims to update knowledge about Ebola virus disease (EVD) and recent advances in its diagnosis, treatment and prevention. METHOD A literature review was performed using the following databases: ISI Web of Knowledge, PubMed, IRIS, Scopus and the websites of the CDC and the WHO. Additionally, we have included articles and reports referenced in the basic literature search, and news that were considered relevant. RESULTS The Ebola virus, endemic in some parts of Africa, is responsible for a severe form of hemorrhagic fever in humans; bats are probably its natural reservoir. It is an extremely virulent virus and easily transmitted by bodily fluids. EVD's complex pathophysiology, characterized by immunosuppression as well as stimulation of an intense inflammatory response, results in a syndrome similar to septic shock. The diagnosis is difficult due to the initial symptoms that mimic other diseases. Despite the high mortality rates that can amount to 90%, a prophylaxis (chemical or vaccine) or effective treatment does not exist. Two vaccines and experimental therapies are being developed for the prevention and treatment of EVD. CONCLUSION Although the virus is known for about 40 years, the lack of knowledge obtained and the disinterest of government authorities in the countries involved justify the state of emergency currently exists regarding this infectious agent. Only the coordination of multiple entities and the effective commitment of the international community will facilitate the control and effective prevention of EVD.
Collapse
Affiliation(s)
| | - Acácio Agostinho Gonçalves Rodrigues
- PhD - Director of the Department and Laboratory of Microbiology, Faculdade de Medicina, Universidade do Porto. MD, Department of Anesthesiology and Intensive Care, Burns Unit, Hospital de São João, Porto, Portugal
| | - Carmen Maria Lisboa da Silva
- PhD - Professor of the Department and Laboratory of Microbiology, Faculdade de Medicina, Universidade do Porto. MD, Department of Dermatovenereology, Hospital São João, Porto, Portugal
| |
Collapse
|
19
|
Liu Q, Fan C, Li Q, Zhou S, Huang W, Wang L, Sun C, Wang M, Wu X, Ma J, Li B, Xie L, Wang Y. Antibody-dependent-cellular-cytotoxicity-inducing antibodies significantly affect the post-exposure treatment of Ebola virus infection. Sci Rep 2017; 7:45552. [PMID: 28358050 PMCID: PMC5372081 DOI: 10.1038/srep45552] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/28/2017] [Indexed: 01/11/2023] Open
Abstract
Passive immunotherapy with monoclonal antibodies (mAbs) is an efficacious treatment for Ebola virus (EBOV) infections in animal models and humans. Understanding what constitutes a protective response is critical for the development of novel therapeutic strategies. We generated an EBOV-glycoprotein-pseudotyped Human immunodeficiency virus to develop sensitive neutralizing and antibody-dependent cellular cytotoxicity (ADCC) assays as well as a bioluminescent-imaging-based mouse infection model that does not require biosafety level 4 containment. The in vivo treatment efficiencies of three novel anti-EBOV mAbs at 12 h post-infection correlated with their in vitro anti-EBOV ADCC activities, without neutralizing activity. When they were treated with these mAbs, natural killer cell (NK)-deficient mice had lower viral clearance than WT mice, indicating that the anti-EBOV mechanism of the ADCC activity of these mAbs is predominantly mediated by NK cells. One potent anti-EBOV mAb (M318) displayed unprecedented neutralizing and ADCC activities (neutralization IC50, 0.018 μg/ml; ADCC EC50, 0.095 μg/ml). These results have important implications for the efficacy of antiviral drugs and vaccines as well as for pathogenicity studies of EBOV.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Viral/administration & dosage
- Antibody-Dependent Cell Cytotoxicity
- Disease Models, Animal
- Female
- Hemorrhagic Fever, Ebola/drug therapy
- Hemorrhagic Fever, Ebola/immunology
- Humans
- Killer Cells, Natural/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Qiang Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Shuya Zhou
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lan Wang
- Division of Monoclonal Antibody, National Institutes for Food and Drug Control, Beijing 100050, China
| | | | - Meng Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xi Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jian Ma
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Baowen Li
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, China
| | | | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
20
|
Chemically Modified Human Serum Albumin Potently Blocks Entry of Ebola Pseudoviruses and Viruslike Particles. Antimicrob Agents Chemother 2017; 61:AAC.02168-16. [PMID: 28167539 DOI: 10.1128/aac.02168-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV), the causative pathogen of the deadly Ebola virus disease (EVD), can be transmitted via contact with EVD patients, including sexual contact with EVD survivors. At present, no licensed vaccine or therapeutic is available. In this study, we compared eight anhydride-modified proteins for their entry-inhibitory activity against the pseudovirus (PsV) carrying the envelope glycoprotein (GP) of the EBOV Zaire or Sudan species (Zaire PsV and Sudan PsV, respectively). We found that 3-hydroxyphthalic anhydride-modified human serum albumin (HP-HSA) was the most effective in inhibiting the entry of both Zaire PsV and Sudan PsV, with the 50% effective concentration being at the nanomolar level and with HP-HSA being more potent than EBOV-neutralizing antibody MIL77-2 (4G7, a component antibody of the ZMapp drug cocktail). The combination of HP-HSA and MIL77-2 exhibited a synergistic effect. HP-HSA had no obvious in vitro or in vivo toxicity. The EBOV PsV entry-inhibitory activity of HP-HSA remained intact after storage at 45°C for 8 weeks, suggesting that HP-HSA has the potential for worldwide use, including tropical regions in African countries, as either a therapeutic to treat EBOV infection or a prophylactic microbicide to prevent the sexual transmission of EBOV.
Collapse
|
21
|
Green RJ. Emerging Zoonotic and Vector-Borne Viral Diseases. VIRAL INFECTIONS IN CHILDREN, VOLUME I 2017. [PMCID: PMC7114986 DOI: 10.1007/978-3-319-54033-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Many vector-borne and zoonotic diseases are considered to be emerging; since they are either newly reported to cause human disease, or are causing disease in geographical locations or species not previously documented. In the past 15 years, significant outbreaks of Severe Acute Respiratory Syndrome (or SARS) and Middle Eastern Respiratory Syndrome (or MERS), Nipah and Hendra, Ebola virus disease and Zika fever and others have been reported. In this chapter the clinical characteristics, epidemiological aspects, treatment and prevention and information related to the laboratory investigation of important zoonotic and vector-borne diseases that have emerged in the past 10 years, and how this affects children, will be discussed. Furthermore rabies, considered a neglected viral disease with the majority of victims in Africa being children, will also be addressed.
Collapse
Affiliation(s)
- Robin J. Green
- Department of Paediatrics and Child Health, University of Pretoria, School of Medicine, Pretoria, ZA, South Africa
| |
Collapse
|
22
|
|
23
|
Sivanandy P, Sin SH, Ching OY, Rajasekar D, Woon GS, Chiew HH, Ee-Yenn CN, Wei KX, Leng YW. Current trends in the management of Ebola virus disease-an updated systematic review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61091-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Quinoxaline-based inhibitors of Ebola and Marburg VP40 egress. Bioorg Med Chem Lett 2016; 26:3429-35. [PMID: 27377328 DOI: 10.1016/j.bmcl.2016.06.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 11/21/2022]
Abstract
We prepared a series of quinoxalin-2-mercapto-acetyl-urea analogs and evaluated them for their ability to inhibit viral egress in our Marburg and Ebola VP40 VLP budding assays in HEK293T cells. We also evaluated selected compounds in our bimolecular complementation assay (BiMC) to detect and visualize a Marburg mVP40-Nedd4 interaction in live mammalian cells. Antiviral activity was assessed for selected compounds using a live recombinant vesicular stomatitis virus (VSV) (M40 virus) that expresses the EBOV VP40 PPxY L-domain. Finally selected compounds were evaluated in several ADME assays to have an early assessment of their drug properties. Our compounds had low nM potency in these assays (e.g., compounds 21, 24, 26, 39), and had good human liver microsome stability, as well as little or no inhibition of P450 3A4.
Collapse
|
25
|
Yusim K, Yoon H, Foley B, Feng S, Macke J, Dimitrijevic M, Abfalterer W, Szinger J, Fischer W, Kuiken C, Korber B. Integrated sequence and immunology filovirus database at Los Alamos. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw047. [PMID: 27103629 PMCID: PMC4839628 DOI: 10.1093/database/baw047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
The Ebola outbreak of 2013–15 infected more than 28 000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. As this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of known natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy. Database URL: www.hfv.lanl.gov
Collapse
Affiliation(s)
- Karina Yusim
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hyejin Yoon
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Brian Foley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shihai Feng
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | - Will Fischer
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carla Kuiken
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
26
|
Huang G. Artificial infectious disease optimization: A SEIQR epidemic dynamic model-based function optimization algorithm. SWARM AND EVOLUTIONARY COMPUTATION 2016; 27:31-67. [PMID: 32288989 PMCID: PMC7104270 DOI: 10.1016/j.swevo.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/05/2015] [Accepted: 09/21/2015] [Indexed: 05/04/2023]
Abstract
To solve some complicated function optimization problems, an artificial infectious disease optimization algorithm based on the SEIQR epidemic model is constructed, it is called as the SEIQR algorithm, or SEIQRA in short. The algorithm supposes that some human individuals exist in an ecosystem; each individual is characterized by a number of features; an infectious disease (SARS) exists in the ecosystem and spreads among individuals, the disease attacks only a part of features of an individual. Each infected individual may pass through such states as susceptibility (S), exposure (E), infection (I), quarantine (Q) and recovery (R). State S, E, I, Q and R can automatically and dynamically divide all people in the ecosystem into five classes, it provides the diversity for SEIQRA; that people can be attacked by the infectious disease and then transfer it to other people can cause information exchange among people, information exchange can make a person to transit from one state to another; state transitions can be transformed into operators of SEIQRA; the algorithm has 13 legal state transitions, which corresponds to 13 operators; the transmission rules of the infectious disease among people is just the logic to control state transitions of individuals among S, E, I, Q and R, it is just the synergy of SEIQRA, the synergy can be transformed into the logic structure of the algorithm. The 13 operators in the algorithm provide a native opportunity to integrate many operations with different purposes; these operations include average, differential, expansion, chevy, reflection and crossover. The 13 operators are executed equi-probably; a stable heart rhythm of the algorithm is realized. Because the infectious disease can only attack a small part of organs of a person when it spreads among people, the part variables iteration strategy (PVI) can be ingeniously applied, thus enabling the algorithm to possess of high performance of computation, high suitability for solving some kinds of complicated optimization problems, especially high dimensional optimization problems. Results show that SEIQRA has characteristics of strong search capability and global convergence, and has a high convergence speed for some complicated functions optimization problems.
Collapse
Affiliation(s)
- Guangqiu Huang
- School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
27
|
van der Linden WA, Schulze CJ, Herbert AS, Krause TB, Wirchnianski AA, Dye JM, Chandran K, Bogyo M. Cysteine Cathepsin Inhibitors as Anti-Ebola Agents. ACS Infect Dis 2016; 2:173-179. [PMID: 27347558 DOI: 10.1021/acsinfecdis.5b00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The recent Ebola virus outbreak in western Africa highlights the need for novel therapeutics that target Ebola virus and other filoviruses. Filoviruses require processing by host cell-derived cysteine cathepsins for productive infection. Here we report the generation of a focused library of cysteine cathepsin inhibitors and subsequent screening to identify compounds with potent activity against viral entry and replication. Our top compounds show highly potent and broad-spectrum activity against cysteine cathepsins and were able to effectively block entry of Ebola and Marburg viruses. These agents are promising leads for development as antifilovirus therapeutics.
Collapse
Affiliation(s)
- Wouter A. van der Linden
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Christopher J. Schulze
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, United States
| | - Tyler B. Krause
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Ariel A. Wirchnianski
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, United States
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
28
|
Kaushik A, Tiwari S, Dev Jayant R, Marty A, Nair M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens Bioelectron 2016; 75:254-72. [PMID: 26319169 PMCID: PMC4601610 DOI: 10.1016/j.bios.2015.08.040] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022]
Abstract
Ebola outbreak-2014 (mainly Zaire strain related Ebola virus) has been declared most widely spread deadly persistent epidemic due to unavailability of rapid diagnostic, detection, and therapeutics. Ebola virus disease (EVD), a severe viral hemorrhagic fever syndrome caused by Ebola virus (EBOV) is transmitted by direct contact with the body fluids of infected person and objects contaminated with virus or infected animals. World Health Organization (WHO) has declared EVD epidemic as public health emergency of international concern with severe global economic burden. At fatal EBOV infection stage, patients usually die before the antibody response. Currently, rapid blood tests to diagnose EBOV infection include the antigen or antibodies capture using ELISA and RNA detection using RT/Q-PCR within 3-10 days after the onset of symptoms. Moreover, few nanotechnology-based colorimetric and paper-based immunoassay methods have been recently reported to detect Ebola virus. Unfortunately, these methods are limited to laboratory only. As state-of-the art (SoA) diagnostics time to confirm Ebola infection, varies from 6h to about 3 days, it causes delay in therapeutic approaches. Thus developing a cost-effective, rapid, sensitive, and selective sensor to detect EVD at point-of-care (POC) is certainly worth exploring to establish rapid diagnostics to decide therapeutics. This review highlights SoA of Ebola diagnostics and also a call to develop rapid, selective and sensitive POC detection of EBOV for global health care. We propose that adopting miniaturized electrochemical EBOV immunosensing can detect virus level at pM concentration within ∼40min compared to 3 days of ELISA test at nM levels.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Florida International University, Miami, USA.
| | - Sneham Tiwari
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Florida International University, Miami, USA
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Florida International University, Miami, USA
| | - Aileen Marty
- Infectious Diseases, Department of Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Florida International University, Miami, USA.
| |
Collapse
|
29
|
Ebola Virus Infection: Overview and Update on Prevention and Treatment. Infect Dis Ther 2015; 4:365-90. [PMID: 26363787 PMCID: PMC4675769 DOI: 10.1007/s40121-015-0079-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/08/2022] Open
Abstract
In 2014 and 2015, the largest Ebola virus disease (EVD) outbreak in history affected large populations across West Africa. The goal of this report is to provide an update on the epidemic and review current progress in the development,
evaluation and deployment of prevention and treatment strategies for EVD. Relevant information was identified through a comprehensive literature search using Medline, PubMed and CINAHL Complete and using the search terms Ebola, Ebola virus disease, Ebola hemorrhagic fever, West Africa outbreak, Ebola transmission, Ebola symptoms and signs, Ebola diagnosis, Ebola treatment, vaccines for Ebola and clinical trials on Ebola. Through 22 July 2015, a total of 27,741 EVD cases and 11,284 deaths were reported from all affected countries. Several therapeutic agents and novel vaccines for EVD have been developed and are now undergoing evaluation. Concurrent with active case investigation, contact tracing, surveillance and supportive care to patients and communities, there has been rapid progress in the development of new therapies and vaccines against EVD. Continued focus on strengthening clinical and public health infrastructure will have direct benefits in controlling the spread of EVD and will provide a strong foundation for deployment of new drugs and vaccines to affected countries when they become available. The unprecedented West Africa Ebola outbreak, response measures, and ensuing drug and vaccine development suggest that new tools for Ebola control may be available in the near future.
Collapse
|
30
|
Kiselev OI, Vasin AV, Shevyryova MP, Deeva EG, Sivak KV, Egorov VV, Tsvetkov VB, Egorov AY, Romanovskaya-Romanko EA, Stepanova LA, Komissarov AB, Tsybalova LM, Ignatjev GM. Ebola hemorrhagic fever: Properties of the pathogen and development of vaccines and chemotherapeutic agents. Mol Biol 2015; 49:480-493. [PMID: 32214474 PMCID: PMC7089462 DOI: 10.1134/s002689331504007x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
Abstract
Ebola hemorrhagic fever (EHF) epidemic currently ongoing in West Africa is not the first among numerous epidemics in the continent. Yet it seems to be the worst EHF epidemic outbreak caused by Ebola virus Zaire since 1976 as regards its extremely large scale and rapid spread in the population. Experiments to study the agent have continued for more than 20 years. The EHF virus has a relatively simple genome with seven genes and additional reading frame resulting from RNA editing. While being of a relatively low genetic capacity, the virus can be ranked as a standard for pathogenicity with the ability to evade the host immune response in uttermost perfection. The EHF virus has similarities with retroviruses, but belongs to (-)RNA viruses of a nonretroviral origin. Genetic elements of the virus, NIRV, were detected in animal and human genomes. EHF virus glycoprotein (GP) is a class I fusion protein and shows more similarities than distinctions in tertiary structure with SIV and HIV gp41 proteins and even influenza virus hemagglutinin. EHF is an unusual infectious disease, and studying the molecular basis of its pathogenesis may contribute to new findings in therapy of severe conditions leading to a fatal outcome.
Collapse
Affiliation(s)
- O. I. Kiselev
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - A. V. Vasin
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
- St. Petersburg State Polytechnic University, St. Petersburg, 195251 Russia
| | - M. P. Shevyryova
- Ministry of Health of the Russian Federation, Moscow, 127994 Russia
| | - E. G. Deeva
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - K. V. Sivak
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - V. V. Egorov
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - V. B. Tsvetkov
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
- Topchiev Institute of Petrochemical Synthesis, Moscow, 119991 Russia
| | - A. Yu. Egorov
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | | | - L. A. Stepanova
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - A. B. Komissarov
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - L. M. Tsybalova
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - G. M. Ignatjev
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| |
Collapse
|
31
|
Janeba Z. Development of Small-Molecule Antivirals for Ebola. Med Res Rev 2015; 35:1175-94. [PMID: 26172225 PMCID: PMC7168439 DOI: 10.1002/med.21355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/05/2023]
Abstract
Ebola hemorrhagic fever is a deadly disease caused by infection with one of the Ebola virus species. Although a significant progress has recently been made in understanding of Ebola virus biology and pathogenesis, development of effective anti-Ebola treatments has not been very productive, compared to other areas of antiviral research (e.g., HIV and HCV infections). No approved vaccine or medicine is available for Ebola but several are currently under development. This review summarises attempts in identification, evaluation, and development of small-molecule candidates for treatment of Ebola viral disease, including the most promising experimental drugs brincidofovir (CMX001), BCX4430, and favipiravir (T-705).
Collapse
Affiliation(s)
- Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|