1
|
Kilgore PB, Sha J, Hendrix EK, Neil BH, Lawrence WS, Peel JE, Hittle L, Woolston J, Sulakvelidze A, Schwartz JA, Chopra AK. A bacteriophage cocktail targeting Yersinia pestis provides strong post-exposure protection in a rat pneumonic plague model. Microbiol Spectr 2024; 12:e0094224. [PMID: 39292000 PMCID: PMC11537065 DOI: 10.1128/spectrum.00942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Yersinia pestis, one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug-resistant strains. Indeed, antibiotic-resistant strains (e.g., strains carrying multidrug-resistant or MDR plasmids) have been isolated in various countries and endemic areas. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines (none FDA approved yet) may not be effective and those that cannot be managed by currently available antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation effective against a panel of at least 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ~88% protection when delivered 18 h post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies provide proof-of-concept that YPP-401 could be an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed multidrug-resistant strains.IMPORTANCECurrently, there are no FDA-approved plague vaccines. Since antibiotic-resistant strains of Y. pestis have emerged or are being intentionally developed to be used as a biothreat agent, new treatment modalities are direly needed. Phage therapy provides a viable option against potentially antibiotic-resistant strains. Additionally, phages are nontoxic and have been approved by the FDA for use in the food industry. Our study provides the first evidence of the protective effect of a cocktail of four phages against pneumonic plague, the most severe form of disease. When treatment was initiated 18 h post infection by either the intranasal or intraperitoneal route in Brown Norway rats, up to 87.5% protection was observed. The phage cocktail had a minimal impact on a representative human microbiome panel, unlike antibiotics. This study provides strong proof-of-concept data for the further development of phage-based therapy to treat plague.
Collapse
Affiliation(s)
- Paul B. Kilgore
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily K. Hendrix
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Blake H. Neil
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William S. Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer E. Peel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Creppy JR, Delache B, Lemaitre J, Horvat B, Vecellio L, Ducancel F. Administration of airborne pathogens in non-human primates. Inhal Toxicol 2024; 36:475-500. [PMID: 39388247 DOI: 10.1080/08958378.2024.2412685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system. MATERIALS AND METHODS The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies. RESULTS We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs. CONCLUSION The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.
Collapse
Affiliation(s)
- Justina R Creppy
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Benoit Delache
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université de Lyon, Lyon, France
| | - Laurent Vecellio
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Frédéric Ducancel
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Kilgore PB, Sha J, Hendrix EK, Neil BH, Lawrence WS, Peel JE, Hittle L, Woolston J, Sulakvelidze A, Schwartz JA, Chopra AK. A Bacteriophage Cocktail Targeting Yersinia pestis Provides Strong Post-Exposure Protection in a Rat Pneumonic Plague Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576055. [PMID: 38293171 PMCID: PMC10827167 DOI: 10.1101/2024.01.17.576055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Yersinia pestis , one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug resistant strains. The dissemination of such Y. pestis strains could be catastrophic, with public health consequences far more daunting than those caused by the recent COVID-19 pandemic. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines, none FDA approved yet, may not be effective, and those that cannot be controlled by approved antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation with a 100% lytic activity against a panel of 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ∼88% protection when delivered 18 hours post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies suggest that YPP-401 could provide an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed strains that cannot be managed by vaccines in development and antibiotics.
Collapse
|
4
|
Marion BM, Ghering JM, Dixon BC, Casselman AM, Astleford SM, White CE, Bowling PA. Comparison of Alfaxalone-Midazolam, Tiletamine-Zolazepam, and KetamineAcepromazine Anesthesia during Plethysmography in Cynomolgus Macaques ( Macaca fascicularis) and Rhesus Macaques ( Macaca mulatta). Comp Med 2022; 72:248-256. [PMID: 35772936 PMCID: PMC9413525 DOI: 10.30802/aalas-cm-22-000010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plethysmography is used in nonhuman primates (NHPs) to measure minute volume before aerosol exposure to an agent to calculate total time necessary in the exposure chamber. The consistency of respiratory parameters during the entire exposure time is paramount to ensuring dosing accuracy. Our study sought to validate an alfaxalone-midazolam (AM) anesthetic combination for use in aerosol studies. We hypothesized that AM would provide an adequate duration of anesthesia, achieve and maintain steady state minute volume (SSMV) for 20 min, and have anesthetic quality and side effects comparable to or better than either tiletamine-zolazepam (TZ) and ketamine-acepromazine (KA), the most common anesthetics used for this purpose currently. Two groups of NHPs, one consisting of 15 cynomolgus macaques and one of 15 rhesus macaques, received 3 intramuscular anesthetic combinations (AM, TZ, and KA), no less than one week apart. Anesthetized NHPs were placed in a plethysmograph chamber and their minute volumes were measured every 10 s to determine whether they had achieved SSMV and maintained it for at least 20 consecutive min. Achieving and reliably maintaining an SSMV for at least 20 min facilitates precise aerosol dosing of a challenge agent. Quality of anesthesia, based on the NHP's ability to achieve and maintain SSMV, was higher with AM compared with TZ and KA in both species, and AM had a longer duration of SSMV as compared with TZ and KA in cynomolgus macaques. Average SSMV was larger with AM compared with TZ in cynomolgus macaques, but larger with KA compared with AM in rhesus macaques. Duration of anesthesia was sufficient with all combinations but was longer for TZ than both AM and KA in both species. These results suggest that the AM anesthetic combination would produce the most accurate dosing for an aerosol challenge.
Collapse
Affiliation(s)
| | - Jeanean M Ghering
- Aerobiology, Animal Clinical Pathology, and Telemetry Section, Veterinary Medicine Division, and
| | | | | | | | - Charles E White
- Statistics Section, Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland
| | | |
Collapse
|
5
|
Rosario-Acevedo R, Biryukov SS, Bozue JA, Cote CK. Plague Prevention and Therapy: Perspectives on Current and Future Strategies. Biomedicines 2021; 9:1421. [PMID: 34680537 PMCID: PMC8533540 DOI: 10.3390/biomedicines9101421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Plague, caused by the bacterial pathogen Yersinia pestis, is a vector-borne disease that has caused millions of human deaths over several centuries. Presently, human plague infections continue throughout the world. Transmission from one host to another relies mainly on infected flea bites, which can cause enlarged lymph nodes called buboes, followed by septicemic dissemination of the pathogen. Additionally, droplet inhalation after close contact with infected mammals can result in primary pneumonic plague. Here, we review research advances in the areas of vaccines and therapeutics for plague in context of Y. pestis virulence factors and disease pathogenesis. Plague continues to be both a public health threat and a biodefense concern and we highlight research that is important for infection mitigation and disease treatment.
Collapse
Affiliation(s)
| | | | | | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA; (R.R.-A.); (S.S.B.); (J.A.B.)
| |
Collapse
|
6
|
Henning L, Endt K, Steigerwald R, Anderson M, Volkmann A. A Monovalent and Trivalent MVA-Based Vaccine Completely Protects Mice Against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenge. Front Immunol 2021; 11:598847. [PMID: 33542715 PMCID: PMC7851092 DOI: 10.3389/fimmu.2020.598847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
Venezuelan, eastern and western equine encephalitis viruses (EEV) can cause severe disease of the central nervous system in humans, potentially leading to permanent damage or death. Yet, no licensed vaccine for human use is available to protect against these mosquito-borne pathogens, which can be aerosolized and therefore pose a bioterror threat in addition to the risk of natural outbreaks. Using the mouse aerosol challenge model, we evaluated the immunogenicity and efficacy of EEV vaccines that are based on the modified vaccinia Ankara-Bavarian Nordic (MVA-BN®) vaccine platform: three monovalent vaccines expressing the envelope polyproteins E3-E2-6K-E1 of the respective EEV virus, a mixture of these three monovalent EEV vaccines (Triple-Mix) as a first approach to generate a multivalent vaccine, and a true multivalent alphavirus vaccine (MVA-WEV, Trivalent) encoding the polyproteins of all three EEVs in a single non-replicating MVA viral vector. BALB/c mice were vaccinated twice in a four-week interval and samples were assessed for humoral and cellular immunogenicity. Two weeks after the second immunization, animals were exposed to aerosolized EEV. The majority of vaccinated animals exhibited VEEV, WEEV, and EEEV neutralizing antibodies two weeks post-second administration, whereby the average VEEV neutralizing antibodies induced by the monovalent and Trivalent vaccine were significantly higher compared to the Triple-Mix vaccine. The same statistical difference was observed for VEEV E1 specific T cell responses. However, all vaccinated mice developed comparable interferon gamma T cell responses to the VEEV E2 peptide pools. Complete protective efficacy as evaluated by the prevention of mortality and morbidity, lack of clinical signs and viremia, was demonstrated for the respective monovalent MVA-EEV vaccines, the Triple-Mix and the Trivalent single vector vaccine not only in the homologous VEEV Trinidad Donkey challenge model, but also against heterologous VEEV INH-9813, WEEV Fleming, and EEEV V105-00210 inhalational exposures. These EEV vaccines, based on the safe MVA vector platform, therefore represent promising human vaccine candidates. The trivalent MVA-WEV construct, which encodes antigens of all three EEVs in a single vector and can potentially protect against all three encephalitic viruses, is currently being evaluated in a human Phase 1 trial.
Collapse
Affiliation(s)
- Lisa Henning
- Battelle Memorial Institute, Columbus, OH, United States
| | | | | | | | | |
Collapse
|
7
|
Pratt A, Bennett E, Gillard J, Leach S, Hall I. Dose-Response Modeling: Extrapolating From Experimental Data to Real-World Populations. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:67-78. [PMID: 32966638 DOI: 10.1111/risa.13597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dose-response modeling of biological agents has traditionally focused on describing laboratory-derived experimental data. Limited consideration has been given to understanding those factors that are controlled in a laboratory, but are likely to occur in real-world scenarios. In this study, a probabilistic framework is developed that extends Brookmeyer's competing-risks dose-response model to allow for variation in factors such as dose-dispersion, dose-deposition, and other within-host parameters. With data sets drawn from dose-response experiments of inhalational anthrax, plague, and tularemia, we illustrate how for certain cases, there is the potential for overestimation of infection numbers arising from models that consider only the experimental data in isolation.
Collapse
Affiliation(s)
- Adrian Pratt
- Emergency Response Department, Public Health England, Porton Down, UK
| | - Emma Bennett
- Emergency Response Department, Public Health England, Porton Down, UK
| | - Joseph Gillard
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Steve Leach
- Emergency Response Department, Public Health England, Porton Down, UK
| | - Ian Hall
- Emergency Response Department, Public Health England, Porton Down, UK
- Department of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
8
|
Gautam A, Muhie S, Chakraborty N, Hoke A, Donohue D, Miller SA, Hammamieh R, Jett M. Metabolomic analyses reveal lipid abnormalities and hepatic dysfunction in non-human primate model for Yersinia pestis. Metabolomics 2018; 15:2. [PMID: 30830480 PMCID: PMC6311182 DOI: 10.1007/s11306-018-1457-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Pneumonic plague is caused by the aerosolized form of Yersinia pestis and is a highly virulent infection with complex clinical consequences, and without treatment, the fatality rate approaches 100%. The exact mechanisms of disease progression are unclear, with limited work done using metabolite profiling to study disease progression. OBJECTIVE The aim of this pilot study was to profile the plasma metabolomics in an animal model of Y. pestis infection. METHODS In this study, African Green monkeys were challenged with the highly virulent, aerosolized Y. pestis strain CO92, and untargeted metabolomics profiling of plasma was performed using liquid and gas chromatography with mass spectrometry. RESULTS At early time points post-exposure, we found significant increases in polyunsaturated, long chain fatty acid metabolites with p values ranging from as low as 0.000001 (ratio = 1.94) for the metabolite eicosapentaenoate to 0.04 (ratio = 1.36) for the metabolite adrenate when compared to time-matched controls. Multiple acyl carnitines metabolites were increased at earlier time points and could be a result of fatty acid oxidation defects with p values ranging from as low as 0.00001 (ratio = 2.95) for the metabolite octanoylcarnitine to 0.04 (ratio = 1.33) for metabolite deoxycarnitine when compared to time-matched controls. Dicarboxylic acids are important metabolic products of fatty acids oxidation, and when compared to time matched controls, were higher at earlier time points where metabolite tetradecanedioate has a ratio of 4.09 with significant p value of 0.000002 and adipate with a ratio of 1.12 and p value of 0.004. The metabolites from lysolipids (with significant p values ranging from 0.00006 for 1-oleoylglycerophosphoethanolamine to 0.04 for 1-stearoylglycerophosphoethanolamine and a ratio of 0.47 and 0.78, respectively) and bile acid metabolism (with significant p values ranging from 0.02 for cholate to 0.04 for deoxycholate and a ratio of 0.39 and 0.66, respectively) pathways were significantly lower compared to their time-matched controls during the entire course of infection. Metabolite levels from amino acid pathways were disrupted, and a few from the leucine, isoleucine and valine pathway were significantly higher (p values ranging from 0.002 to 0.04 and ratios ranging from 1.3 to 1.5, respectively), whereas metabolites from the urea cycle, arginine and proline pathways were significantly lower (p values ranging from 0.00008 to 0.02 and ratios ranging from 0.5 to 0.7, respectively) during the course of infection. CONCLUSIONS The involvement of several lipid pathways post-infection suggested activation of pathways linked to inflammation and oxidative stress. Metabolite data further showed increased energy demand, and multiple metabolites indicated potential hepatic dysfunction. Integration of blood metabolomics and transcriptomics data identified linoleate as a core metabolite with cross-talk with multiple genes from various time points. Collectively, the data from this study provided new insights into the mechanisms of Y. pestis pathogenesis that may aid in development of therapeutics.
Collapse
Affiliation(s)
- Aarti Gautam
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Seid Muhie
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Nabarun Chakraborty
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Allison Hoke
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Duncan Donohue
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Stacy Ann Miller
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
- The Geneva Foundation, Fort Detrick, MD, USA
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Marti Jett
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
9
|
Identification and characterization of the tyrosinase gene (TYR) and its transcript variants (TYR_1 and TYR_2) in the crab-eating macaque (Macaca fascicularis). Gene 2017; 630:21-27. [PMID: 28756020 DOI: 10.1016/j.gene.2017.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/18/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Tyrosinase is a copper-containing enzyme that regulates melanin biosynthesis and is encoded by the tyrosinase (TYR) gene. Previous studies demonstrated that mutations in TYR could lead to oculocutaneous albinism type 1 (OCA1) owing to the failure of melanin formation. Although a previous study found that albinism in the rhesus monkey was derived from a mutation in TYR, the identification and characterization of this gene in non-human primates has not been achieved thus far. Thus, using the rapid amplification of cDNA ends (RACE) and internal reverse transcription PCR (RT-PCR) we identified the full-length sequence of TYR in the crab-eating macaque, and two different transcript variants (TYR_1 and TYR_2). While TYR_1 comprised five exons and its coding sequence was highly similar to that of humans, TYR_2 comprised four exons and was generated by a third-exon-skipping event. Interestingly, these two transcripts were also present in the African green monkey (Old World monkey) and the common marmoset (New World monkey). Deduced amino acid sequence analyses revealed that TYR_2 had a shorter C-terminal region than TYR_1 owing to the exon-skipping event. Thus, the present study is the first to identify and characterize a full-length TYR gene in a non-human primate, while the further validation of the third-exon-skipping in TYR indicates that this event is well conserved in the primate lineage. Therefore, this study provides useful and important information for the study of albinism using non-human primate models.
Collapse
|
10
|
Lin X, Xiao G, Luo D, Kong L, Chen X, Sun D, Yan J. Chimeric epitope vaccine against Leptospira interrogans infection and induced specific immunity in guinea pigs. BMC Microbiol 2016; 16:241. [PMID: 27737644 PMCID: PMC5064800 DOI: 10.1186/s12866-016-0852-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 11/28/2022] Open
Abstract
Background Leptospirosis is an important reemerging zoonosis, with more than half a million cases reported annually, and is caused by pathogenic Leptospira species. Development of a universal vaccine is one of the major strategic goals to overcome the disease burden of leptospirosis. In this study, a chimeric multi-epitope protein-based vaccine was designed and tested for its potency to induce a specific immune response and provide protection against L. interrogans infection. Results The protein, containing four repeats of six T- and B-cell combined epitopes from the leptospiral outer membrane proteins, OmpL1, LipL32 and LipL21, was expressed and purified. Western blot analysis showed that the recombinant protein (named r4R) mainly expressed in a soluble pattern, and reacted with antibodies raised in rabbit against heat-killed Leptospira and in guinea pigs against the r4R vaccine. Microscopic agglutination tests showed that r4R antisera was immunological cross-reactive with a range of Chinese standard reference strains of Leptospira belonging to different serogroups. In guinea pigs, the r4R vaccine induced a Th1-biased immune response, as reflected by the IgG2a/IgG1 ratio and cytokine production of stimulated splenocytes derived from immunized animals. Finally, r4R-immunized guinea pigs showed increased survival of lethal Leptospira challenges compared with PBS-immunized animals and tissue damage and leptospiral colonization of the kidney were reduced. Conclusions The multi-epitope chimeric r4R protein is a promising antigen for the development of a universal cross-reactive vaccine against leptospirosis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0852-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu'ai Lin
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China. .,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Guohui Xiao
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Dongjiao Luo
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Liangliang Kong
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Xu Chen
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Dexter Sun
- Department of Neurology and Neuroscience, New York Presbyterian Hospital and Hospital for Special Surgery, Cornell University Weill Medical College, New York, NY, 10021, USA
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China. .,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
11
|
A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:586-600. [PMID: 27170642 DOI: 10.1128/cvi.00150-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/02/2016] [Indexed: 12/25/2022]
Abstract
Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.
Collapse
|
12
|
Characterization of a Cynomolgus Macaque Model of Pneumonic Plague for Evaluation of Vaccine Efficacy. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015. [PMID: 26224691 DOI: 10.1128/cvi.00290-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The efficacy of a recombinant plague vaccine (rF1V) was evaluated in cynomolgus macaques (CMs) to establish the relationship among vaccine doses, antibody titers, and survival following an aerosol challenge with a lethal dose of Yersinia pestis strain Colorado 92. CMs were vaccinated with a range of rF1V doses on a three-dose schedule (days 0, 56, and 121) to provide a range of survival outcomes. The humoral immune response following vaccination was evaluated with anti-rF1, anti-rV, and anti-rF1V bridge enzyme-linked immunosorbent assays (ELISAs). Animals were challenged via aerosol exposure on day 149. Vaccine doses and antibody responses were each significantly associated with the probability of CM survival (P < 0.0001). Vaccination also decreased signs of pneumonic plague in a dose-dependent manner. There were statistically significant correlations between the vaccine dose and the time to onset of fever (P < 0.0001), the time from onset of fever to death (P < 0.0001), the time to onset of elevated respiratory rate (P = 0.0003), and the time to onset of decreased activity (P = 0.0251) postinfection in animals exhibiting these clinical signs. Delays in the onset of these clinical signs of disease were associated with larger doses of rF1V. Immunization with ≥ 12 μg of rF1V resulted in 100% CM survival. Since both the vaccine dose and anti-rF1V antibody titers correlate with survival, rF1V bridge ELISA titers can be used as a correlate of protection.
Collapse
|
13
|
Wang H, Wu Y, Ojcius DM, Yang XF, Zhang C, Ding S, Lin X, Yan J. Leptospiral hemolysins induce proinflammatory cytokines through Toll-like receptor 2-and 4-mediated JNK and NF-κB signaling pathways. PLoS One 2012; 7:e42266. [PMID: 22870312 PMCID: PMC3411626 DOI: 10.1371/journal.pone.0042266] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/02/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Infection with pathogenic Leptospira species causes serious systemic inflammation in patients. Although a few leptospiral proinflammatory molecules have been identified, Leptospira likely encodes other unidentified strong inflammation stimulators. The pathogenic L. interrogans genome encodes numerous putative hemolysin genes. Since hemolysins from other bacteria can cause inflammatory reactions, we hypothesized that leptospiral hemolysins may function as proinflammatory stimulators that contribute to the strong inflammation associated with Leptospira infection. METHODOLOGY/PRINCIPAL FINDINGS We first used cytokine protein microarrays for systematic analysis of serum cytokine profiles in leptospirosis patients and leptospire-infected mice. We found that IL-1β, IL-6 and TNF-α were the main proinflammatory cytokines in the sera of both the patients and the mice. We then analyzed eight putative hemolysins in L. interrogans strain Lai. The results showed that five of them, Sph1, Sph2, Sph3, HlpA and TlyA were secreted and had hemolytic activity. More importantly, these five hemolysins induced the strong production of IL-1β, IL-6 and TNF-α in human and mouse macrophages (although a bit lower in the latter). Furthermore, blockade of TLR2 or TLR4 with either antibodies or inhibitors of the NF-κB or JNK signaling pathways significantly reduced the production of hemolysin-induced IL-1β, IL-6 and TNF-α. Macrophages isolated from TLR2-, TLR4-or double TLR2-and 4-deficient mice also confirmed that the leptospiral hemolysins that induce proinflammatory cytokines are both TLR2-and TLR4-dependent. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that L. interrogans secretes many hemolysins that function as powerful inducers of proinflammatory cytokines through both TLR2-and TLR4-dependent JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifei Wu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - David M. Ojcius
- Health Sciences Research Institute and Molecular Cell Biology, University of California, Merced, California, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chenglin Zhang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shibiao Ding
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xu’ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail: (JY); (XL)
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail: (JY); (XL)
| |
Collapse
|
14
|
The pathophysiology of inhalational brucellosis in BALB/c mice. Sci Rep 2012; 2:495. [PMID: 22773944 PMCID: PMC3390596 DOI: 10.1038/srep00495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/11/2012] [Indexed: 11/11/2022] Open
Abstract
To characterize the clinical presentation and pathophysiology of inhalational brucellosis, Balb/c mice were challenged with Brucella melitensis 16M in a nose-only aerosol exposure chamber. A low dose of 1000 cfu/animal of B. melitensis resulted in 45% of mice with tissue burdens eight weeks post-challenge. The natural history of brucellosis in mice challenged by higher aerosol doses was examined by serial euthanizing mice over an eight week period. Higher challenge doses of 1.00E+05 and 5.00E+05 cfu resulted in positive blood cultures 14 days post-challenge and bacterial burdens were observed in the lung, liver and/or spleens 14 days post-challenge. In addition, the progression of brucellosis was similar between mice challenged by the intranasal and aerosol routes. The results from this study support the use of the Balb/c aerosol nose-only brucellosis mouse model for the evaluation of therapeutics against inhalational brucellosis.
Collapse
|
15
|
Huh JW, Kim YH, Park SJ, Kim DS, Lee SR, Kim KM, Jeong KJ, Kim JS, Song BS, Sim BW, Kim SU, Kim SH, Chang KT. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genomics 2012; 13:163. [PMID: 22554259 PMCID: PMC3496626 DOI: 10.1186/1471-2164-13-163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/13/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a human replacement, the crab-eating macaque (Macaca fascicularis) is an invaluable non-human primate model for biomedical research, but the lack of genetic information on this primate has represented a significant obstacle for its broader use. RESULTS Here, we sequenced the transcriptome of 16 tissues originated from two individuals of crab-eating macaque (male and female), and identified genes to resolve the main obstacles for understanding the biological response of the crab-eating macaque. From 4 million reads with 1.4 billion base sequences, 31,786 isotigs containing genes similar to those of humans, 12,672 novel isotigs, and 348,160 singletons were identified using the GS FLX sequencing method. Approximately 86% of human genes were represented among the genes sequenced in this study. Additionally, 175 tissue-specific transcripts were identified, 81 of which were experimentally validated. In total, 4,314 alternative splicing (AS) events were identified and analyzed. Intriguingly, 10.4% of AS events were associated with transposable element (TE) insertions. Finally, investigation of TE exonization events and evolutionary analysis were conducted, revealing interesting phenomena of human-specific amplified trends in TE exonization events. CONCLUSIONS This report represents the first large-scale transcriptome sequencing and genetic analyses of M. fascicularis and could contribute to its utility for biomedical research and basic biology.
Collapse
Affiliation(s)
- Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Young-Hyun Kim
- University of Science & Technology, National Primate Research Center, KRIBB, Daejeon, 305-806, Republic of Korea
| | - Sang-Je Park
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | - Dae-Soo Kim
- Genome Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Kyoung-Min Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
- University of Science & Technology, National Primate Research Center, KRIBB, Daejeon, 305-806, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Sang-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
- University of Science & Technology, National Primate Research Center, KRIBB, Daejeon, 305-806, Republic of Korea
| |
Collapse
|
16
|
Fellows P, Lin W, Detrisac C, Hu SC, Rajendran N, Gingras B, Holland L, Price J, Bolanowski M, House RV. Establishment of a Swiss Webster mouse model of pneumonic plague to meet essential data elements under the animal rule. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:468-76. [PMID: 22336286 PMCID: PMC3318273 DOI: 10.1128/cvi.05591-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
Abstract
A recombinant vaccine (rF1V) is being developed for protection against pneumonic plague. This study was performed to address essential data elements to establish a well-characterized Swiss Webster mouse model for licensing the rF1V vaccine using the FDA's Animal Rule. These elements include the documentation of challenge material characteristics, aerosol exposure parameters, details of the onset and severity of clinical signs, pathophysiological response to disease, and relevance to human disease. Prior to animal exposures, an evaluation of the aerosol system was performed to determine and understand the variability of the aerosol exposure system. Standardized procedures for the preparation of Yersinia pestis challenge material also were developed. The 50% lethal dose (LD(50)) was estimated to be 1,966 CFU using Probit analysis. Following the LD(50) determination, pathology was evaluated by exposing mice to a target LD(99) (42,890 CFU). Mice were euthanized at 12, 24, 36, 48, 60, and 72 h postexposure. At each time point, samples were collected for clinical pathology, detection of bacteria in blood and tissues, and pathology evaluations. A general increase in incidence and severity of microscopic findings was observed in the lung, lymph nodes, spleen, and liver from 36 to 72 h postchallenge. Similarly, the incidence and severity of pneumonia increased throughout the study; however, some mice died in the absence of pneumonia, suggesting that disease progression does not require the development of pneumonia. Disease pathology in the Swiss Webster mouse is similar to that observed in humans, demonstrating the utility of this pneumonic plague model that can be used by researchers investigating plague countermeasures.
Collapse
Affiliation(s)
- Patricia Fellows
- DynPort Vaccine Company LLC, A CSC Company, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Zhang C, Ojcius DM, Sun D, Zhao J, Lin X, Li L, Li L, Yan J. The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals. Mol Microbiol 2012; 83:1006-23. [DOI: 10.1111/j.1365-2958.2012.07985.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Abstract
The objective of this study was to characterize the rhesus macaque (RM) as a model for inhalational brucellosis in support of the U.S. Food and Drug Administration's (FDA) Animal Rule. The pathophysiology of chronic Brucella melitensis aerosol infection was monitored in two phases that each occurred over an 8-week time period; dose escalation (8 RMs; targeted doses of 5.0E+03, 5.0E+04, or 5.0E+05 CFU/animal or the unchallenged control) and natural history (12 RMs; targeted dose of 2.50E+05 CFU/animal or the unchallenged control). RMs given an aerosol challenge with B. melitensis developed undulating fevers (6/6 phase I; 8/9 phase II), positive enriched blood cultures (5/10; phase II), and bacterial burdens in tissues starting 14 to 21 days postchallenge (6/6 phase I; 10/10 phase II). In addition, 80% (8/10; phase II) of infected RMs seroconverted 14 to 21 days postchallenge. RMs developed elevations in certain liver enzymes and had an increased inflammatory response by 3 weeks postchallenge as shown by increases in C-reactive protein (6/8) and neopterin (4/8), which correlated with the onset of a fever. As early as 14 days postchallenge, positive liver biopsy specimens were detected (2/8), and ultrasound imaging showed the development of splenomegaly. Finally, histopathologic examination found lesions attributed to Brucella infection in the liver, kidney, lung, and/or spleen of all animals. The disease progression observed with the RMs in this study is analogous to human brucellosis pathophysiology. Thus, the results from this study support the use of the RM as an animal model for inhalational brucellosis to evaluate the efficacy of novel vaccines and therapeutics against B. melitensis.
Collapse
|
19
|
Luo Y, Liu Y, Sun D, Ojcius DM, Zhao J, Lin X, Wu D, Zhang R, Chen M, Li L, Yan J. InvA protein is a Nudix hydrolase required for infection by pathogenic Leptospira in cell lines and animals. J Biol Chem 2011; 286:36852-63. [PMID: 21862592 PMCID: PMC3196074 DOI: 10.1074/jbc.m111.219931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 08/01/2011] [Indexed: 12/11/2022] Open
Abstract
Leptospirosis caused by pathogenic species of the genus Leptospira is a re-emerging zoonotic disease, which affects a wide variety of host species and is transmitted by contaminated water. The genomes of several pathogenic Leptospira species contain a gene named invA, which contains a Nudix domain. However, the function of this gene has never been characterized. Here, we demonstrated that the invA gene was highly conserved in protein sequence and present in all tested pathogenic Leptospira species. The recombinant InvA protein of pathogenic L. interrogans strain Lai hydrolyzed several specific dinucleoside oligophosphate substrates, reflecting the enzymatic activity of Nudix in Leptospira species. Pathogenic leptospires did not express this protein in media but temporarily expressed it at early stages (within 60 min) of infection of macrophages and nephric epithelial cells. Comparing with the wild type, the invA-deficient mutant displayed much lower infectivity and a significantly reduced survival rate in macrophages and nephric epithelial cells. Moreover, the invA-deficient leptospires presented an attenuated virulence in hamsters, caused mild histopathological damage, and were transmitted in lower numbers in the urine, compared with the wild-type strain. The invA revertant, made by complementing the invA-deficient mutant with the invA gene, reacquired virulence similar to the wild type in vitro and in vivo. The LD(50) in hamsters was 1000-fold higher for the invA-deficient mutant than for the invA revertant and wild type. These results demonstrate that the InvA protein is a Nudix hydrolase, and the invA gene is essential for virulence in pathogenic Leptospira species.
Collapse
Affiliation(s)
- Yihui Luo
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| | - Yan Liu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dexter Sun
- the New York Presbyterian Hospital and Hospital for Special Surgery, Weill Medical College, Cornell University SinoUnited Health, New York, New York 10021, and
| | - David M. Ojcius
- the Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, California 95343
| | - Jinfang Zhao
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| | - Xuai Lin
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| | - Dong Wu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongguang Zhang
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Chen
- the Department of Bioinformatics, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lanjuan Li
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
| | - Jie Yan
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| |
Collapse
|
20
|
Advanced Development of the rF1V and rBV A/B Vaccines: Progress and Challenges. Adv Prev Med 2011; 2012:731604. [PMID: 22028978 PMCID: PMC3199075 DOI: 10.1155/2012/731604] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/25/2023] Open
Abstract
The development of vaccines for microorganisms and bacterial toxins with the potential to be used as biowarfare and bioterrorism agents is an important component of the US biodefense program. DVC is developing two vaccines, one against inhalational exposure to botulinum neurotoxins A1 and B1 and a second for Yersinia pestis, with the ultimate goal of licensure by the FDA under the Animal Rule. Progress has been made in all technical areas, including manufacturing, nonclinical, and clinical development and testing of the vaccines, and in assay development. The current status of development of these vaccines, and remaining challenges are described in this chapter.
Collapse
|
21
|
Samson N, Dumont S, Specq ML, Praud JP. Radio telemetry devices to monitor breathing in non-sedated animals. Respir Physiol Neurobiol 2011; 179:111-8. [PMID: 21964163 DOI: 10.1016/j.resp.2011.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/13/2011] [Accepted: 09/16/2011] [Indexed: 11/27/2022]
Abstract
Radio telemetry equipment has significantly improved over the last 10-15 years and is increasingly being used in research for monitoring a variety of physiological parameters in non-sedated animals. The aim of this review is to provide an update on the current state of development of radio telemetry for recording respiration. Our literature review found only rare reports of respiratory studies via radio telemetry. Much of this article will hence report our experience with our custom-built radio telemetry devices designed for recording respiratory signals, together with numerous other physiological signals in lambs. Our current radio telemetry system allows to record 24 simultaneous signals 24h/day for several days. To our knowledge, this is the highest number of physiological signals, which can be recorded wirelessly. Our devices have been invaluable for studying respiration in our ovine models of preterm birth, reflux laryngitis, postnatal exposure to cigarette smoke, respiratory syncytial virus infection and nasal ventilation, all of which are relevant to neonatal respiratory problems.
Collapse
Affiliation(s)
- Nathalie Samson
- Neonatal Respiratory Research Unit, Department of Pediatrics and Physiology, Université de Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
22
|
Quenee LE, Ciletti NA, Elli D, Hermanas TM, Schneewind O. Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines. Vaccine 2011; 29:6572-83. [PMID: 21763383 DOI: 10.1016/j.vaccine.2011.06.119] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Yersinia pestis causes plague, a disease with high mortality in humans that can be transmitted by fleabite or aerosol. A US Food and Drug Administration (FDA)-licensed plague vaccine is currently not available. Vaccine developers have focused on two subunits of Y. pestis: LcrV, a protein at the tip of type III secretion needles, and F1, the fraction 1 pilus antigen. F1-V, a hybrid generated via translational fusion of both antigens, is being developed for licensure as a plague vaccine. The rV10 vaccine is a non-toxigenic variant of LcrV lacking residues 271-300. Here we developed Current Good Manufacturing Practice (cGMP) protocols for rV10. Comparison of clinical grade rV10 with F1-V did not reveal significant differences in plague protection in mice, guinea pigs or cynomolgus macaques. We also developed cGMP protocols for rV10-2, a variant of rV10 with an altered affinity tag. Immunization with rV10-2 adsorbed to aluminum hydroxide elicited antibodies against LcrV and conferred pneumonic plague protection in mice, rats, guinea pigs, cynomolgus macaques and African Green monkeys. The data support further development of rV10-2 for FDA Investigational New Drug (IND) authorization review and clinical testing.
Collapse
Affiliation(s)
- Lauriane E Quenee
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
23
|
Rosenzweig JA, Jejelowo O, Sha J, Erova TE, Brackman SM, Kirtley ML, van Lier CJ, Chopra AK. Progress on plague vaccine development. Appl Microbiol Biotechnol 2011; 91:265-86. [PMID: 21670978 DOI: 10.1007/s00253-011-3380-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 12/15/2022]
Abstract
Yersinia pestis (YP), the gram-negative plague bacterium, has shaped human history unlike any other pathogen known to mankind. YP (transmitted by the bite of an infected flea) diverged only recently from the related enteric pathogen Yersinia pseudotuberculosis but causes radically different diseases. Three forms of plague exist in humans: bubonic (swollen lymph nodes or bubos), septicemic (spread of YP through the lymphatics or bloodstream from the bubos to other organs), and contagious, pneumonic plague which can be communicated via YP-charged respiratory droplets resulting in person-person transmission and rapid death if left untreated (50-90% mortality). Despite the potential threat of weaponized YP being employed in bioterrorism and YP infections remaining prevalent in endemic regions of the world where rodent populations are high (including the four corner regions of the USA), an efficacious vaccine that confers immunoprotection has yet to be developed. This review article will describe the current vaccine candidates being evaluated in various model systems and provide an overall summary on the progress of this important endeavor.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| | | | | | | | | | | | | | | |
Collapse
|