1
|
Cobe BL, Dey S, Minasov G, Inniss N, Satchell KJF, Cianciotto NP. Bactericidal effectors of the Stenotrophomonas maltophilia type IV secretion system: functional definition of the nuclease TfdA and structural determination of TfcB. mBio 2024; 15:e0119824. [PMID: 38832773 PMCID: PMC11253643 DOI: 10.1128/mbio.01198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).
Collapse
Affiliation(s)
- Brandi L. Cobe
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Supratim Dey
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Effectors of the Stenotrophomonas maltophilia Type IV Secretion System Mediate Killing of Clinical Isolates of Pseudomonas aeruginosa. mBio 2021; 12:e0150221. [PMID: 34182776 PMCID: PMC8262851 DOI: 10.1128/mbio.01502-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previously, we documented that Stenotrophomonas maltophilia encodes a type IV secretion system (T4SS) that allows the organism to kill, in contact-dependent fashion, heterologous bacteria, including wild-type Pseudomonas aeruginosa. Bioinformatic screens based largely on the presence of both a C-terminal consensus sequence and an adjacent gene encoding a cognate immunity protein identified 13 potential antibacterial effectors, most of which were highly conserved among sequenced strains of S. maltophilia. The immunity proteins of two of these proved especially capable of protecting P. aeruginosa and Escherichia coli against attack from the Stenotrophomonas T4SS. In turn, S. maltophilia mutants lacking the putative effectors RS14245 and RS14255 were impaired for killing not only laboratory E. coli but clinical isolates of P. aeruginosa, including ones isolated from the lungs of cystic fibrosis patients. That complemented mutants behaved as wild type did confirmed that RS14245 and RS14255 are required for the bactericidal activity of the S. maltophilia T4SS. Moreover, a mutant lacking both of these proteins was as impaired as a mutant lacking the T4SS apparatus, indicating that RS14245 and RS14255 account for (nearly) all of the bactericidal effects seen. Utilizing an interbacterial protein translocation assay, we determined that RS14245 and RS14255 are bona fide substrates of the T4SS, a result confirmed by examination of mutants lacking both the T4SS and the individual effectors. Delivery of the cloned 14245 protein (alone) into the periplasm resulted in the killing of target bacteria, indicating that this effector, a putative lipase, is both necessary and sufficient for bactericidal activity.
Collapse
|
3
|
Stenotrophomonas maltophilia Encodes a VirB/VirD4 Type IV Secretion System That Modulates Apoptosis in Human Cells and Promotes Competition against Heterologous Bacteria, Including Pseudomonas aeruginosa. Infect Immun 2019; 87:IAI.00457-19. [PMID: 31235638 DOI: 10.1128/iai.00457-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic and nosocomial pathogen. S. maltophilia is also a risk factor for lung exacerbations in cystic fibrosis patients. S. maltophilia attaches to various mammalian cells, and we recently documented that the bacterium encodes a type II secretion system which triggers detachment-induced apoptosis in lung epithelial cells. We have now confirmed that S. maltophilia also encodes a type IVA secretion system (VirB/VirD4 [VirB/D4] T4SS) that is highly conserved among S. maltophilia strains and, looking beyond the Stenotrophomonas genus, is most similar to the T4SS of Xanthomonas To define the role(s) of this T4SS, we constructed a mutant of strain K279a that is devoid of secretion activity due to loss of the VirB10 component. The mutant induced a higher level of apoptosis upon infection of human lung epithelial cells, indicating that a T4SS effector(s) has antiapoptotic activity. However, when we infected human macrophages, the mutant triggered a lower level of apoptosis, implying that the T4SS also elaborates a proapoptotic factor(s). Moreover, when we cocultured K279a with strains of Pseudomonas aeruginosa, the T4SS promoted the growth of S. maltophilia and reduced the numbers of heterologous bacteria, signaling that another effector(s) has antibacterial activity. In all cases, the effect of the T4SS required S. maltophilia contact with its target. Thus, S. maltophilia VirB/D4 T4SS appears to secrete multiple effectors capable of modulating death pathways. That a T4SS can have anti- and prokilling effects on different targets, including both human and bacterial cells, has, to our knowledge, not been seen before.
Collapse
|
4
|
Liu CC, Chen CH, Tang CY, Chen KH, Chen ZF, Chang SH, Tsai CY, Liou ML. Prevalence and comparative analysis of the type IV secretion system in Aggregatibacter actinomycetemcomitan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:278-285. [PMID: 28711435 DOI: 10.1016/j.jmii.2016.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/11/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUD/PURPOSE Aggregatibacter actinomycetemcomitans has emerged as one of the aetiological agents in periodontal disease. Although Type IV secretion systems (T4SSs) are widely distributed in many bacteria, the genetic features and distribution of T4SSs in A. actinomycetemcomitans remain unclear. In this study, we investigated the prevalence of A. actinomycetemcomitans serotypes and their T4SSs in a Taiwanese population. METHODS A comparative analysis of 20 A. actinomycetemcomitans genomes and their T4SSs deposited in GenBank was performed. One hundred subjects, including 20 periodontitis and 80 normal subjects, were enrolled and PCR identification of A. actinomycetemcomitans serotypes and T4SS genes were performed. RESULTS Of 100 subjects, serotypes C (22%) and E (11%) were most common. In addition, T4SSs were distributed in all of the serotypes. The prevalence of T4SSs and their location in plasmids in periodontitis subjects were 1.28-2 fold higher but not significantly different compared to normal subjects. Of 20 A. actinomycetemcomitans genomes, only ten with complete T4SS modules could be detected, which was highly correlated with localized aggressive periodontitis (p < 0.1). Nine of ten T4SS modules were from periodontitis subjects. Phylogenetic analysis of 10 T4SSs in A. actinomycetemcomitans showed that they were clustered into two groups, T4SSAaI and T4SSAaII, with only T4SSAaI appearing in the Taiwanese subjects. CONCLUSION A. actinomycetemcomitans strains with different serotypes carrying T4SSAaI are widely distributed in a Taiwanese population. This is the first report to show the distribution and detailed comparative genomics of T4SSs in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Chih-Chin Liu
- Department of Bioinformatics, Chung Hua University, Hsin-Chu City, Taiwan; Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan
| | - Chang-Hua Chen
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua City, Taiwan; Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung City, Taiwan
| | - Chuan Yi Tang
- Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan
| | - Kuan-Hsueh Chen
- Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan
| | - Zhao-Feng Chen
- Department of Nursing, Yuanpei University, Hsin-Chu City, Taiwan
| | - Shih-Hao Chang
- Department of Periodontics, Chang Gung Memorial Hospital, Tao-Yuan County, Taiwan
| | - Chi-Ying Tsai
- Department of Oral Maxillofacial Surgery, Chang Gung Memorial Hospital, Tao-Yuan County, Taiwan
| | - Ming-Li Liou
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsin-Chu City, Taiwan.
| |
Collapse
|
5
|
Johansson A, Claesson R, Höglund Åberg C, Haubek D, Oscarsson J. ThecagEgene sequence as a diagnostic marker to identify JP2 and non-JP2 highly leukotoxicAggregatibacter actinomycetemcomitansserotype b strains. J Periodontal Res 2017; 52:903-912. [DOI: 10.1111/jre.12462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2017] [Indexed: 12/27/2022]
Affiliation(s)
- A. Johansson
- Division of Molecular Periodontology; Department of Odontology; Umeå University; Umeå Sweden
| | - R. Claesson
- Division of Oral Microbiology; Department of Odontology; Umeå University; Umeå Sweden
| | - C. Höglund Åberg
- Division of Molecular Periodontology; Department of Odontology; Umeå University; Umeå Sweden
| | - D. Haubek
- Section for Pediatric Dentistry; Department of Dentistry and Oral Health; Aarhus University; Aarhus Denmark
| | - J. Oscarsson
- Division of Oral Microbiology; Department of Odontology; Umeå University; Umeå Sweden
| |
Collapse
|
6
|
Teng YTA. Protective and Destructive Immunity in the Periodontium: Part 2—T-cell-mediated Immunity in the Periodontium. J Dent Res 2016; 85:209-19. [PMID: 16498066 DOI: 10.1177/154405910608500302] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Based on the results of recent research in the field and Part 1 of this article (in this issue), the present paper will discuss the protective and destructive aspects of the T-cell-mediated adaptive immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) osteoimmunology and periodontal disease; (ii) some molecular techniques developed and applied to identify critical microbial virulence factors or antigens associated with host immunity (with Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species); and (iii) summarizing the identified virulence factors/antigens associated with periodontal immunity. Thus, further understanding of the molecular mechanisms of the host’s T-cell-mediated immune responses and the critical microbial antigens related to disease pathogenesis will facilitate the development of novel therapeutics or protocols for future periodontal treatments. Abbreviations used in the paper are as follows: A. actinomycetemcomitans ( Aa), Actinobacillus actinomycetemcomitans; Ab, antibody; DC, dendritic cells; mAb, monoclonal antibody; pAb, polyclonal antibody; OC, osteoclast; PAMP, pathogen-associated molecular patterns; P. gingivalis ( Pg), Porphyromonas gingivalis; RANK, receptor activator of NF-κB; RANKL, receptor activator of NF-κB ligand; OPG, osteoprotegerin; TCR, T-cell-receptors; TLR, Toll-like receptors.
Collapse
Affiliation(s)
- Y-T A Teng
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry, Eastman Dental Center, Box-683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| |
Collapse
|
7
|
Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc Natl Acad Sci U S A 2014; 111:7819-24. [PMID: 24825893 DOI: 10.1073/pnas.1400586111] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The oral pathogen Aggregatibacter actinomycetemcomitans (Aa) resides in infection sites with many microbes, including commensal streptococci such as Streptococcus gordonii (Sg). During infection, Sg promotes the virulence of Aa by producing its preferred carbon source, l-lactate, a phenomenon referred to as cross-feeding. However, as with many streptococci, Sg also produces high levels of the antimicrobial hydrogen peroxide (H2O2), leading to the question of how Aa deals with this potent antimicrobial during coinfection. Here, we show that Aa possesses two complementary responses to H2O2: a detoxification or fight response mediated by catalase (KatA) and a dispersion or flight response mediated by Dispersin B (DspB), an enzyme that dissolves Aa biofilms. Using a murine abscess infection model, we show that both of these responses are required for Sg to promote Aa virulence. Although the role of KatA is to detoxify H2O2 during coinfection, 3D spatial analysis of mixed infections revealed that DspB is required for Aa to spatially organize itself at an optimal distance (>4 µm) from Sg, which we propose allows cross-feeding but reduces exposure to inhibitory levels of H2O2. In addition, these behaviors benefit not only Aa but also Sg, suggesting that fight and flight stimulate the fitness of the community. These results reveal that an antimicrobial produced by a human commensal bacterium enhances the virulence of a pathogenic bacterium by modulating its spatial location in the infection site.
Collapse
|
8
|
Longo PL, Nunes ACR, Umeda JE, Mayer MPA. Gene expression and phenotypic traits of Aggregatibacter actinomycetemcomitans
in response to environmental changes. J Periodontal Res 2013; 48:766-72. [DOI: 10.1111/jre.12067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 11/30/2022]
Affiliation(s)
- P. L. Longo
- Department of Microbiology; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - A. C. R. Nunes
- Department of Microbiology; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - J. E. Umeda
- Department of Microbiology; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - M. P. A. Mayer
- Department of Microbiology; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
9
|
Bandhaya P, Saraithong P, Likittanasombat K, Hengprasith B, Torrungruang K. Aggregatibacter actinomycetemcomitans serotypes, the JP2 clone and cytolethal distending toxin genes in a Thai population. J Clin Periodontol 2012; 39:519-25. [PMID: 22471788 DOI: 10.1111/j.1600-051x.2012.01871.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2012] [Indexed: 11/27/2022]
Abstract
AIM To examine the genetic diversity of Aggregatibacter actinomycetemcomitans in Thai adults. MATERIALS AND METHODS Subgingival plaque samples from 453 subjects were analysed for A. actinomycetemcomitans serotypes, the presence of the high leukotoxin-producing JP2 clone and cytolethal distending toxin genes (cdtABC) using the polymerase chain reaction technique. In subjects who were positive for cdtABC, restriction fragment length polymorphism analysis was used to identify a single nucleotide polymorphism (SNP) in the cdtB gene at amino acid position 281. The extent and severity of periodontal disease were compared between subjects harbouring different A. actinomycetemcomitans genotypes. RESULTS Eighty six subjects (19%) were positive for A. actinomycetemcomitans. The JP2 clone was not detected. Serotype c was the most prevalent (57%), followed by serotypes a (33%) and b (7%). Among A. actinomycetemcomitans-positive subjects, 27% were positive for cdtABC. All cdtABC-positive subjects possessed the SNP in the cdtB, which is involved with increased toxin activity. The presence of A. actinomycetemcomitans, but not a specific genotype, was significantly related to increased probing depth and periodontal attachment loss. CONCLUSIONS Our results confirm the previous findings that genotype distribution of A. actinomycetemcomitans varies between ethnic groups. However, no clear relationship between a specific genotype and periodontal conditions was observed.
Collapse
Affiliation(s)
- Panwadee Bandhaya
- Section of Periodontology, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | |
Collapse
|
10
|
Kittichotirat W, Bumgarner RE, Asikainen S, Chen C. Identification of the pangenome and its components in 14 distinct Aggregatibacter actinomycetemcomitans strains by comparative genomic analysis. PLoS One 2011; 6:e22420. [PMID: 21811606 PMCID: PMC3139650 DOI: 10.1371/journal.pone.0022420] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/23/2011] [Indexed: 11/23/2022] Open
Abstract
Background Aggregatibacter actinomycetemcomitans is genetically heterogeneous and comprises distinct clonal lineages that may have different virulence potentials. However, limited information of the strain-to-strain genomic variations is available. Methodology/Principal Findings The genome sequences of 11 A. actinomycetemcomitans strains (serotypes a-f) were generated de novo, annotated and combined with three previously sequenced genomes (serotypes a-c) for comparative genomic analysis. Two major groups were identified; serotypes a, d, e, and f, and serotypes b and c. A serotype e strain was found to be distinct from both groups. The size of the pangenome was 3,301 genes, which included 2,034 core genes and 1,267 flexible genes. The number of core genes is estimated to stabilize at 2,060, while the size of the pangenome is estimated to increase by 16 genes with every additional strain sequenced in the future. Within each strain 16.7–29.4% of the genome belonged to the flexible gene pool. Between any two strains 0.4–19.5% of the genomes were different. The genomic differences were occasionally greater for strains of the same serotypes than strains of different serotypes. Furthermore, 171 genomic islands were identified. Cumulatively, 777 strain-specific genes were found on these islands and represented 61% of the flexible gene pool. Conclusions/Significance Substantial genomic differences were detected among A. actinomycetemcomitans strains. Genomic islands account for more than half of the flexible genes. The phenotype and virulence of A. actinomycetemcomitans may not be defined by any single strain. Moreover, the genomic variation within each clonal lineage of A. actinomycetemcomitans (as defined by serotype grouping) may be greater than between clonal lineages. The large genomic data set in this study will be useful to further examine the molecular basis of variable virulence among A. actinomycetemcomitans strains.
Collapse
Affiliation(s)
- Weerayuth Kittichotirat
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Roger E. Bumgarner
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sirkka Asikainen
- Department of Surgical Sciences, Periodontology, Kuwait University, Kuwait City, Kuwait
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54:78-105. [DOI: 10.1111/j.1600-0757.2009.00331.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Liu YCG, Lerner UH, Teng YTA. Cytokine responses against periodontal infection: protective and destructive roles. Periodontol 2000 2010; 52:163-206. [PMID: 20017801 DOI: 10.1111/j.1600-0757.2009.00321.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Kawamoto D, Ando ES, Longo PL, Nunes ACR, Wikström M, Mayer MPA. Genetic diversity and toxic activity ofAggregatibacter actinomycetemcomitansisolates. ACTA ACUST UNITED AC 2009; 24:493-501. [DOI: 10.1111/j.1399-302x.2009.00547.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Involvement of SOCS3 in regulation of CD11c+ dendritic cell-derived osteoclastogenesis and severe alveolar bone loss. Infect Immun 2009; 77:2000-9. [PMID: 19255186 DOI: 10.1128/iai.01070-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role of suppressor of cytokine signaling (SOCS) molecules in periodontal immunity and RANKL-mediated dendritic cell (DC)-associated osteoclastogenesis, we analyzed SOCS expression profiles in CD4(+) T cells and the effect of SOCS3 expression in CD11c(+) DCs during periodontal inflammation-induced osteoclastogenesis and bone loss in nonobese diabetic (NOD) versus humanized NOD/SCID mice. Our results of ex vivo and in vitro analyses showed that (i) there is significantly higher SOCS3 expression associated with RANKL(+) T-cell-mediated bone loss in correlation with increased CD11c(+) DC-mediated osteoclastogenesis; (ii) the transfection of CD11c(+) DC using an adenoviral vector carrying a dominant negative SOCS3 gene significantly abrogates TRAP and bone-resorptive activity; and (iii) inflammation-induced TRAP expression, bone resorption, and SOCS3 activity are not associated with any detectable change in the expression levels of TRAF6 and mitogen-activated protein kinase signaling adaptors (i.e., Erk, Jnk, p38, and Akt) in RANKL(+) T cells. We conclude that SOCS3 plays a critical role in modulating cytokine signaling involved in RANKL-mediated DC-derived osteoclastogenesis during immune interactions with T cells and diabetes-associated severe inflammation-induced alveolar bone loss. Therefore, the development of SOCS3 inhibitors may have therapeutic potential as the target to halt inflammation-induced bone loss under pathological conditions in vivo.
Collapse
|
15
|
Graves DT, Fine D, Teng YTA, Van Dyke TE, Hajishengallis G. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J Clin Periodontol 2008; 35:89-105. [PMID: 18199146 DOI: 10.1111/j.1600-051x.2007.01172.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Even though animal models have limitations, they are often superior to in vitro or clinical studies in addressing mechanistic questions and serve as an essential link between hypotheses and human patients. Periodontal disease can be viewed as a process that involves four major stages: bacterial colonization, invasion, induction of a destructive host response in connective tissue and a repair process that reduces the extent of tissue breakdown. Animal studies should be evaluated in terms of their capacity to test specific hypotheses rather than their fidelity to all aspects of periodontal disease initiation and progression. Thus, each of the models described below can be adapted to test discrete components of these four major steps, but not all of them. This review describes five different animal models that are appropriate for examining components of host-bacteria interactions that can lead to breakdown of hard and soft connective tissue or conditions that limit its repair as follows: the mouse calvarial model, murine oral gavage models with or without adoptive transfer of human lymphocytes, rat ligature model and rat Aggregatibacter actinomycetemcomitans feeding model.
Collapse
Affiliation(s)
- Dana T Graves
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
16
|
Grynberg M, Li Z, Szczurek E, Godzik A. Putative type IV secretion genes in Bacillus anthracis. Trends Microbiol 2007; 15:191-5. [PMID: 17387016 DOI: 10.1016/j.tim.2007.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/15/2007] [Accepted: 03/13/2007] [Indexed: 11/22/2022]
Abstract
Although the physiology of Bacillus anthracis, the causative agent of anthrax, has been studied extensively, we still do not know how toxins are dispatched from the bacterial cell. Here, by means of distant homology and genome context analyses, we identify genes encoding putative type IV secretion system-related elements on the B. anthracis plasmids pXO1 and pXO2 and in the chromosome. We argue that this type IV secretion system-like system could be responsible for anthrax toxin secretion, although we also discuss the possibilities of its involvement in the processes of sporulation, germination or conjugation.
Collapse
Affiliation(s)
- Marcin Grynberg
- Department of Genetics, Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland.
| | | | | | | |
Collapse
|
17
|
Teng YTA, Mahamed D, Singh B. Gamma interferon positively modulates Actinobacillus actinomycetemcomitans-specific RANKL+ CD4+ Th-cell-mediated alveolar bone destruction in vivo. Infect Immun 2005; 73:3453-61. [PMID: 15908374 PMCID: PMC1111859 DOI: 10.1128/iai.73.6.3453-3461.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown the biological and clinical significance of signaling pathways of osteogenic cytokines RANKL-RANK/OPG in controlling osteoclastogenesis associated with bone pathologies, including rheumatoid arthritis, osteoporosis, and other osteolytic disorders. In contrast to the inhibitory effect of gamma interferon (IFN-gamma) on RANKL-mediated osteoclastogenesis reported recently, alternative new evidence is demonstrated via studies of experimental periodontitis using humanized NOD/SCID and diabetic NOD mice and clinical human T-cell isolates from diseased periodontal tissues, where the presence of increasing IFN-gamma is clearly associated with (i) enhanced Actinobacillus actinomycetemcomitans-specific RANKL-expressing CD4(+) Th cell-mediated alveolar bone loss during the progression of periodontal disease and (ii) a concomitant and significantly increased coexpression of IFN-gamma in RANKL(+) CD4(+) Th cells. Therefore, there are more complex networks in regulating RANKL-RANK/OPG signaling pathways for osteoclastogenesis in vivo than have been suggested to date.
Collapse
Affiliation(s)
- Yen-Tung A Teng
- Lab. of Molecular Microbial Immunity, Eastman Dental Center, University of Rochester Medical Centre, Box 683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| | | | | |
Collapse
|