1
|
Kimura R, Kimura H, Shirai T, Hayashi Y, Sato-Fujimoto Y, Kamitani W, Ryo A, Tomita H. Molecular Evolutionary Analyses of Shiga toxin type 2 subunit A Gene in the Enterohemorrhagic Escherichia coli (EHEC). Microorganisms 2024; 12:1812. [PMID: 39338486 PMCID: PMC11434168 DOI: 10.3390/microorganisms12091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
To better understand the molecular genetics of the Shiga toxin type 2 subunit A gene (stx2A gene), we collected many subtypes of stx2A genes and performed detailed molecular evolutionary analyses of the gene. To achieve the aim of the study, we used several bioinformatics technologies, including time-scaled phylogenetic analyses, phylogenetic distance analyses, phylodynamics analyses, selective pressure analyses, and conformational epitope analyses. A time-scaled phylogeny showed that the common ancestor of the stx2A gene dated back to around 18,600 years ago. After that, the gene diverged into two major lineages (Lineage 1 and 2). Lineage 1 comprised the stx2a-2d subtypes, while Lineage 2 comprised the stx2e, 2g, 2h, and 2o subtypes. The evolutionary rates of the genes were relatively fast. Phylogenetic distances showed that the Lineage 2 strains had a wider genetic divergence than Lineage 1. Phylodynamics also indicated that the population size of the stx2A gene increased after the 1930s and spread globally. Moreover, negative selection sites were identified in the Stx2A proteins, and these sites were diffusely distributed throughout the protein. Two negative selection sites were located adjacent to an active site of the common Stx2A protein. Many conformational epitopes were also estimated in these proteins, while no conformational epitope was found adjacent to the active site. The results suggest that the stx2A gene has uniquely evolved and diverged over an extremely long time, resulting in many subtypes. The dominance of the strains belonging to Lineage 1 suggests that differences in virulence may be involved in the prosperity of the offspring. Furthermore, some subtypes of Stx2A proteins may be able to induce effective neutralizing antibodies against the proteins in humans.
Collapse
Affiliation(s)
- Ryusuke Kimura
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Hirokazu Kimura
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yuriko Hayashi
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Yuka Sato-Fujimoto
- Faculty of Healthcare, Tokyo Healthcare University, Tokyo 141-8648, Japan;
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi-shi 371-8511, Gunma, Japan;
| | - Akihide Ryo
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
| |
Collapse
|
2
|
Lu M, Zhu Y, Li D, Zhou Z, Lin H, Hong H, Shi J, Wu Z. Gb3-Coated Bovine Milk Exosomes as a Practical Neutralizer for Shiga Toxin. ACS APPLIED BIO MATERIALS 2023; 6:5798-5808. [PMID: 37988327 DOI: 10.1021/acsabm.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Shiga toxin (Stx) is associated with foodborne infections of some Shigella spp. and Shiga toxin-producing Escherichia coli (STEC), leading to life-threatening hemolytic uremic syndrome (HUS). Target-specific therapeutics against HUS are currently unavailable in clinical practice. Herein, we reported the construction and in vitro characterization of Gb3-coated bovine milk exosomes (Gb3-mExo) as a multivalent Shiga toxin neutralizer, utilizing the natural advantages of milk exosomes (mExo) in drug delivery and multivalent interactions between Stx and its receptor Gb3. Gb3-mExo constructs were achieved by conjugating mExo with the Gb3 derivatives containing stearic acid-derived lipid tail, which was prepared through an efficient chemoenzymatic approach. The constructs were able to potently neutralize the binding of the B subunit of Stx2 (Stx2B) to receptor Gb3 immobilized on the plate or expressed on model cells. General safety of the constructs was evidenced by the cytotoxicity analysis and hemolysis assay. In addition to the excellent stability under conventional storage and handling conditions, the construct can also retain most of its neutralization potency under gastrointestinal pH extremes, showing the potential for oral administration. Considering the natural availability and excellent biocompatibility of mExo, Gb3-mExo conjugates should prove to be a practical prophylactic and therapeutic for the Shiga toxin-related infections.
Collapse
Affiliation(s)
- Mingming Lu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Yating Zhu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
3
|
Heinisch L, Krause M, Roth A, Barth H, Schmidt H. Cytotoxic Effects of Recombinant StxA2-His in the Absence of Its Corresponding B-Subunit. Toxins (Basel) 2021; 13:toxins13050307. [PMID: 33925951 PMCID: PMC8145687 DOI: 10.3390/toxins13050307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
AB5 protein toxins are produced by certain bacterial pathogens and are composed of an enzymatically active A-subunit and a B-subunit pentamer, the latter being responsible for cell receptor recognition, cellular uptake, and transport of the A-subunit into the cytosol of eukaryotic target cells. Two members of the AB5 toxin family were described in Shiga toxin-producing Escherichia coli (STEC), namely Shiga toxin (Stx) and subtilase cytotoxin (SubAB). The functional paradigm of AB toxins includes the B-subunit being mandatory for the uptake of the toxin into its target cells. Recent studies have shown that this paradigm cannot be maintained for SubAB, since SubA alone was demonstrated to intoxicate human epithelial cells in vitro. In the current study, we raised the hypothesis that this may also be true for the A-subunit of the most clinically relevant Stx-variant, Stx2a. After separate expression and purification, the recombinant Stx2a subunits StxA2a-His and StxB2a-His were applied either alone or in combination in a 1:5 molar ratio to Vero B4, HeLa, and HCT-116 cells. For all cell lines, a cytotoxic effect of StxA2a-His alone was detected. Competition experiments with Stx and SubAB subunits in combination revealed that the intoxication of StxA2a-His was reduced by addition of SubB1-His. This study showed that the enzymatic subunit StxA2a alone was active on different cells and might therefore play a yet unknown role in STEC disease development.
Collapse
Affiliation(s)
- Laura Heinisch
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
| | - Maike Krause
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
| | - Astrid Roth
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
- Correspondence: ; Tel.: +49-711-459-22305
| |
Collapse
|
4
|
Sato W, Watanabe-Takahashi M, Hamabata T, Furukawa K, Funamoto S, Nishikawa K. A nontoxigenic form of Shiga toxin 2 suppresses the production of amyloid β by altering the intracellular transport of amyloid precursor protein through its receptor-binding B-subunit. Biochem Biophys Res Commun 2021; 557:247-253. [PMID: 33894410 DOI: 10.1016/j.bbrc.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 11/25/2022]
Abstract
Accumulation of amyloid-β peptide (Aβ) in neuronal cells and in the extracellular regions in the brain is a major cause of Alzheimer's disease (AD); therefore, inhibition of Aβ accumulation offers a promising approach for therapeutic strategies against AD. Aβ is produced by sequential proteolysis of amyloid precursor protein (APP) in late/recycling endosomes after endocytosis of APP located in the plasma membrane. Aβ is then released from cells in a free form or in an exosome-bound form. Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli. Recently, we found that one of the Stx subtypes, Stx2a, has a unique intracellular transport route after endocytosis through its receptor-binding B-subunit. A part of Stx2a can be transported to late/recycling endosomes and then degraded in a lysosomal acidic compartment, although in general Stx is transported to the Golgi and then to the endoplasmic reticulum in a retrograde manner. In this study, we found that treatment of APP-expressing cells with a mutant Stx2a (mStx2a), lacking cytotoxic activity because of mutations in the catalytic A-subunit, stimulated the transport of APP to the acidic compartment, which led to degradation of APP and a reduction in the amount of Aβ. mStx2a-treatment also inhibited the extracellular release of Aβ. Therefore, mStx2a may provide a new strategy to inhibit the production of Aβ by modulating the intracellular transport of APP.
Collapse
Affiliation(s)
- Waka Sato
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Takashi Hamabata
- Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, 487-8501, Japan
| | - Satoru Funamoto
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| |
Collapse
|
5
|
Mohammed M, Syed MF, Aslan K. Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples. Biosens Bioelectron 2016; 75:420-6. [PMID: 26356762 DOI: 10.1016/j.bios.2015.08.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 01/14/2023]
Abstract
Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4h using commercially available bioassay kits to 10min using the MAB technique.
Collapse
Affiliation(s)
- Muzaffer Mohammed
- Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251, United States
| | - Maleeha F Syed
- Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251, United States
| | - Kadir Aslan
- Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251, United States.
| |
Collapse
|
6
|
Basu D, Tumer NE. Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2? Toxins (Basel) 2015; 7:1467-85. [PMID: 25938272 PMCID: PMC4448158 DOI: 10.3390/toxins7051467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Shiga toxin producing Escherichia coli O157:H7 (STEC) is one of the leading causes of food-poisoning around the world. Some STEC strains produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2) or variants of either toxin, which are critical for the development of hemorrhagic colitis (HC) or hemolytic uremic syndrome (HUS). Currently, there are no therapeutic treatments for HC or HUS. E. coli O157:H7 strains carrying Stx2 are more virulent and are more frequently associated with HUS, which is the most common cause of renal failure in children in the US. The basis for the increased potency of Stx2 is not fully understood. Shiga toxins belong to the AB5 family of protein toxins with an A subunit, which depurinates a universally conserved adenine residue in the α-sarcin/ricin loop (SRL) of the 28S rRNA and five copies of the B subunit responsible for binding to cellular receptors. Recent studies showed differences in the structure, receptor binding, dependence on ribosomal proteins and pathogenicity of Stx1 and Stx2 and supported a role for the B subunit in differential toxicity. However, the current data do not rule out a potential role for the A1 subunits in the differential toxicity of Stx1 and Stx2. This review highlights the recent progress in understanding the differences in the A1 subunits of Stx1 and Stx2 and their role in defining toxicity.
Collapse
Affiliation(s)
- Debaleena Basu
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| |
Collapse
|
7
|
Iversen H, L' Abée-Lund TM, Aspholm M, Arnesen LPS, Lindbäck T. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction. Front Cell Infect Microbiol 2015; 5:5. [PMID: 25692100 PMCID: PMC4315091 DOI: 10.3389/fcimb.2015.00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/12/2015] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is a food-borne pathogen that causes disease ranging from uncomplicated diarrhea to life-threatening hemolytic uremic syndrome (HUS) and nervous system complications. Shiga toxin 2 (Stx2) is the major virulence factor of EHEC and is critical for development of HUS. The genes encoding Stx2 are carried by lambdoid bacteriophages and the toxin production is tightly linked to the production of phages during lytic cycle. It has previously been suggested that commensal E. coli could amplify the production of Stx2-phages and contribute to the severity of disease. In this study we examined the susceptibility of commensal E. coli strains to the Stx2-converting phage ϕ734, isolated from a highly virulent EHEC O103:H25 (NIPH-11060424). Among 38 commensal E. coli strains from healthy children below 5 years, 15 were lysogenized by the ϕ734 phage, whereas lytic infection was not observed. Three of the commensal E. coli ϕ734 lysogens were tested for stability, and appeared stable and retained the phage for at least 10 cultural passages. When induced to enter lytic cycle by H2O2 treatment, 8 out of 13 commensal lysogens produced more ϕ734 phages than NIPH-11060424. Strikingly, five of them even spontaneously (non-induced) produced higher levels of phage than the H2O2 induced NIPH-11060424. An especially high frequency of HUS (60%) was seen among children infected by NIPH-11060424 during the outbreak in 2006. Based on our findings, a high Stx2 production by commensal E. coli lysogens cannot be ruled out as a contributor to the high frequency of HUS during this outbreak.
Collapse
Affiliation(s)
- Hildegunn Iversen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Trine M L' Abée-Lund
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Marina Aspholm
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Lotte P S Arnesen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences Oslo, Norway
| |
Collapse
|
8
|
Russo LM, Melton-Celsa AR, Smith MJ, O'Brien AD. Comparisons of native Shiga toxins (Stxs) type 1 and 2 with chimeric toxins indicate that the source of the binding subunit dictates degree of toxicity. PLoS One 2014; 9:e93463. [PMID: 24671194 PMCID: PMC3966898 DOI: 10.1371/journal.pone.0093463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/05/2014] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin (Stx)-producing E. coli (STEC) cause food-borne outbreaks of hemorrhagic colitis. The main virulence factor expressed by STEC, Stx, is an AB5 toxin that has two antigenically distinct forms, Stx1a and Stx2a. Although Stx1a and Stx2a bind to the same receptor, globotriaosylceramide (Gb3), Stx2a is more potent than Stx1a in mice, whereas Stx1a is more cytotoxic than Stx2a in cell culture. In this study, we used chimeric toxins to ask what the relative contribution of individual Stx subunits is to the differential toxicity of Stx1a and Stx2a in vitro and in vivo. Chimeric stx1/stx2 operons were generated by PCR such that the coding regions for the A2 and B subunits of one toxin were combined with the coding region for the A1 subunit of the heterologous toxin. The toxicities of purified Stx1a, Stx2a, and the chimeric Stxs were determined on Vero and HCT-8 cell lines, while polarized HCT-8 cell monolayers grown on permeable supports were used to follow toxin translocation. In all in vitro assays, the activity of the chimeric toxin correlated with that of the parental toxin from which the B subunit originated. The origin of the native B subunit also dictated the 50% lethal dose of toxin after intraperitoneal intoxication of mice; however, the chimeric Stxs exhibited reduced oral toxicity and pH stability compared to Stx1a and Stx2a. Taken together, these data support the hypothesis that the differential toxicity of the chimeric toxins for cells and mice is determined by the origin of the B subunit.
Collapse
Affiliation(s)
- Lisa M. Russo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Angela R. Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Michael J. Smith
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Alison D. O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
A Poly-N-acetylglucosamine-Shiga toxin broad-spectrum conjugate vaccine for Shiga toxin-producing Escherichia coli. mBio 2014; 5:e00974-14. [PMID: 24667709 PMCID: PMC3977355 DOI: 10.1128/mbio.00974-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many pathogens produce the β-(1-6)-linked poly-N-acetylglucosamine (PNAG) surface polysaccharide that is being developed as a broadly protective antimicrobial vaccine. However, it is unknown whether systemically injected PNAG vaccines or antibodies would provide protective immunity against pathogens confined to the gastrointestinal tract such as Shiga toxin (Stx)-producing Escherichia coli (STEC), an important group of gastrointestinal (GI) pathogens for which effective immunotherapeutics are lacking. To ascertain whether systemic IgG antibody to PNAG impacts this infectious situation, a vaccine consisting of a synthetic nonamer of nonacetylated PNAG, 9GlcNH2, conjugated to the Shiga toxin 1b subunit (9GlcNH2-Stx1b) was produced. Rabbit antibodies raised to the conjugate vaccine were tested for bacterial killing and toxin neutralization in vitro and protection against infection in infant mice. Cell surface PNAG was detected on all 9 STEC isolates tested, representing 6 STEC serogroups, including E. coli O157:H7. Antibody to the 9GlcNH2-Stx1b conjugate neutralized Stx1 potently and Stx2 modestly. For O157:H7 and O104:H4 STEC strains, antibodies elicited by the 9GlcNH2-Stx1b conjugate possessed opsonic killing and bactericidal activity. Following intraperitoneal injection, antibodies to both PNAG and Stx were needed for infant mouse protection against O157 STEC. These antibodies also mediated protection against the Stx2-producing O104:H4 strain that was the cause of a recent outbreak in Germany, although sufficient doses of antibody to PNAG alone were protective against this strain in infant mice. Our observations suggest that vaccination against both PNAG and Stx, using a construct such as the 9GlcNH2-Stx1b conjugate vaccine, would be protective against a broad range of STEC serogroups. IMPORTANCE The presence of poly-N-acetylglucosamine (PNAG) on many pathogens presents an opportunity to target this one structure with a multispecies vaccine. Whether antibodies to PNAG can protect against pathogens confined to the gastrointestinal tract is not known. As Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are serious causes of infection whose virulence is dependent on elaboration of Stx, we prepared a vaccine containing a synthetic nonamer of PNAG (9GlcNH2) conjugated to Shiga toxin 1b subunit (9GlcNH2-Stx1b) to evaluate bacterial killing, toxin neutralization, and protective efficacy in infant mice. All nine (100%) clinical strains of STEC from different serogroups expressed PNAG. Vaccine-induced antibody mediated in vitro killing of STEC and neutralization of both Stx1 and Stx2. Passive administration of antibody to the conjugate showed protection requiring immunity to both PNAG and Stx for O157 strains, although for an O104 strain, antibody to PNAG alone was protective. Immunity to PNAG may contribute to protection against STEC infections.
Collapse
|
10
|
Noda M. [Studies on the mode of action of bacterial AB5 toxins]. Nihon Saikingaku Zasshi 2013; 68:299-311. [PMID: 23985936 DOI: 10.3412/jsb.68.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacterial AB5 toxins are proteins, produced by pathogenic bacteria including of Vibrio cholerae, Shigella dysenteriae, and enterohaemorrhagic Escherichia coli, which are usually released into the extracellular medium and cause disease by killing or altering the metabolism of target eukaryotic cells. The toxins are usually composed of one A subunit (a toxic domain) and five B subunits (a receptor-binding domain). This article overviews the characteristics and mode of actions of AB5 toxins including cholera toxin, Shiga-like toxin, and subtilase cytotoxin, and highlights current topics related to the roles of the effectors in promoting bacterial infection.
Collapse
Affiliation(s)
- Masatoshi Noda
- Department of Molecular Infectiology, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
11
|
Meng Q, Xiong Y, Lan R, Ye C, Wang T, Qi T, Wang Y, Wang H, Bai X, Bai X, Ji S, Jin D, Yuan X, Zhao A, Sun H, Jing H, Xu J. SNP genotyping of enterohemorrhagic Escherichia coli O157:H7 isolates from China and genomic identity of the 1999 Xuzhou outbreak. INFECTION GENETICS AND EVOLUTION 2013; 16:275-81. [DOI: 10.1016/j.meegid.2013.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/19/2013] [Accepted: 02/22/2013] [Indexed: 11/16/2022]
|
12
|
Binding of Pk-trisaccharide analogs of globotriaosylceramide to Shiga toxin variants. Infect Immun 2013; 81:2753-60. [PMID: 23690406 DOI: 10.1128/iai.00274-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The two major forms of Shiga toxin, Stx1 and Stx2, use the glycolipid globotriaosylceramide (Gb3) as their cellular receptor. Stx1 primarily recognizes the Pk-trisaccharide portion and has three Pk binding sites per B monomer. The Stx2a subtype requires glycolipid residues in addition to Pk. We synthesized analogs of Pk to examine the binding preferences of Stx1 and Stx2 subtypes a to d. Furthermore, to determine how many binding sites must be engaged, the Pk analogues were conjugated to biotinylated mono- and biantennary platforms, allowing for the display of two to four Pk analogues per streptavidin molecule. Stx binding to Pk analogues immobilized on streptavidin-coated plates was assessed by enzyme-linked immunosorbent assay (ELISA). Stx1, but not the Stx2 subtypes, bound to native Pk. Stx2a and Stx2c bound to the Pk analog with a terminal GalNAc (NAc-Pk), while Stx1, Stx2b, and Stx2d did not bind to this analog. Interestingly, the purified Stx2d B subunit bound to NAc-Pk, suggesting that the A subunit of Stx2d interferes with binding. Disaccharide analogs (Galα1-4Gal, GalNAcα1-4Gal, and Galα1-4GalNAc) did not support the binding of any of the Stx forms, indicating that the trisaccharide is necessary for binding. Studies with monoantennary and biantennary analogs and mixtures suggest that Stx1, Stx2a, and Stx2c need to engage at least three Pk analogues for effective binding. To our knowledge, this is the first study examining the minimum number of Pk analogs required for effective binding and the first report documenting the role of the A subunit in influencing Stx2 binding.
Collapse
|
13
|
Shimizu T, Tsutsuki H, Matsumoto A, Nakaya H, Noda M. The nitric oxide reductase of enterohaemorrhagic Escherichia coli plays an important role for the survival within macrophages. Mol Microbiol 2012; 85:492-512. [DOI: 10.1111/j.1365-2958.2012.08122.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Gallegos KM, Conrady DG, Karve SS, Gunasekera TS, Herr AB, Weiss AA. Shiga toxin binding to glycolipids and glycans. PLoS One 2012; 7:e30368. [PMID: 22348006 PMCID: PMC3278406 DOI: 10.1371/journal.pone.0030368] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Immunologically distinct forms of Shiga toxin (Stx1 and Stx2) display different potencies and disease outcomes, likely due to differences in host cell binding. The glycolipid globotriaosylceramide (Gb3) has been reported to be the receptor for both toxins. While there is considerable data to suggest that Gb3 can bind Stx1, binding of Stx2 to Gb3 is variable. METHODOLOGY We used isothermal titration calorimetry (ITC) and enzyme-linked immunosorbent assay (ELISA) to examine binding of Stx1 and Stx2 to various glycans, glycosphingolipids, and glycosphingolipid mixtures in the presence or absence of membrane components, phosphatidylcholine, and cholesterol. We have also assessed the ability of glycolipids mixtures to neutralize Stx-mediated inhibition of protein synthesis in Vero kidney cells. RESULTS By ITC, Stx1 bound both Pk (the trisaccharide on Gb3) and P (the tetrasaccharide on globotetraosylceramide, Gb4), while Stx2 did not bind to either glycan. Binding to neutral glycolipids individually and in combination was assessed by ELISA. Stx1 bound to glycolipids Gb3 and Gb4, and Gb3 mixed with other neural glycolipids, while Stx2 only bound to Gb3 mixtures. In the presence of phosphatidylcholine and cholesterol, both Stx1 and Stx2 bound well to Gb3 or Gb4 alone or mixed with other neutral glycolipids. Pre-incubation with Gb3 in the presence of phosphatidylcholine and cholesterol neutralized Stx1, but not Stx2 toxicity to Vero cells. CONCLUSIONS Stx1 binds primarily to the glycan, but Stx2 binding is influenced by residues in the ceramide portion of Gb3 and the lipid environment. Nanomolar affinities were obtained for both toxins to immobilized glycolipids mixtures, while the effective dose for 50% inhibition (ED(50)) of protein synthesis was about 10(-11) M. The failure of preincubation with Gb3 to protect cells from Stx2 suggests that in addition to glycolipid expression, other cellular components contribute to toxin potency.
Collapse
Affiliation(s)
- Karen M. Gallegos
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Deborah G. Conrady
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sayali S. Karve
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Thusitha S. Gunasekera
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Andrew B. Herr
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Alison A. Weiss
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Neri P, Tokoro S, Kobayashi R, Sugiyama T, Umeda K, Shimizu T, Tsuji T, Kodama Y, Oguma K, Mori H. Specific egg yolk immunoglobulin as a new preventive approach for Shiga-toxin-mediated diseases. PLoS One 2011; 6:e26526. [PMID: 22028896 PMCID: PMC3197529 DOI: 10.1371/journal.pone.0026526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
Shiga toxins (Stxs) are involved in the development of severe systemic complications associated with enterohemorrhagic Escherichia coli (EHEC) infection. Various neutralizing agents against Stxs are under investigation for management of EHEC infection. In this study, we immunized chickens with formalin-inactivated Stx-1 or Stx-2, and obtained immunoglobulin Y (IgY) from the egg yolk. Anti-Stx-1 IgY and anti-Stx-2 IgY recognized the corresponding Stx A subunit and polymeric but not monomeric B subunit. Anti-Stx-1 IgY and anti-Stx-2 IgY suppressed the cytotoxicity of Stx-1 and Stx-2 to HeLa 229 cells, without cross-suppressive activity. The suppressive activity of these IgY was abrogated by pre-incubation with the corresponding recombinant B subunit, which suggests that the antibodies directed to the polymeric B subunits were predominantly involved in the suppression. In vivo, the intraperitoneal or intravenous administration of these IgY rescued mice from death caused by intraperitoneal injection of the corresponding toxin at a lethal dose. Moreover, oral administration of anti-Stx-2 IgY reduced the mortality of mice infected intestinally with EHEC O157:H7. Our results therefore suggest that anti-Stx IgY antibodies may be considered as preventive agents for Stx-mediated diseases in EHEC infection.
Collapse
Affiliation(s)
- Paola Neri
- Microbiology, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Shunji Tokoro
- Microbiology, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryo Kobayashi
- Microbiology, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Tsuyoshi Sugiyama
- Microbiology, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Kouji Umeda
- Immunology Research Institute, GHEN Corporation, Gifu, Japan
| | - Takeshi Shimizu
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takao Tsuji
- Department of Microbiology, School of Medicine, Fujita Health University, Aichi, Japan
| | | | - Keiji Oguma
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Mori
- Microbiology, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
16
|
Pang YP, Park JG, Wang S, Vummenthala A, Mishra RK, McLaughlin JE, Di R, Kahn JN, Tumer NE, Janosi L, Davis J, Millard CB. Small-molecule inhibitor leads of ribosome-inactivating proteins developed using the doorstop approach. PLoS One 2011; 6:e17883. [PMID: 21455295 PMCID: PMC3063779 DOI: 10.1371/journal.pone.0017883] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/16/2011] [Indexed: 11/19/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxic because they bind to 28S rRNA and depurinate a specific adenine residue from the α-sarcin/ricin loop (SRL), thereby inhibiting protein synthesis. Shiga-like toxins (Stx1 and Stx2), produced by Escherichia coli, are RIPs that cause outbreaks of foodborne diseases with significant morbidity and mortality. Ricin, produced by the castor bean plant, is another RIP lethal to mammals. Currently, no US Food and Drug Administration-approved vaccines nor therapeutics exist to protect against ricin, Shiga-like toxins, or other RIPs. Development of effective small-molecule RIP inhibitors as therapeutics is challenging because strong electrostatic interactions at the RIP•SRL interface make drug-like molecules ineffective in competing with the rRNA for binding to RIPs. Herein, we report small molecules that show up to 20% cell protection against ricin or Stx2 at a drug concentration of 300 nM. These molecules were discovered using the doorstop approach, a new approach to protein•polynucleotide inhibitors that identifies small molecules as doorstops to prevent an active-site residue of an RIP (e.g., Tyr80 of ricin or Tyr77 of Stx2) from adopting an active conformation thereby blocking the function of the protein rather than contenders in the competition for binding to the RIP. This work offers promising leads for developing RIP therapeutics. The results suggest that the doorstop approach might also be applicable in the development of other protein•polynucleotide inhibitors as antiviral agents such as inhibitors of the Z-DNA binding proteins in poxviruses. This work also calls for careful chemical and biological characterization of drug leads obtained from chemical screens to avoid the identification of irrelevant chemical structures and to avoid the interference caused by direct interactions between the chemicals being screened and the luciferase reporter used in screening assays.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (YPP, chemistry); (NET, biology); (CBM, biology)
| | - Jewn Giew Park
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shaohua Wang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anuradha Vummenthala
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rajesh K. Mishra
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John E. McLaughlin
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Rong Di
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Jennifer Nielsen Kahn
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nilgun E. Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail: (YPP, chemistry); (NET, biology); (CBM, biology)
| | - Laszlo Janosi
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jon Davis
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Charles B. Millard
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail: (YPP, chemistry); (NET, biology); (CBM, biology)
| |
Collapse
|
17
|
Human intestinal tissue and cultured colonic cells contain globotriaosylceramide synthase mRNA and the alternate Shiga toxin receptor globotetraosylceramide. Infect Immun 2010; 78:4488-99. [PMID: 20732996 DOI: 10.1128/iai.00620-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 and other Shiga toxin (Stx)-producing E. coli (STEC) bacteria are not enteroinvasive but can cause hemorrhagic colitis. In some STEC-infected individuals, a life-threatening sequela of infection called the hemolytic uremic syndrome may develop that can lead to kidney failure. This syndrome is linked to the production of Stx by the infecting organism. For Stx to reach the kidney, the toxin must first penetrate the colonic epithelial barrier. However, the Stx receptor, globotriaosylceramide (Gb3), has been thought to be absent from human intestinal epithelial cells. Thus, the mechanisms by which the toxin associates with and traverses through the intestine en route to the kidneys have been puzzling aspects of STEC pathogenesis. In this study, we initially determined that both types of Stx made by STEC, Stx1 and Stx2, do in fact bind to colonic epithelia in fresh tissue sections and to a colonic epithelial cell line (HCT-8). We also discovered that globotetraosylceramide (Gb4), a lower-affinity toxin receptor derived from Gb3, is readily detectable on the surfaces of human colonic tissue sections and HCT-8 cells. Furthermore, we found that Gb3 is present on a fraction of HCT-8 cells, where it presumably functions to bind and internalize Stx1 and Stx2. In addition, we established by quantitative real-time PCR (qRT-PCR) that both fresh colonic epithelial sections and HCT-8 cells express Gb3 synthase mRNA. Taken together, our data suggest that Gb3 may be present in small quantities in human colonic epithelia, where it may compete for Stx binding with the more abundantly expressed glycosphingolipid Gb4.
Collapse
|