1
|
Liu C, Shao J, Ma X, Tang Y, Li J, Li H, Chi X, Liu Z. A novel two-component system contributing the catabolism of c-di-GMP influences virulence in Aeromonas veronii. Front Microbiol 2025; 16:1527317. [PMID: 39980697 PMCID: PMC11841396 DOI: 10.3389/fmicb.2025.1527317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Response regulators from diverse two-component systems often function as diguanylate cyclases or phosphodiesterases, thereby enabling precise regulation of intracellular c-di-GMP levels to control bacterial virulence and motility. However, the regulatory mechanisms of c-di-GMP require further elucidation. Methods This study confirmed that ArrS and ArrR form a two-component system via structural analysis, two-hybrid, and phosphodiesterase activity detection. To evaluate the impact of ArrS/ArrR on intracellular c-di-GMP levels, biofilm detection, motility detection, fluorescence reporter plasmids, and LC-MS/MS analysis were employed. One-hybrid, EMSA, and RT-qPCR were used to demonstrate the function of ArgR on arrSR promoter. The roles of ArrS/ArrR in Aeromonas veronii were investigated using RT-qPCR, murine model, and proteomics. Results ArrS and ArrR constituted a two-component system in Aeromonas veronii and were transcriptionally repressed by ArgR. ArrR exhibited phosphodiesterase activity, which is inhibited through phosphorylation mediated by ArrS. In Aeromonas veronii, ArrS/ArrR significantly altered the intracellular c-di-GMP levels. In a murine model, ΔarrS exhibited increased pathogenicity, leading to elevated TNF-α and IFN-γ levels in serum, and severer toxicity to spleen and kidney. These effects might be elucidated by the upregulated inflammation-associated proteins in ΔarrS. Moreover, the exonuclease RecB was also up-regulated in ΔarrS. Discussion We elucidated the regulatory mechanism of ArrS/ArrR on intracellular c-di-GMP levels and its impact on the virulence in Aeromonas veronii, and discussed the intricate relationship between c-di-GMP metabolism and arginine metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou, China
| |
Collapse
|
2
|
Judan Cruz KG, Takumi O, Bongulto KA, Gandalera EE, Kagia N, Watanabe K. Natural compound-induced downregulation of antimicrobial resistance and biofilm-linked genes in wastewater Aeromonas species. Front Cell Infect Microbiol 2024; 14:1456700. [PMID: 39469451 PMCID: PMC11513397 DOI: 10.3389/fcimb.2024.1456700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Addressing the global antimicrobial resistance (AMR) crisis requires a multifaceted innovative approach to mitigate impacts on public health, healthcare and economic systems. In the complex evolution of AMR, biofilms and the acquisition of antimicrobial resistance genes (ARGs) play a pivotal role. Aeromonas is a major AMR player that often forms biofilm, harbors ARGs and is frequently detected in wastewater. Existing wastewater treatment plants (WWTPs) do not have the capacity to totally eliminate antimicrobial-resistant bacteria favoring the evolution of ARGs in wastewater. Besides facilitating the emergence of AMR, biofilms contribute significantly to biofouling process within the activated sludge of WWTP bioreactors. This paper presents the inhibition of biofilm formation, the expression of biofilm-linked genes and ARGs by phytochemicals andrographolide, docosanol, lanosterol, quercetin, rutin and thymohydroquinone. Aeromonas species were isolated and purified from activated sludge samples. The ARGs were detected in the isolated Aeromonas species through PCR. Aeromonas biofilms were quantified following the application of biocompounds through the microtiter plate assay. qPCR analyses of related genes were done for confirmation. Findings showed that the natural compounds inhibited the formation of biofilms and reduced the expression of genes linked to biofilm production as well as ARGs in wastewater Aeromonas. This indicates the efficacy of these compounds in targeting and controlling both ARGs and biofilm formation, highlighting their potential as innovative solutions for combating antimicrobial resistance and biofouling.
Collapse
Affiliation(s)
- Khristina G. Judan Cruz
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Okamoto Takumi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kenneth A. Bongulto
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Emmanuel E. Gandalera
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Ngure Kagia
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
3
|
Ojaimi Loibman S, Quintana-Hayashi MP, Santos L, Lindén SK. Aeromonas salmonicida AI-1 and AI-2 quorum sensing pathways are differentially regulated by rainbow trout mucins and during in vivo colonization. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109862. [PMID: 39209006 DOI: 10.1016/j.fsi.2024.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aeromonas salmonicida is an opportunistic pathogen with relevance for aquaculture. Fish epithelia are covered by a mucus layer, composed mainly by highly glycosylated mucins, which are the first point of contact between fish and pathogens. Quorum sensing (QS), a bacterial communication mechanism through secreted autoinducer signals that governs gene expression, influences bacterial growth and virulence. The main A. salmonicida autoinducers are mediated by the luxS and asaI genes, corresponding to inter- and intraspecies communication, respectively. The aim of this study was to determine the effect of the mucins that pathogens encounter during colonization of the gill and skin on A. salmonicida QS. We found that expression of A. salmonicida asaI, but not luxS, was increased after culture at 20 °C compared to 10 °C. Rainbow trout gill and skin mucins up-regulated asaI expression 2-fold but down-regulated luxS 10-fold. The downregulation of luxS was reflected by a reduction in autoinducer-2 secretion. Mucins isolated from skin had a stronger inhibitory effect than mucins isolated from gills on both luxS expression and A1-2 secretion, consistent with a higher relative abundance of N-Acetylneuraminic acid on skin mucins than on gill mucins. Reduction of AI-2 production by mucins or luxS-deletion lead to a reduced A. salmonicida auto-aggregation. Furthermore, after colonization of the gill, luxS was down regulated whereas asaI expression was upregulated. Both in vivo and in vitro, the expression of luxS and asaI were thus differentially regulated, frequently in an inverse manner. The strong AI-2 inhibiting effect of the skin mucins is likely part of the mucin-based defense against pathogens.
Collapse
Affiliation(s)
| | | | - Licínia Santos
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Sweden
| | - Sara K Lindén
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Sweden.
| |
Collapse
|
4
|
Tang M, Zhao D, Zhang Y, Qian C, Chen H, Chen L, Ye J, Zhou T. Impact of LuxS on virulence and pathogenicity in Klebsiella pneumoniae exhibiting varied mucoid phenotypes. Infect Immun 2024; 92:e0001224. [PMID: 38358274 PMCID: PMC10929404 DOI: 10.1128/iai.00012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
How the LuxS/AI-2 quorum sensing (QS) system influences the pathogenicity of K. pneumoniae is complicated by the heterogeneity of the bacterial mucoid phenotypes. This study aims to explore the LuxS-mediated regulation of the pathogenicity of K. pneumoniae with diverse mucoid phenotypes, including hypermucoid, regular-mucoid, and nonmucoid. The wild-type, luxS knockout, and complemented strains of three K. pneumoniae clinical isolates with distinct mucoid phenotypes were constructed. The results revealed the downregulation of virulence genes of regular-mucoid, and nonmucoid but not hypermucoid strains. The deletion of luxS reduced the pathogenicity of the regular-mucoid, and nonmucoid strains in mice; while in hypermucoid strain, luxS knockout reduced virulence in late growth but enhanced virulence in the early growth phase. Furthermore, the absence of luxS led the regular-mucoid and nonmucoid strains to be more sensitive to the host cell defense, and less biofilm-productive than the wild-type at both the low and high-density growth state. Nevertheless, luxS knockout enhanced the resistances to adhesion and phagocytosis by macrophage as well as serum-killing, of hypermucoid K. pneumoniae at its early low-density growth state, while it was opposite to those in its late high-density growth phase. Collectively, our results suggested that LuxS plays a crucial role in the pathogenicity of K. pneumoniae, and it is highly relevant to the mucoid phenotypes and growth phases of the strains. LuxS probably depresses the capsule in the early low-density phase and promotes the capsule, biofilm, and pathogenicity during the late high-density phase, but inhibits lipopolysaccharide throughout the growth phase, in K. pneumoniae.IMPORTANCECharacterizing the regulation of physiological functions by the LuxS/AI-2 quorum sensing (QS) system in Klebsiella pneumoniae strains will improve our understanding of this important pathogen. The genetic heterogeneity of K. pneumoniae isolates complicates our understanding of its pathogenicity, and the association of LuxS with bacterial pathogenicity has remained poorly addressed in K. pneumoniae. Our results demonstrated strain and growth phase-dependent variation in the contributions of LuxS to the virulence and pathogenicity of K. pneumoniae. Our findings provide new insights into the important contribution of the LuxS/AI-2 QS system to the networks that regulate the pathogenicity of K. pneumoniae. Our study will facilitate our understanding of the regulatory mechanisms of LuxS/AI-2 QS on the pathogenicity of K. pneumoniae under the background of their genetic heterogeneity and help develop new strategies for diminished bacterial virulence within the clinical K. pneumoniae population.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deyi Zhao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changrui Qian
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huale Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang L, Li H, Chen J, Wang Y, Gu Y, Jiu M. Antibacterial Mechanisms and Antivirulence Activities of Oridonin against Pathogenic Aeromonas hydrophila AS 1.1801. Microorganisms 2024; 12:415. [PMID: 38399819 PMCID: PMC10891661 DOI: 10.3390/microorganisms12020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Aeromonas hydrophila, a Gram-negative bacterium widely found in freshwater environments, acts as a common conditional pathogen affecting humans, livestock, and aquatic animals. In this study, the impact of oridonin, an ent-kaurane diterpenoid compound derived from Rabdosia rubescens, on the virulence factors of A. hydrophila AS 1.1801 and its antibacterial mechanism was elucidated. The minimum inhibitory concentration (MIC) of oridonin against A. hydrophila AS 1.1801 was 100 μg/mL. Oridonin at inhibitory concentrations could significantly increase the electrical conductivity in the supernatant and escalate nucleic acid leakage (p < 0.01). This effect was concomitant with observed distortions in bacterial cells, the formation of cytoplasmic cavities, cellular damage, and pronounced inhibition of protein and nucleic acid synthesis. Additionally, oridonin at inhibitory levels exhibited a noteworthy suppressive impact on A. hydrophila AS 1.1801 across biofilm formation, motility, hemolytic activity, lipase activity, and protease activity (p < 0.05), demonstrating a dose-dependent enhancement. qRT-PCR analysis showed that the gene expression of luxR, qseB and omp were significantly downregulated after oridonin treatment in A. hydrophila AS 1.1801 (p < 0.05). Our results indicated that oridonin possessed significant antibacterial and anti-virulence effects on A. hydrophila AS 1.1801.
Collapse
Affiliation(s)
- Lunji Wang
- Key Laboratory of Microbial Resources Development and Utilization, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (J.C.)
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (Y.W.); (Y.G.)
| | - Huijuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (Y.W.); (Y.G.)
| | - Jinhao Chen
- Key Laboratory of Microbial Resources Development and Utilization, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (J.C.)
| | - Yi Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (Y.W.); (Y.G.)
| | - Yuqing Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (Y.W.); (Y.G.)
| | - Min Jiu
- Key Laboratory of Microbial Resources Development and Utilization, Henan University of Science and Technology, Luoyang 471023, China; (L.W.); (J.C.)
| |
Collapse
|
6
|
Neil B, Cheney GL, Rosenzweig JA, Sha J, Chopra AK. Antimicrobial resistance in aeromonads and new therapies targeting quorum sensing. Appl Microbiol Biotechnol 2024; 108:205. [PMID: 38349402 PMCID: PMC10864486 DOI: 10.1007/s00253-024-13055-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human pathogens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aeromonas' innate transformative properties including its ability to share plasmids and integron-related gene cassettes between species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein, many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp. infections in humans. KEY POINTS: • Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited. • Quorum sensing is an essential virulence mechanism in Aeromonas infections. • Inhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.
Collapse
Affiliation(s)
- Blake Neil
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Gabrielle L Cheney
- John Sealy School of Medicine, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA
| | - Jian Sha
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA.
| |
Collapse
|
7
|
Li Y, Han S, Wang Y, Qin M, Lu C, Ma Y, Yang W, Liu J, Xia X, Wang H. Autoinducer-2 promotes adherence of Aeromonas veronii through facilitating the expression of MSHA type IV pili genes mediated by c-di-GMP. Appl Environ Microbiol 2023; 89:e0081923. [PMID: 37902393 PMCID: PMC10686060 DOI: 10.1128/aem.00819-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Aeromonas veronii can adhere to host cells through different adherence factors including outer-membrane proteins (OMPs), lipopolysaccharide (LPS), and pili, but its adherence mechanisms are still unclear. Here, we evaluated the effect of autoinducer-2 (AI-2) on adherence of A. veronii and its regulation mechanism. After determination of the promotion effect of AI-2 on adherence, we investigated which adherence factor was regulated by AI-2, and the results show that AI-2 only limits the formation of pili. Among the four distinct pili systems, only the mannose-sensitive hemagglutinin (MSHA) type IV pili genes were significantly downregulated after deficiency of AI-2. MshE, an ATPase belonged to MSHA type IV pilin, was confirmed as c-di-GMP receptor, that can bind with c-di-GMP which is positively regulated by AI-2, and the increase of c-di-GMP can promote the expression of MSHA type IV pili genes and adherence of A. veronii. Therefore, this study confirms that c-di-GMP positively regulated by AI-2 binds with MshE, then increases the expression of MSHA pili genes, finally promoting adherence of A. veronii, suggesting a multilevel positive regulatory adhesion mechanism that is responsible for A. veronii adherence.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Shuo Han
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Yuqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Mengyuan Qin
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Chengjin Lu
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Yingke Ma
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wenqing Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jiajia Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Condinho M, Carvalho B, Cruz A, Pinto SN, Arraiano CM, Pobre V. The role of RNA regulators, quorum sensing and c-di-GMP in bacterial biofilm formation. FEBS Open Bio 2023; 13:975-991. [PMID: 35234364 PMCID: PMC10240345 DOI: 10.1002/2211-5463.13389] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Biofilms provide an ecological advantage against many environmental stressors, such as pH and temperature, making it the most common life-cycle stage for many bacteria. These protective characteristics make eradication of bacterial biofilms challenging. This is especially true in the health sector where biofilm formation on hospital or patient equipment, such as respirators, or catheters, can quickly become a source of anti-microbial resistant strains. Biofilms are complex structures encased in a self-produced polymeric matrix containing numerous components such as polysaccharides, proteins, signalling molecules, extracellular DNA and extracellular RNA. Biofilm formation is tightly controlled by several regulators, including quorum sensing (QS), cyclic diguanylate (c-di-GMP) and small non-coding RNAs (sRNAs). These three regulators in particular are fundamental in all stages of biofilm formation; in addition, their pathways overlap, and the significance of their role is strain-dependent. Currently, ribonucleases are also of interest for their potential role as biofilm regulators, and their relationships with QS, c-di-GMP and sRNAs have been investigated. This review article will focus on these four biofilm regulators (ribonucleases, QS, c-di-GMP and sRNAs) and the relationships between them.
Collapse
Affiliation(s)
- Manuel Condinho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Adriana Cruz
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Sandra N. Pinto
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
9
|
Qin T, Chen K, Xi B, Pan L, Xie J, Lu L, Liu K. In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila. Antibiotics (Basel) 2023; 12:antibiotics12040686. [PMID: 37107048 PMCID: PMC10135085 DOI: 10.3390/antibiotics12040686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Aeromonas hydrophila is a Gram-negative bacterium that widely exists in various aquatic environments and causes septicemia in fish and humans. Resveratrol, a natural polyterpenoid product, has potential chemo-preventive and antibacterial properties. In this study, we investigated the effect of resveratrol on A. hydrophila biofilm formation and motility. The results demonstrated that resveratrol, at sub-MIC levels, can significantly inhibit the biofilm formation of A. hydrophila, and the biofilm was decreased with increasing concentrations. The motility assay showed that resveratrol could diminish the swimming and swarming motility of A. hydrophila. Transcriptome analyses (RNA-seq) showed that A. hydrophila treated with 50 and 100 μg/mL resveratrol, respectively, presented 230 and 308 differentially expressed genes (DEGs), including 90 or 130 upregulated genes and 130 or 178 downregulated genes. Among them, genes related to flagellar, type IV pilus and chemotaxis were significantly repressed. In addition, mRNA of virulence factors OmpA, extracellular proteases, lipases and T6SS were dramatically suppressed. Further analysis revealed that the major DEGs involved in flagellar assembly and bacterial chemotaxis pathways could be regulated by cyclic-di-guanosine monophosphate (c-di-GMP)- and LysR-Type transcriptional regulator (LTTR)-dependent quorum sensing (QS) systems. Overall, our results indicate that resveratrol can inhibit A. hydrophila biofilm formation by disturbing motility and QS systems, and can be used as a promising candidate drug against motile Aeromonad septicemia.
Collapse
|
10
|
Zhao J, Li Y, Huang Y, Jin L, Xu Y, Xu M, Quan C, Chen M. Heterologous expression of quorum sensing transcriptional regulator LitR and its function in virulence-related gene regulation in foodborne pathogen Aeromonas hydrophila. Mol Biol Rep 2023; 50:2049-2060. [PMID: 36542235 DOI: 10.1007/s11033-022-07866-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aeromonas hydrophila is an important foodborne and zoonotic pathogen causing serious diseases. Hence, revealing the pathogenic mechanism of A. hydrophila will be of importance in the development of novel therapies. Aeromonas hydrophila litR was reported to be regulated by two quorum sensing (QS) pathways, indicating that it is involved in QS network regulation correlated with bacterial virulence. However, the function of LitR is currently not understood. Therefore, we aimed to reveal the potential regulatory mechanisms of LitR on virulence-related genes. METHODS AND RESULTS In this study, amino acid sequences analysis of LitR was conducted, providing bioinformatics evidence for its function as a potential transcriptional regulator. LitR protein was heterologous expressed, purified and its in-vitro multimeric forms were observed with gel filtration chromatography. The correlation between intracellular LitR expression level and cell density was analyzed with immunoblots. Regulation mechanisms of LitR on several important virulence-related factors were investigated with qRT-PCR, EMSA, DNase I footprinting and microscale thermophoresis binding assays, etc. Results showed that recombinant LitR protein aggregated mainly as dimer and hexamer in vitro. Intracellular expression level of LitR was positively correlated with cell density of A. hydrophila. Furthermore, LitR exhibited complicated regulation modes on virulence-related genes; it could directly bind to promoter regions of the hemolysin, serine protease and T6SS effector protein VgrG encoded genes. The promoter region of the hemolysin gene showed high binding affinity and mainly two binding sites for LitR. Different dissociation constants were obtained for LitR interaction with the hemolysin gene binding motifs I and II. Assays focusing on physiological characteristics of A. hydrophila prove that LitR positively regulated hemolytic and total extracellular protease activities. CONCLUSIONS This study investigated the function of LitR as a quorum sensing transcriptional regulator in regulation of virulence-related genes, which will help reveal the mechanisms of A. hydrophila pathogenicity. LitR could serve as a potential target for development of new antimicrobial agents from the perspective of QS regulation.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yue Li
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Huang
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yongbin Xu
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Menghao Xu
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China.
- College of Life Science, Dalian Minzu University, Dalian, 116600, China.
| | - Ming Chen
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
11
|
Sun B, Luo H, Jiang H, Wang Z, Jia A. Inhibition of Quorum Sensing and Biofilm Formation of Esculetin on Aeromonas Hydrophila. Front Microbiol 2021; 12:737626. [PMID: 34630364 PMCID: PMC8500062 DOI: 10.3389/fmicb.2021.737626] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) and biofilm formation inhibition activity of esculetin on Aeromonas hydrophila SHAe 115 were evaluated. Exposure to esculetin at 25, 50, and 100μg/ml significantly inhibited the production of protease and hemolysin, the formation of biofilms and attenuated the swarming motility of A. hydrophila SHAe 115. Biofilm forming inhibition was also observed through confocal laser scanning microscopy and scanning electron microscope. Quantitative real-time PCR analysis indicated that genes positively related to QS and biofilm formation were downregulated to varying degrees, while gene (litR) negatively related to biofilm formation was significantly upregulated. The phenotypic results were in good agreement with gene expression levels. These results indicated that esculetin would be a potential QS inhibitor for A. hydrophila.
Collapse
Affiliation(s)
- Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.,State Key Laboratory of Marine Resource Utilization in South China Sea, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Huaizhi Luo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Huan Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Zhennan Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Aiqun Jia
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
12
|
Xuan TF, Wang ZQ, Liu J, Yu HT, Lin QW, Chen WM, Lin J. Design and Synthesis of Novel c-di-GMP G-Quadruplex Inducers as Bacterial Biofilm Inhibitors. J Med Chem 2021; 64:11074-11089. [PMID: 34323486 DOI: 10.1021/acs.jmedchem.1c00465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The formation of biofilms by clinical pathogens typically leads to chronic and recurring antibiotic-resistant infections. High cellular levels of cyclic diguanylate (c-di-GMP), a ubiquitous secondary messenger of bacteria, have been proven to be associated with a sessile biofilm lifestyle of pathogens. A promising antibiofilm strategy involving the induction of c-di-GMP to form dysfunctional G-quadruplexes, thereby blocking the c-di-GMP-mediated biofilm regulatory pathway, was proposed in this study. In this new strategy, a series of novel c-di-GMP G-quadruplex inducers were designed and synthesized for development of therapeutic biofilm inhibitors. Compound 5h exhibited favorable c-di-GMP G-quadruplex-inducing activity and 62.18 ± 6.76% biofilm inhibitory activity at 1.25 μM without any DNA intercalation effect. Moreover, the favorable performance of 5h in interfering with c-di-GMP-related biological functions, including bacterial motility and bacterial extracellular polysaccharide secretion, combined with the reporter strain and transcriptome analysis results confirmed the c-di-GMP signaling-related action mechanism of 5h.
Collapse
Affiliation(s)
- Teng-Fei Xuan
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zi-Qiang Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Hai-Tao Yu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Qian-Wen Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
13
|
Kakkar A, Verma RK, Samal B, Chatterjee S. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae. Environ Microbiol 2021; 23:5433-5462. [PMID: 34240791 DOI: 10.1111/1462-2920.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF ) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell-cell signalling to coordinate virulence-associated function in Xoo.
Collapse
Affiliation(s)
- Akanksha Kakkar
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | | |
Collapse
|
14
|
Expansion of Necrosis Depending on Hybrid Motor-Driven Motility of Aeromonas hydrophila in a Murine Wound Infection Model. Microorganisms 2020; 9:microorganisms9010010. [PMID: 33375129 PMCID: PMC7822177 DOI: 10.3390/microorganisms9010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/04/2022] Open
Abstract
The gram-negative bacterium Aeromonas hydrophila is a cause of fulminant and lethal necrotizing soft tissue infections (NSTIs). Suppressing the rapid proliferation of the pathogen and expansion of the necrosis caused in the host is an important issue in clinical practice, but the pathogenic mechanism for the rapid aggravation has not been clarified. In this study, we characterized the function of two types of motor stators in A. hydrophila and explored the role of motility during wound infection. In vitro analysis showed that the motility was reliably maintained while being complemented by the stators. We created a non-motile strain that lacked genes encoding two types of motor stators and analyzed the role of motility in a murine wound infection model. Examination of the bacterial burden in the local infection site and systemic circulation revealed that motility was not essential for the proliferation of A. hydrophila in the host. However, the extent of necrosis at the lesions was lower, and survival times were prolonged in mice infected with the non-motile strain compared with mice infected with the parent strain. These results provide evidence that the rapid expansion of necrosis and the progression to death within a short time period is dependent on the motility of A. hydrophila.
Collapse
|
15
|
Complete genome sequence of fish-pathogenic Aeromonas hydrophila HX-3 and a comparative analysis: insights into virulence factors and quorum sensing. Sci Rep 2020; 10:15479. [PMID: 32968153 PMCID: PMC7512022 DOI: 10.1038/s41598-020-72484-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
The gram-negative, aerobic, rod-shaped bacterium Aeromonas hydrophila, the causative agent of motile aeromonad septicaemia, has attracted increasing attention due to its high pathogenicity. Here, we constructed the complete genome sequence of a virulent strain, A. hydrophila HX-3 isolated from Pseudosciaena crocea and performed comparative genomics to investigate its virulence factors and quorum sensing features in comparison with those of other Aeromonas isolates. HX-3 has a circular chromosome of 4,941,513 bp with a 61.0% G + C content encoding 4483 genes, including 4318 protein-coding genes, and 31 rRNA, 127 tRNA and 7 ncRNA operons. Seventy interspersed repeat and 153 tandem repeat sequences, 7 transposons, 8 clustered regularly interspaced short palindromic repeats, and 39 genomic islands were predicted in the A. hydrophila HX-3 genome. Phylogeny and pan-genome were also analyzed herein to confirm the evolutionary relationships on the basis of comparisons with other fully sequenced Aeromonas genomes. In addition, the assembled HX-3 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database (76.03%), Gene Ontology database (18.13%), and Kyoto Encyclopedia of Genes and Genome pathway database (59.68%). Two-component regulatory systems in the HX-3 genome and virulence factors profiles through comparative analysis were predicted, providing insights into pathogenicity. A large number of genes related to the AHL-type 1 (ahyI, ahyR), LuxS-type 2 (luxS, pfs, metEHK, litR, luxOQU) and QseBC-type 3 (qseB, qseC) autoinducer systems were also identified. As a result of the expression of the ahyI gene in Escherichia coli BL21 (DE3), combined UPLC-MS/MS profiling led to the identification of several new N-acyl-homoserine lactone compounds synthesized by AhyI. This genomic analysis determined the comprehensive QS systems of A. hydrophila, which might provide novel information regarding the mechanisms of virulence signatures correlated with QS.
Collapse
|
16
|
Kozlova EV, Hegde S, Roundy CM, Golovko G, Saldaña MA, Hart CE, Anderson ER, Hornett EA, Khanipov K, Popov VL, Pimenova M, Zhou Y, Fovanov Y, Weaver SC, Routh AL, Heinz E, Hughes GL. Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME JOURNAL 2020; 15:93-108. [PMID: 32895494 PMCID: PMC7852612 DOI: 10.1038/s41396-020-00763-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
How microbe–microbe interactions dictate microbial complexity in the mosquito gut is unclear. Previously we found that, Serratia, a gut symbiont that alters vector competence and is being considered for vector control, poorly colonized Aedes aegypti yet was abundant in Culex quinquefasciatus reared under identical conditions. To investigate the incompatibility between Serratia and Ae. aegypti, we characterized two distinct strains of Serratia marcescens from Cx. quinquefasciatus and examined their ability to infect Ae. aegypti. Both Serratia strains poorly infected Ae. aegypti, but when microbiome homeostasis was disrupted, the prevalence and titers of Serratia were similar to the infection in its native host. Examination of multiple genetically diverse Ae. aegypti lines found microbial interference to S. marcescens was commonplace, however, one line of Ae. aegypti was susceptible to infection. Microbiome analysis of resistant and susceptible lines indicated an inverse correlation between Enterobacteriaceae bacteria and Serratia, and experimental co-infections in a gnotobiotic system recapitulated the interference phenotype. Furthermore, we observed an effect on host behavior; Serratia exposure to Ae. aegypti disrupted their feeding behavior, and this phenotype was also reliant on interactions with their native microbiota. Our work highlights the complexity of host–microbe interactions and provides evidence that microbial interactions influence mosquito behavior.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christopher M Roundy
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Paediatrics and Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Hart
- The Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Global Health and Translational Science and SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Enyia R Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fovanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
17
|
Jin L, Zhang X, Shi H, Wang W, Qiao Z, Yang W, Du W. Identification of a Novel N-Acyl Homoserine Lactone Synthase, AhyI, in Aeromonas hydrophila and Structural Basis for Its Substrate Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2516-2527. [PMID: 32050067 DOI: 10.1021/acs.jafc.9b07833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the Gram-negative bacterium Aeromonas hydrophila, N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS) influences pathogenicity, protein secretion, and motility. However, the catalytic mechanism of AHL biosynthesis and the structural basis and substrate specificity for AhyI members remain unclear. In this study, we cloned the ahyI gene from the isolate A. hydrophila HX-3, and the overexpressed AhyI protein was confirmed to produce six types of AHLs by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, contrasting with previous reports that AhyI only produces N-butanoyl-l-homoserine lactone (C4-HSL) and N-hexanoyl-l-homoserine lactone (C6-HSL). The results of an in vitro biosynthetic assay showed that purified AhyI can catalyze the formation of C4-HSL using S-adenosyl-l-methionine (SAM) and butyryl-acyl carrier protein (ACP) as substrates and indicated that the fatty acyl substrate used in AhyI-mediated AHL synthesis is derived from acyl-ACP rather than acyl-CoA. The kinetic data of AhyI using butyryl-ACP as an acyl substrate indicated that the catalytic efficiency of the A. hydrophila HX-3 AhyI enzyme is within an order of magnitude compared to other LuxI homologues. In this study, for the first time, the tertiary structural modeling results of AhyI and those of molecular docking and structural and functional analyses showed the importance of several crucial residues, as well as the secondary structure with respect to acylation. A Phe125-Phe152 clamp grasps the terminal methyl group to assist in stabilizing the long acyl chains in a putative binding pocket. The stacking interactions within a strong hydrophobic environment, a hydrogen-bonding network, and a β bulge presumably stabilize the ACP acyl chain for the attack of the SAM α-amine toward the thioester carbon, offering a relatively reasonable explanation for how AhyI can synthesize AHLs with diverse acyl-chain lengths. Moreover, Trp34 participates in forming the binding pocket for C4-ACP and becomes ordered upon SAM binding, providing a good basis for catalysis. The novel finding that AhyI can produce both short- and long-chain AHLs enhances current knowledge regarding the variety of AHLs produced by this enzyme. These structural data are expected to serve as a molecular rationale for AHL synthesis by AhyI.
Collapse
Affiliation(s)
- Lei Jin
- College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , P. R. China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province , Ningbo University , Ningbo 315211 , P. R. China
- Marine Fishery Research Institute of Zhejiang Province , Zhoushan 316021 , P. R. China
| | - Xiaojun Zhang
- Marine Fishery Research Institute of Zhejiang Province , Zhoushan 316021 , P. R. China
- Zhoushan Fishery Environments & Aquatic Products Quality Monitoring Center of Ministry of Agriculture China , Zhoushan 316021 , P. R. China
| | - Hui Shi
- Marine Fishery Research Institute of Zhejiang Province , Zhoushan 316021 , P. R. China
| | - Wei Wang
- Marine Fishery Research Institute of Zhejiang Province , Zhoushan 316021 , P. R. China
| | - Zhaohui Qiao
- College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , P. R. China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province , Ningbo University , Ningbo 315211 , P. R. China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , P. R. China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province , Ningbo University , Ningbo 315211 , P. R. China
| | - Wenyi Du
- Sichuan MoDe Technology Co., Ltd. , Chengdu 610000 , P. R. China
| |
Collapse
|
18
|
Martins ML, Pinto UM, Riedel K, Vanetti MCD. Quorum Sensing and Spoilage Potential of Psychrotrophic Enterobacteriaceae Isolated from Milk. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2723157. [PMID: 30426005 PMCID: PMC6217898 DOI: 10.1155/2018/2723157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 12/03/2022]
Abstract
The 16S rDNA of six psychrotrophic Enterobacteriaceae isolated from cold raw milk were sequenced and the isolate 039 was identified as Pantoea sp., isolates 059, 068, and 071 were identified as Hafnia alvei, 067 was identified as Enterobacter sp., and 099 was identified as Aeromonas hydrophila. They presented different spoilage potentials in milk with A. hydrophila 099 being the most deteriorative. Only Pantoea sp. 039 was not able to induce the quorum sensing monitor strains of acyl homoserine lactones (AHLs). The halI gene, which encodes the AHL synthase in H. alvei, was identified in the isolates 059, 067, 068, and 071. After initial sequencing characterization and cloning, this gene showed its function by the heterologous synthesis of N-hexanoyl-DL-homoserine lactone and N-3-oxohexanoyl-L-homoserine lactone in Escherichia coli. In addition to producing AHLs, A. hydrophila 099 produced AI-2 in higher level than the assay's positive control Vibrio harveyi BB120. Therefore, Enterobacteriaceae strains isolated from cooled raw milk produce a rich array of signaling molecules that may influence bacterial traits in the milk environment.
Collapse
Affiliation(s)
- Maurilio Lopes Martins
- Department of Food Science and Technology, Federal Institute of Southeast of Minas Gerais, 36180-000 Rio Pomba, MG, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Katharina Riedel
- Institute of Microbiology, Ernst-Moritz-Arndt University of Greifswald, 17489, Germany
| | | |
Collapse
|
19
|
Talagrand-Reboul E, Jumas-Bilak E, Lamy B. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems. Front Microbiol 2017; 8:37. [PMID: 28163702 PMCID: PMC5247445 DOI: 10.3389/fmicb.2017.00037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
Abstract
Bacteria of the genus Aeromonas display multicellular behaviors herein referred to as “social life”. Since the 1990s, interest has grown in cell-to-cell communication through quorum sensing signals and biofilm formation. As they are interconnected, these two self-organizing systems deserve to be considered together for a fresh perspective on the natural history and lifestyles of aeromonads. In this review, we focus on the multicellular behaviors of Aeromonas, i.e., its social life. First, we review and discuss the available knowledge at the molecular and cellular levels for biofilm and quorum sensing. We then discuss the complex, subtle, and nested interconnections between the two systems. Finally, we focus on the aeromonad multicellular coordinated behaviors involved in heterotrophy and virulence that represent technological opportunities and applied research challenges.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département de Bactériologie, Centre Hospitalier Universitaire (CHU) de NiceNice, France
| |
Collapse
|
20
|
Mamani S, Moinier D, Denis Y, Soulère L, Queneau Y, Talla E, Bonnefoy V, Guiliani N. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog. Front Microbiol 2016; 7:1365. [PMID: 27683573 PMCID: PMC5021923 DOI: 10.3389/fmicb.2016.01365] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
Abstract
While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.
Collapse
Affiliation(s)
- Sigde Mamani
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche ScientifiqueMarseille, France; Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universitad de ChileSantiago, Chile
| | - Danielle Moinier
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Yann Denis
- Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Laurent Soulère
- Université Lyon, Institut National des Sciences Appliquées de Lyon, UMR 5246, Centre National de la Recherche Scientifique, Université Lyon 1, École Supérieure de Chimie Physique Electronique de Lyon, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires Villeurbanne, France
| | - Yves Queneau
- Université Lyon, Institut National des Sciences Appliquées de Lyon, UMR 5246, Centre National de la Recherche Scientifique, Université Lyon 1, École Supérieure de Chimie Physique Electronique de Lyon, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires Villeurbanne, France
| | - Emmanuel Talla
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Violaine Bonnefoy
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Nicolas Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universitad de Chile Santiago, Chile
| |
Collapse
|
21
|
Pécastaings S, Allombert J, Lajoie B, Doublet P, Roques C, Vianney A. New insights into Legionella pneumophila biofilm regulation by c-di-GMP signaling. BIOFOULING 2016; 32:935-948. [PMID: 27494738 DOI: 10.1080/08927014.2016.1212988] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
The waterborne pathogen Legionella pneumophila grows as a biofilm, freely or inside amoebae. Cyclic-di-GMP (c-di-GMP), a bacterial second messenger frequently implicated in biofilm formation, is synthesized and degraded by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), respectively. To characterize the c-di-GMP-metabolizing enzymes involved in L. pneumophila biofilm regulation, the consequences on biofilm formation and the c-di-GMP concentration of each corresponding gene inactivation were assessed in the Lens strain. The results showed that one DGC and two PDEs enhance different aspects of biofilm formation, while two proteins with dual activity (DGC/PDE) inhibit biofilm growth. Surprisingly, only two mutants exhibited a change in global c-di-GMP concentration. This study highlights that specific c-di-GMP pathways control L. pneumophila biofilm formation, most likely via temporary and/or local modulation of c-di-GMP concentration. Furthermore, Lpl1054 DGC is required to enable the formation a dense biofilm in response to nitric oxide, a signal for biofilm dispersion in many other species.
Collapse
Affiliation(s)
- Sophie Pécastaings
- a Laboratoire de Génie chimique UMR 5503 , UPS, Université de Toulouse , Toulouse , France
| | - Julie Allombert
- b CIRI, International Center for Infectiology Research , Legionella Pathogenesis Group, Université de Lyon , Lyon , France
- c Inserm , Lyon , France
- d Ecole Normale Supérieure de Lyon , Lyon , France
- e Université Lyon 1, CIRI, International Center for Infectiology Research , Lyon , France
- f CNRS , Lyon , France
| | - Barbora Lajoie
- a Laboratoire de Génie chimique UMR 5503 , UPS, Université de Toulouse , Toulouse , France
| | - Patricia Doublet
- b CIRI, International Center for Infectiology Research , Legionella Pathogenesis Group, Université de Lyon , Lyon , France
- c Inserm , Lyon , France
- d Ecole Normale Supérieure de Lyon , Lyon , France
- e Université Lyon 1, CIRI, International Center for Infectiology Research , Lyon , France
- f CNRS , Lyon , France
| | - Christine Roques
- a Laboratoire de Génie chimique UMR 5503 , UPS, Université de Toulouse , Toulouse , France
| | - Anne Vianney
- b CIRI, International Center for Infectiology Research , Legionella Pathogenesis Group, Université de Lyon , Lyon , France
- c Inserm , Lyon , France
- d Ecole Normale Supérieure de Lyon , Lyon , France
- e Université Lyon 1, CIRI, International Center for Infectiology Research , Lyon , France
- f CNRS , Lyon , France
| |
Collapse
|
22
|
Chen PL, Lamy B, Ko WC. Aeromonas dhakensis, an Increasingly Recognized Human Pathogen. Front Microbiol 2016; 7:793. [PMID: 27303382 PMCID: PMC4882333 DOI: 10.3389/fmicb.2016.00793] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022] Open
Abstract
Aeromonas dhakensis was first isolated from children with diarrhea in Dhaka, Bangladesh and described in 2002. In the past decade, increasing evidence indicate this species is widely distributed in the environment and can cause a variety of infections both in human and animals, especially in coastal areas. A. dhakensis is often misidentified as A. hydrophila, A. veronii, or A. caviae by commercial phenotypic tests in the clinical laboratory. Correct identification relies on molecular methods. Increasingly used matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) may be able to identify Aeromonas specie rapidly and accurately. A. dhakensis has shown its potent virulence in different animal models and clinical infections. Although several virulence factors had been reported, no single mechanism is conclusive. Characteristically A. dhakensis is the principal species causing soft tissue infection and bacteremia, especially among patients with liver cirrhosis or malignancy. Of note, A. dhakensis bacteremia is more lethal than bacteremia due to other Aeromonas species. The role of this species in gastroenteritis remains controversial. Third generation cephalosporins and carbapenems should be used cautiously in the treatment of severe A. dhakensis infection due to the presence of AmpC ββ-lactamase and metallo-β-lactamase genes, and optimal regimens may be cefepime or fluoroquinolones. Studies of bacterial virulence factors and associated host responses may provide the chance to understand the heterogeneous virulence between species. The hypothesis A. dhakensis with varied geographic prevalence and enhanced virulence that compared to other Aeromonas species warrants more investigations.
Collapse
Affiliation(s)
- Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Center for Infection Control, National Cheng Kung University HospitalTainan, Taiwan
| | - Brigitte Lamy
- Laboratoire de Bactériologie-Virologie, Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HydroSciences Montpellier, Université de MontpellierMontpellier, France; Laboratoire de Bactériologie, Centre Hospitalier Régional Universitaire de MontpellierMontpellier, France
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Center for Infection Control, National Cheng Kung University HospitalTainan, Taiwan
| |
Collapse
|
23
|
Quorum sensing regulated phenotypes in Aeromonas hydrophila ATCC 7966 deficient in AHL production. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1196-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti. J Bacteriol 2015; 198:521-35. [PMID: 26574513 DOI: 10.1128/jb.00795-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Sinorhizobium meliloti undergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3',5'-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG in S. meliloti Rm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation of N-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of the S. meliloti genes pleD, SMb20523, SMb20447, SMc01464, and SMc03178 encoding putative DGCs and of SMb21517 encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, an S. meliloti strain that did not produce detectable levels of cdG (cdG(0)) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. The SMc01790-SMc01796 locus, homologous to the Agrobacterium tumefaciens uppABCDEF cluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility. IMPORTANCE We present the first systematic genome-wide investigation of the role of 3',5'-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a symbiotic alpha-rhizobial species. Phenotypes of an S. meliloti strain unable to produce cdG (cdG(0)) demonstrated that this second messenger is not essential for root nodule symbiosis but may contribute to acid tolerance. Our data further suggest that enhanced levels of cdG promote sessility of S. meliloti and uncovered a single-domain PilZ protein as regulator of motility.
Collapse
|
25
|
Yang F, Tian F, Li X, Fan S, Chen H, Wu M, Yang CH, He C. The degenerate EAL-GGDEF domain protein Filp functions as a cyclic di-GMP receptor and specifically interacts with the PilZ-domain protein PXO_02715 to regulate virulence in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:578-89. [PMID: 24548063 DOI: 10.1094/mpmi-12-13-0371-r] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Degenerate GGDEF and EAL domain proteins represent major types of cyclic diguanylic acid (c-di-GMP) receptors in pathogenic bacteria. Here, we characterized a FimX-like protein (Filp) which possesses both GGDEF and EAL domains in Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice. Both in silico analysis and enzyme assays indicated that the GGDEF and EAL domains of Filp were degenerate and enzymatically inactive. However, Filp bound to c-di-GMP efficiently within the EAL domain, where Q(477), E(653), and F(654) residues were crucial for the binding. Deletion of the filp gene in X. oryzae pv. oryzae resulted in attenuated virulence in rice and reduced type III secretion system (T3SS) gene expression. Complementation analysis with different truncated proteins indicated that REC, PAS, and EAL domains but not the GGDEF domain were required for the full activity of Filp in vivo. In addition, a PilZ-domain protein (PXO_02715) was identified as a Filp interactor by yeast two-hybrid and glutathione-S-transferase pull-down assays. Deletion of the PXO_02715 gene demonstrated changes in bacterial virulence and T3SS gene expression similar to Δfilp. Moreover, both mutants were impaired in their ability to induce hypersensitive response in nonhost plants. Thus, we concluded that Filp was a novel c-di-GMP receptor of X. oryzae pv. oryzae, and its function to regulate bacterial virulence expression might be via the interaction with PXO_02715.
Collapse
|
26
|
Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila. Appl Environ Microbiol 2014; 80:4162-83. [PMID: 24795370 DOI: 10.1128/aem.00486-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF.
Collapse
|
27
|
Ono T, Murakami K, Miyake Y. [Regulatory networks for antibiotic tolerance and biofilm formation in Pseudomonas aeruginosa]. Nihon Saikingaku Zasshi 2014; 67:227-43. [PMID: 22688178 DOI: 10.3412/jsb.67.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tsuneko Ono
- Department of Molecular Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima
| | | | | |
Collapse
|
28
|
Abstract
Aeromonas species are inhabitants of aquatic environments and are able to cause disease in humans and fish among other animals. In aquaculture, they are responsible for the economically important diseases of furunculosis and motile Aeromonas septicaemia (MAS). Whereas gastroenteritis and wound infections are the major human diseases associated with the genus. As they inhabit and survive in diverse environments, aeromonads possess a wide range of colonisation factors. The motile species are able to swim in liquid environments through the action of a single polar flagellum, the flagellin subunits of which are glycosylated; although essential for function the biological role of glycan addition is yet to be determined. Approximately 60% of aeromonads possess a second lateral flagella system that is expressed in viscous environments for swarming over surfaces; both flagellar systems have been shown to be important in the initial colonisation of surfaces. Subsequently, other non-flagellar colonisation factors are employed; these can be both filamentous and non-filamentous. The aeromonads possess a number of fimbrial systems with the bundle-forming MSHA type IV pilus system, having a major role in human cell adherence. Furthermore, a series of outer-membrane proteins have also been implicated in the aeromonad adhesion process. A number of strains are also capable of cell invasion and that maybe linked with the more invasive diseases of bacteraemia or wound infections. These strains employ cell surface factors that allow the colonisation of these niches that protect them from the host's immune system such as S-layers, capsules or particular lipopolysaccharides.
Collapse
Affiliation(s)
- Rebecca Lowry
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Sabela Balboa
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom; Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
29
|
Functional characterization of core components of the Bacillus subtilis cyclic-di-GMP signaling pathway. J Bacteriol 2013; 195:4782-92. [PMID: 23893111 DOI: 10.1128/jb.00373-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is an intracellular second messenger that regulates adaptation processes, including biofilm formation, motility, and virulence in Gram-negative bacteria. In this study, we have characterized the core components of a c-di-GMP signaling pathway in the model Gram-positive bacterium Bacillus subtilis. Specifically, we have directly identified and characterized three active diguanylate cyclases, DgcP, DgcK, and DgcW (formerly YtrP, YhcK, and YkoW, respectively), one active c-di-GMP phosphodiesterase, PdeH (formerly YuxH), and a cyclic-diguanylate (c-di-GMP) receptor, DgrA (formerly YpfA). Furthermore, elevation of c-di-GMP levels in B. subtilis led to inhibition of swarming motility, whereas biofilm formation was unaffected. Our work establishes paradigms for Gram-positive c-di-GMP signaling, and we have shown that the concise signaling system identified in B. subtilis serves as a powerful heterologous host for the study of c-di-GMP enzymes from bacteria predicted to possess larger, more-complex signaling systems.
Collapse
|
30
|
Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes. mBio 2013; 4:e00064-13. [PMID: 23611906 PMCID: PMC3638308 DOI: 10.1128/mbio.00064-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic strains remains a challenge for this genus, as it is for other opportunistic pathogens. This paper demonstrates, by using whole-genome sequencing of clinical Aeromonas strains, followed by corresponding virulence assays, that comparative genomics can be used to identify a virulent subtype of A. hydrophila that is aggressive during human infection and more lethal in a mouse model of infection. This aggressive pathotype contained genes for toxin production, toxin secretion, and bacterial motility that likely enabled its pathogenicity. Our results highlight the potential of whole-genome sequencing to transform microbial diagnostics; with further advances in rapid sequencing and annotation, genomic analysis will be able to provide timely information on the identities and virulence potential of clinically isolated microorganisms.
Collapse
|
31
|
Beaz-Hidalgo R, Figueras MJ. Aeromonas spp. whole genomes and virulence factors implicated in fish disease. JOURNAL OF FISH DISEASES 2013; 36:371-388. [PMID: 23305319 DOI: 10.1111/jfd.12025] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 05/27/2023]
Abstract
It is widely recognized that Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish, causing significant mortality in both wild and farmed freshwater and marine fish species that damage the economics of the aquaculture sector. The descriptions of the complete genomes of Aeromonas species have allowed the identification of an important number of virulence genes that affect the pathogenic potential of these bacteria. This review will focus on the most relevant information derived from the available Aeromonas genomes in relation to virulence and on the diverse virulence factors that actively participate in host adherence, colonization and infection, including structural components, extracellular factors, secretion systems, iron acquisition and quorum sensing mechanisms.
Collapse
Affiliation(s)
- R Beaz-Hidalgo
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | |
Collapse
|
32
|
Chu W, Liu Y, Jiang Y, Zhu W, Zhuang X. Production of N-acyl Homoserine Lactones and Virulence Factors of Waterborne Aeromonas hydrophila. Indian J Microbiol 2013; 53:264-8. [PMID: 24426120 DOI: 10.1007/s12088-013-0381-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 12/01/2022] Open
Abstract
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. The purpose of this study was to investigate the production of N-acyl-homoserine lactone (AHL) signal molecules and some virulence factors, including hemolysins, proteases, extracellular nucleases production and cytotoxicity by waterborne Aeromonas hydrophila. A total of 24 strains isolated from fresh-water or diseased fish were used in the study. The majority A.hydrophila strains produce two AHL molecules (21/24), one is N-butanoyl homoserine lactone (BHL), and the other is N-hexanoyl homoserine lactone (HHL) according to thin-layer chromatography analysis. Among the virulence factors tested, more than 83 % of the isolates produced β haemolysin when inoculated on sheep blood agar, only 50 % of the isolates displayed DNase activity, 75 % of the isolates shown proteolytic activity on skimmed milk plate, and cytotoxic activity was detected in 20 of 24 of the isolates. The strains producing AHLs possessed one or more virulence factors. In conclusion, the production of quorum sensing signal molecules is common among the strains that we examined, and there seems to some relationships between quorum sensing signal production and virulence factors in A. hydrophila.
Collapse
Affiliation(s)
- Weihua Chu
- Department of Microbiology, School of Life Science & Technology, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, People's Republic of China
| | - Yongwang Liu
- College of Veterinary Medicine, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Yan Jiang
- Jiangsu Entry-Exit Inspection and Quarantine Buearu, 210001 Nanjing, People's Republic of China
| | - Wei Zhu
- Department of Microbiology, School of Life Science & Technology, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, People's Republic of China
| | - Xiyi Zhuang
- Department of Microbiology, School of Life Science & Technology, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, People's Republic of China
| |
Collapse
|
33
|
Liu Z, Wang W, Zhu Y, Gong Q, Yu W, Lu X. Antibiotics at subinhibitory concentrations improve the quorum sensing behavior ofChromobacterium violaceum. FEMS Microbiol Lett 2013; 341:37-44. [DOI: 10.1111/1574-6968.12086] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/28/2012] [Accepted: 01/16/2013] [Indexed: 01/25/2023] Open
|
34
|
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 2012; 42:305-41. [PMID: 23023210 DOI: 10.1039/c2cs35206k] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Collapse
Affiliation(s)
- Dimpy Kalia
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
González A, Bellenberg S, Mamani S, Ruiz L, Echeverría A, Soulère L, Doutheau A, Demergasso C, Sand W, Queneau Y, Vera M, Guiliani N. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans. Appl Microbiol Biotechnol 2012; 97:3729-37. [PMID: 22752316 DOI: 10.1007/s00253-012-4229-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/29/2012] [Accepted: 06/05/2012] [Indexed: 01/22/2023]
Abstract
Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.
Collapse
Affiliation(s)
- Alex González
- Laboratory of Bacterial Communication, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Impact of QseBC system in c-di-GMP-dependent quorum sensing regulatory network in a clinical isolate SSU of Aeromonas hydrophila. Microb Pathog 2012; 53:115-24. [PMID: 22664750 DOI: 10.1016/j.micpath.2012.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/12/2012] [Accepted: 05/16/2012] [Indexed: 11/20/2022]
Abstract
Our earlier studies showed that AhyRI- (AI-1) and LuxS-based (AI-2) quorum sensing (QS) systems were positive and negative regulators of virulence, respectively, in a diarrheal isolate SSU of Aeromonas hydrophila. Recently, we demonstrated that deletion of the QseBC two-component signal transduction system (AI-3 QS in enterohemorrhagic Escherichia coli) also led to an attenuation of A. hydrophila in a septicemic mouse model of infection, and that interplay exists between AI-1, AI-2, and the second-messenger cyclic-di-guanosine monophosphate (c-di-GMP) in modulating bacterial virulence. To further explore a network connection between all of the three QS systems in A. hydrophila SSU and their cross talk with c-di-GMP, we overproduced a protein with a GGDEF domain, which increases c-di-GMP levels in bacteria, and studied phenotypes and transcriptional profiling of genes involved in biofilm formation and motility of the wild-type (WT) A. hydrophila and its ΔqseB mutant. Over-expression of the GGDEF domain-encoding gene (aha0701h) resulted in a significantly reduced motility of the WT A. hydrophila similar to that of the ΔqseB mutant. While enhanced protease production was noted in WT A. hydrophila that had increased c-di-GMP, no enzymatic activity was detected in the ΔqseB mutant overexpressing the aha0701h gene. Likewise, denser biofilm formation was noted for WT bacteria when c-di-GMP was overproduced compared to its respective control; however, overproduction of c-di-GMP in the ΔqseB mutant led to reduced biofilm formation, a finding similar to that noted for the parental A. hydrophila strain. These effects on bacterial motility and biofilm formation in the ΔqseB mutant or the mutant with increased c-di-GMP were correlated with altered levels of fleN and vpsT genes. While we noted transcript levels of qseB and qseC genes to be increased in the ahyRI mutant, down-regulation of the ahyR and ahyI genes was observed in the ΔqseB mutant, which correlated with decreased protease activity. Finally, an enhanced virulence of WT A. hydrophila with increased c-di-GMP was noted in a mouse model when compared to findings in the parental strain with vector alone. Overall, we conclude that cross talk between AI-1 and QseBC systems exists in A. hydrophila SSU, and c-di-GMP modulation on QseBC system is dependent on the expression of the AI-1 system.
Collapse
|
37
|
A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP. J Bacteriol 2012; 194:4485-93. [PMID: 22661686 DOI: 10.1128/jb.00379-12] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria sense and respond to environmental cues to control important developmental processes. Two widely conserved and important strategies that bacteria employ to sense changes in population density and local environmental conditions are quorum sensing (QS) and cyclic di-GMP (c-di-GMP) signaling, respectively. The importance of these pathways in controlling a broad variety of functions, including virulence, biofilm formation, and motility, has been recognized in many species. Recent research has shown that these pathways are intricately intertwined. Here we review the regulatory connections between QS and c-di-GMP signaling. We propose that the integration of QS with c-di-GMP allows bacteria to assimilate information about the local bacterial population density with other physicochemical environmental signals within the broader c-di-GMP signaling network.
Collapse
|
38
|
Khajanchi BK, Kozlova EV, Sha J, Popov VL, Chopra AK. The two-component QseBC signalling system regulates in vitro and in vivo virulence of Aeromonas hydrophila. MICROBIOLOGY-SGM 2011; 158:259-271. [PMID: 21998161 DOI: 10.1099/mic.0.051805-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We recently demonstrated that the N-acyl-homoserine lactone [autoinducer (AI)-1] and LuxS (AI-2)-based quorum-sensing (QS) systems exerted positive and negative regulation, respectively, on the virulence of a diarrhoeal isolate SSU of Aeromonas hydrophila. However, the role of a newly identified, two-component-based QseBC QS system in the regulation of bacterial virulence in general is not well understood, with only a limited number of studies showing its function in bacterial pathogenesis. In this report, we identified and characterized the QseBC QS system in A. hydrophila SSU and found that, as was the case with enterohaemorrhagic Escherichia coli, the open reading frames for the qseB (the response regulator) and qseC (the sensor histidine kinase) genes overlapped by 4 bp at the ATGA motif. Our data provide evidence that deletion of the qseB gene from A. hydrophila resulted in attenuation of bacterial virulence in a septicaemic mouse model of infection and diminished swimming and swarming motility, and the mutant bacteria formed denser biofilms compared with those from the parental strain of A. hydrophila. The decrease in the virulence of the A. hydrophila ΔqseB mutant correlated with reduced production of protease and the cytotoxic enterotoxin, which has associated haemolytic activity. The swimming and swarming motility, haemolytic activity, protease production and biofilm formation were restored in the qseBC-complemented strain to a level similar to that of the wild-type A. hydrophila SSU. Our study is the first, to our knowledge, to report a functional QseBC QS system in A. hydrophila which may be linked to AI-1 and AI-2 QS systems in modulating bacterial virulence, possibly through the cyclic diguanosine monophosphate.
Collapse
Affiliation(s)
- Bijay K Khajanchi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Elena V Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Ashok K Chopra
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| |
Collapse
|