1
|
Chávez-Arroyo A, Portnoy DA. Why is Listeria monocytogenes such a potent inducer of CD8+ T-cells? Cell Microbiol 2021; 22:e13175. [PMID: 32185899 DOI: 10.1111/cmi.13175] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Listeria monocytogenes is a rapidly growing, Gram-positive, facultative intracellular pathogen that has been used for over 5 decades as a model to study basic aspects of infection and immunity. In a murine intravenous infection model, immunisation with a sublethal infection of L. monocytogenes initially leads to rapid intracellular multiplication followed by clearance of the bacteria and ultimately culminates in the development of long-lived cell-mediated immunity (CMI) mediated by antigen-specific CD8+ cytotoxic T-cells. Importantly, effective immunisation requires live, replicating bacteria. In this review, we summarise the cell and immunobiology of L. monocytogenes infection and discuss aspects of its pathogenesis that we suspect lead to robust CMI. We suggest five specific features of L. monocytogenes infection that positively impact the development of CMI: (a) the bacteria have a predilection for professional antigen-presenting cells; (b) the bacteria escape from phagosomes, grow, and secrete antigens into the host cell cytosol; (c) bacterial-secreted proteins enter the major histocompatibility complex (MHC) class I pathway of antigen processing and presentation; (d) the bacteria do not induce rapid host cell death; and (e) cytosolic bacteria induce a cytokine response that favours CMI. Collectively, these features make L. monocytogenes an attractive vaccine vector for both infectious disease applications and cancer immunotherapy.
Collapse
Affiliation(s)
- Alfredo Chávez-Arroyo
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California
| |
Collapse
|
2
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
3
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
4
|
Clark DR, Chaturvedi V, Kinder JM, Jiang TT, Xin L, Ertelt JM, Way SS. Perinatal Listeria monocytogenes susceptibility despite preconceptual priming and maintenance of pathogen-specific CD8(+) T cells during pregnancy. Cell Mol Immunol 2014; 11:595-605. [PMID: 25242275 PMCID: PMC4220843 DOI: 10.1038/cmi.2014.84] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes (Lm) is an intracellular bacterium with unique predisposition for systemic maternal infection during pregnancy and morbid consequences for the developing fetus. Given the high mortality associated with prenatal Lm infection, strategies for augmenting protective immunity during the exceedingly vulnerable period of pregnancy are urgently needed. Herein, protection conferred by attenuated Lm administered before pregnancy against subsequent virulent Lm prenatal infection was evaluated. We show that protection against secondary Lm infection in non-pregnant mice is sharply moderated during allogeneic pregnancy because significantly more bacteria are recovered from maternal tissues, despite the numerical and functional preservation of pathogen-specific CD8(+) T cells. More importantly, preconceptual priming does not protect against in utero invasion or fetal wastage because mice inoculated with attenuated Lm prior to pregnancy and naive pregnant controls each showed near complete fetal resorption and pathogen recovery from individual concepti after Lm infection during pregnancy. Remarkably, the lack of protection against prenatal Lm infection with preconceptual priming in allogeneic pregnancy is restored during syngeneic pregnancy. Thus, maternal-fetal antigen discordance dictates the ineffectiveness of preconceptual vaccination against fetal complications after prenatal Lm infection, despite the numerical and functional preservation of pathogen-specific CD8(+) T cells.
Collapse
|
5
|
Rowe JH, Ertelt JM, Xin L, Way SS. Listeria monocytogenes cytoplasmic entry induces fetal wastage by disrupting maternal Foxp3+ regulatory T cell-sustained fetal tolerance. PLoS Pathog 2012; 8:e1002873. [PMID: 22916020 PMCID: PMC3420962 DOI: 10.1371/journal.ppat.1002873] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/08/2012] [Indexed: 11/26/2022] Open
Abstract
Although the intracellular bacterium Listeria monocytogenes has an established predilection for disseminated infection during pregnancy that often results in spontaneous abortion or stillbirth, the specific host-pathogen interaction that dictates these disastrous complications remain incompletely defined. Herein, we demonstrate systemic maternal Listeria infection during pregnancy fractures fetal tolerance and triggers fetal wastage in a dose-dependent fashion. Listeria was recovered from the majority of concepti after high-dose infection illustrating the potential for in utero invasion. Interestingly with reduced inocula, fetal wastage occurred without direct placental or fetal invasion, and instead paralleled reductions in maternal Foxp3(+) regulatory T cell suppressive potency with reciprocal expansion and activation of maternal fetal-specific effector T cells. Using mutants lacking virulence determinants required for in utero invasion, we establish Listeria cytoplasmic entry is essential for disrupting fetal tolerance that triggers maternal T cell-mediated fetal resorption. Thus, infection-induced reductions in maternal Foxp3(+) regulatory T cell suppression with ensuing disruptions in fetal tolerance play critical roles in pathogenesis of immune-mediated fetal wastage.
Collapse
Affiliation(s)
| | | | | | - Sing Sing Way
- Departments of Pediatrics and Microbiology, Center for Infectious Disease and Microbiology Translational Research, University of Minnesota School of Medicine, Minneapolis, Minnesota, United States of America
| |
Collapse
|
6
|
Witte CE, Archer KA, Rae CS, Sauer JD, Woodward JJ, Portnoy DA. Innate immune pathways triggered by Listeria monocytogenes and their role in the induction of cell-mediated immunity. Adv Immunol 2012; 113:135-56. [PMID: 22244582 DOI: 10.1016/b978-0-12-394590-7.00002-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acquired cell-mediated immunity to Listeria monocytogenes is induced by infection with live, replicating bacteria that grow in the host cell cytosol, whereas killed bacteria, or those trapped in a phagosome, fail to induce protective immunity. In this chapter, we focus on how L. monocytogenes is sensed by the innate immune system, with the presumption that innate immunity affects the development of acquired immunity. Infection by L. monocytogenes induces three innate immune pathways: an MyD88-dependent pathway emanating from a phagosome leading to expression of inflammatory cytokines; a STING/IRF3-dependent pathway emanating from the cytosol leading to the expression of IFN-β and coregulated genes; and very low levels of a Caspase-1-dependent, AIM2-dependent inflammasome pathway resulting in proteolytic activation and secretion of IL-1β and IL-18 and pyroptotic cell death. Using a combination of genetics and biochemistry, we identified the listerial ligand that activates the STING/IRF3 pathway as secreted cyclic diadenosine monophosphate, a newly discovered conserved bacterial signaling molecule. We also identified L. monocytogenes mutants that caused robust inflammasome activation due to bacteriolysis in the cytosol, release of DNA, and activation of the AIM2 inflammasome. A strain was constructed that ectopically expressed and secreted a fusion protein containing Legionella pneumophila flagellin that robustly activated the Nlrc4-dependent inflammasome and was highly attenuated in mice, also in an Nlrc4-dependent manner. Surprisingly, this strain was a poor inducer of adaptive immunity, suggesting that inflammasome activation is not necessary to induce cell-mediated immunity and may even be detrimental under some conditions. To the best of our knowledge, no single innate immune pathway is necessary to mount a robust acquired immune response to L. monocytogenes infection.
Collapse
Affiliation(s)
- Chelsea E Witte
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
7
|
Curtis MM, Rowell E, Shafiani S, Negash A, Urdahl KB, Wilson CB, Way SS. Fidelity of pathogen-specific CD4+ T cells to the Th1 lineage is controlled by exogenous cytokines, interferon-gamma expression, and pathogen lifestyle. Cell Host Microbe 2010; 8:163-73. [PMID: 20709293 PMCID: PMC2923648 DOI: 10.1016/j.chom.2010.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/05/2010] [Accepted: 05/27/2010] [Indexed: 12/27/2022]
Abstract
The degree of lineage stability achieved by pathogen-specific CD4(+) T cells in vivo, and how this impacts host defense against infection, remains unclear. We demonstrate that in response to Th1-polarizing intracellular bacterial or viral pathogens, only 80%-90% of responding polyclonal T cells become indelibly committed to this lineage. Th1 commitment was nearly invariant in cells that proliferated extensively, but perturbations to the extrinsic cytokine milieu or the pathogen's ability to enter the cytosol impeded commitment and promoted plasticity for future IL-17 expression. Conversely, cell-intrinsic interferon-gamma expression and acquisition of permissive chromatin at the Ifng gene during priming predicted heritable Th1 commitment. Importantly, CD4(+) T cells that retained plasticity conferred protection against Mycobacterium tuberculosis, while these protective effects were abolished with Th17 polarization. These findings illustrate the immune signals that induce memory CD4(+) T cell responses required for maintaining host defense against infection yet are adaptable in novel environmental contexts.
Collapse
Affiliation(s)
- Meredith M. Curtis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Emily Rowell
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Shahin Shafiani
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Amina Negash
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Kevin B. Urdahl
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Christopher B. Wilson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Sing Sing Way
- Departments of Pediatrics and Microbiology, University of Minnesota School of Medicine, Minneapolis, MN 55455
| |
Collapse
|
8
|
Yin Y, Zhang C, Dong H, Niu Z, Pan Z, Huang J, Jiao X. Protective immunity induced by a LLO-deficient Listeria monocytogenes. Microbiol Immunol 2010; 54:175-83. [PMID: 20377746 DOI: 10.1111/j.1348-0421.2010.00211.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Listeria monocytogenes is a food-borne pathogen able to cause serious disease in human and animals. Listeriolysin O (LLO), a major virulence factor secreted by this bacterium, is a vacuole-specific lysin that facilitates bacterial entrance into the host cytosol. Thus, LLO plays a key role in the translocation and intracellular spread of L. monocytogenes. To study the effect of LLO on virulence and immunopotency, a LLO-deficient L. monocytogenes mutant was constructed using a shuttle vector followed by homologous recombination. The mutant strain had lost hemolytic activity, which resulted in an extremely reduced virulence, 5 logs lower than that of the parent strain, yzuLM4, in BALB/c mice. The number of bacteria detected in the spleens and livers of mice infected with the mutant was greatly reduced, and the bacteria were rapidly eliminated by the host. Kinetics studies in this murine model of infection showed that the invasion ability of the mutant strain was much lower than that of the parent strain. Moreover, immunization with the mutant strain conferred protective immunity against listerial infection. In particular, stimulation with Ag85B240-259, strong specific Th1 type cellular immunity was elicited by vaccination C57BL/6 mice with hly deficient strain delivering Mycobacterium tuberculosis fusion antigen Ag85B-ESAT-6 via intravenous inoculation. These results clearly show that highly attenuated LLO-deficient L. monocytogenes is an attractive vaccine carrier for delivering heterologous antigens.
Collapse
Affiliation(s)
- Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Jiangsu 225009, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Chen W, Goldfine H, Ananthanarayanan B, Cho W, Roberts MF. Listeria monocytogenes phosphatidylinositol-specific phospholipase C: Kinetic activation and homing in on different interfaces. Biochemistry 2009; 48:3578-92. [PMID: 19281241 PMCID: PMC2831545 DOI: 10.1021/bi802312d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphatidylinositol-specific phospholipase C (PI-PLC) from Listeria monocytogenes forms aggregates with anionic lipids leading to low activity. The specific activity of the enzyme can be enhanced by dilution of the protein or by addition of both zwitterionic and neutral amphiphiles (e.g., diheptanoylphosphatidylcholine or Triton X-100) or 0.1-0.2 M inorganic salts. Activation by amphiphiles occurs with both micellar (phosphatidylinositol dispersed in detergents) and monomeric [dibutroylphosphatidylinositol (diC(4)PI)] phosphotransferase substrates and inositol 1,2-(cyclic)-phosphate (cIP), the phosphodiesterase substrate. The presence of zwitterionic and neutral amphiphiles (to which the protein binds weakly) dilutes the surface concentration of the interfacial anionic substrate and thereby reduces the level of enzyme-phospholipid particle aggregation. Zwitterionic amphiphiles also can bind directly to the protein and enhance catalysis since they enhance both diC(4)PI and cIP hydrolysis. In contrast to activation by amphiphiles, the rate enhancement by salt occurs for only the phosphotransferase step of the reaction. Added salt has a synergistic effect with zwitterionic phospholipids, leading to high specific activities for PI cleavage with only moderate dilution of the anionic substrate in the interface. This kinetic activation correlates with weakening of strong PI-PLC hydrophobic interactions with the interface as monitored by a decrease in the maximum monolayer surface pressure for insertion of the protein. Several point mutations of surface hydrophobic residues (W49A, L51A, L235A, and F237W) can dramatically alter the unusual kinetics of this secreted enzyme. The high affinity of PI-PLC for anionic phospholipids along with a strong hydrophobic interaction, which gives rise to the unusual kinetic behavior, is considered in terms of how it might contribute to the role of this phospholipase in L. monocytogenes infectivity.
Collapse
Affiliation(s)
- Wei Chen
- Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467
| | - Howard Goldfine
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607
| | - Mary F. Roberts
- Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
10
|
inlA premature stop codons are common among Listeria monocytogenes isolates from foods and yield virulence-attenuated strains that confer protection against fully virulent strains. Appl Environ Microbiol 2008; 74:6570-83. [PMID: 18791029 DOI: 10.1128/aem.00997-08] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies showed that a considerable proportion of Listeria monocytogenes isolates obtained from foods carry a premature stop codon (PMSC) mutation in inlA that leads to production of a truncated and secreted InlA. To further elucidate the role these mutations play in virulence of L. monocytogenes, we created isogenic mutants, including (i) natural isolates where an inlA PMSC was reverted to a wild-type inlA allele (without a PMSC) and (ii) natural isolates where a PMSC mutation was introduced into a wild-type inlA allele; isogenic mutant sets were constructed to represent two distinct inlA PMSC mutations. Phenotypical and transcriptional analysis data showed that inlA PMSC mutations do not have a polar effect on the downstream inlB. Isogenic and natural strains carrying an inlA PMSC showed significantly reduced invasion efficiencies in Caco-2 and HepG2 cell lines as well as reduced virulence in oral guinea pig infections. Guinea pigs were also orally infected with a natural strain carrying the most common inlA PMSC mutation (vaccinated group), followed by challenge with a fully virulent L. monocytogenes strain 15 days postvaccination to probe potentially immunizing effects of exposure to L. monocytogenes with inlA PMSC mutations. Vaccinated guinea pigs showed reduced bacterial loads in internal organs and improved weight gain postchallenge, indicating reduced severity of infections in guinea pigs exposed to natural strains with inlA PMSC mutations. Our data support that (i) inlA PMSC mutations are causally associated with attenuated virulence in mammalian hosts and (ii) naturally occurring virulence-attenuated L. monocytogenes strains commonly found in food confer protective immunity.
Collapse
|