1
|
Ziegert Z, Dietz M, Hill M, McBride M, Painter E, Elias MH, Staley C. Targeting quorum sensing for manipulation of commensal microbiota. BMC Biotechnol 2024; 24:106. [PMID: 39696328 PMCID: PMC11653937 DOI: 10.1186/s12896-024-00937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
Bacteria communicate through the accumulation of autoinducer (AI) molecules that regulate gene expression at critical densities in a process called quorum sensing (QS). Extensive work using simple systems and single strains of bacteria have revealed a role for QS in the regulation of virulence factors and biofilm formation; however, less is known about QS dynamics among communities, especially in vivo. In this review, we summarize the diversity of QS signals as well as their ability to influence "non-target" behaviors among species that have receptors but not synthases for those signals. We highlight host-microbe interactions facilitated by QS and describe cross-talk between QS and the mammalian endocrine and immune systems, as well as host surveillance of QS. Further, we describe emerging evidence for the role of QS in non-infectious, chronic, microbially associated diseases including inflammatory bowel diseases and cancers. Finally, we describe potential therapeutic approaches that involve leveraging QS signals as well as quorum quenching approaches to block signaling in vivo to mitigate deleterious consequences to the host. Ultimately, QS offers a previously underexplored target that may be leveraged for precision modification of the microbiota without deleterious bactericidal consequences.
Collapse
Affiliation(s)
- Zachary Ziegert
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Matthew Dietz
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Max Hill
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Marjais McBride
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Elizabeth Painter
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mikael H Elias
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Hu Z, Chin Y, Yuan C, Ge Y, Hang Y, Wang D, Yao Q, Hu Y. The luxS deletion reduces the spoilage ability of Shewanella putrefaciens: An analysis focusing on quorum sensing and activated methyl cycle. Food Microbiol 2024; 120:104467. [PMID: 38431319 DOI: 10.1016/j.fm.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
The luxS mutant strains of Shewanella putrefaciens (SHP) were constructed to investigate the regulations of gene luxS in spoilage ability. The potential regulations of AI-2 quorum sensing (QS) system and activated methyl cycle (AMC) were studied by analyzing the supplementation roles of key circulating substances mediated via luxS, including S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), homocysteine (Hcy) and 4,5-dihydroxy-2,3-pentanedione (DPD). Growth experiments revealed that the luxS deletion led to certain growth limitations of SHP, which were associated with culture medium and exogenous additives. Meanwhile, the decreased biofilm formation and diminished hydrogen sulfide (H2S) production capacity of SHP were observed after luxS deletion. The relatively lower total volatile base nitrogen (TVB-N) contents and higher sensory scores of fish homogenate with luxS mutant strain inoculation also indicated the weaker spoilage-inducing effects after luxS deletion. However, these deficiencies could be offset with the exogenous supply of circulating substances mentioned above. Our findings suggested that the luxS deletion would reduce the spoilage ability of SHP, which was potentially attributed to the disorder of AMC and AI-2 QS system.
Collapse
Affiliation(s)
- Zhiheng Hu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China; United Graduate School of Agricultural Sciences, Ueda 3-8-18, Morioka, Iwate 020-8550, Japan
| | - Yaoxian Chin
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China
| | - Chunhong Yuan
- Faculty of Agriculture, Iwate University, Ueda 3-8-18, Morioka, Iwate 020-8550, Japan; Agri-Innovation Center, Iwate University, Ueda 3-8-18, Morioka, Iwate 020-8550, Japan
| | - Yingliang Ge
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China
| | - Yuyu Hang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China
| | - Dongxue Wang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yaqin Hu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| |
Collapse
|
3
|
Zhang Q, Peng L, Han W, Chen H, Tang H, Chen X, Langford PR, Huang Q, Zhou R, Li L. The morphology and metabolic changes of Actinobacillus pleuropneumoniae during its growth as a biofilm. Vet Res 2023; 54:42. [PMID: 37237397 PMCID: PMC10224306 DOI: 10.1186/s13567-023-01173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Actinobacillus pleuropneumoniae is an important swine respiratory pathogen. Previous studies have suggested that growth as a biofilm is a natural state of A. pleuropneumoniae infection. To understand the survival features involved in the biofilm state, the growth features, morphology and gene expression profiles of planktonic and biofilm A. pleuropneumoniae were compared. A. pleuropneumoniae in biofilms showed reduced viability but maintained the presence of extracellular polymeric substances (EPS) after late log-phase. Under the microscope, bacteria in biofilms formed dense aggregated structures that were connected by abundant EPS, with reduced condensed chromatin. By construction of Δpga and ΔdspB mutants, polymeric β-1,6-linked N-acetylglucosamine and dispersin B were confirmed to be critical for normal biofilm formation. RNA-seq analysis indicated that, compared to their planktonic counterparts, A. pleuropneumoniae in biofilms had an extensively altered transcriptome. Carbohydrate metabolism, energy metabolism and translation were significantly repressed, while fermentation and genes contributing to EPS synthesis and translocation were up-regulated. The regulators Fnr (HlyX) and Fis were found to be up-regulated and their binding motifs were identified in the majority of the differentially expressed genes, suggesting their coordinated global role in regulating biofilm metabolism. By comparing the transcriptome of wild-type biofilm and Δpga, the utilization of oligosaccharides, iron and sulfur and fermentation were found to be important in adhesion and aggregation during biofilm formation. Additionally, when used as inocula, biofilm bacteria showed reduced virulence in mouse, compared with planktonic grown cells. Thus, these results have identified new facets of A. pleuropneumoniae biofilm maintenance and regulation.
Collapse
Affiliation(s)
- Qiuhong Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Lu Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Weiyao Han
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Hongyu Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Hao Tang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, Hubei, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, Hubei, China
| | - Lu Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
5
|
Mechanism of gastrointestinal adaptability and antioxidant function of infant-derived Lactobacillus plantarum BF_15 through genomics. Food Sci Biotechnol 2022; 31:1451-1462. [PMID: 36060571 PMCID: PMC9433590 DOI: 10.1007/s10068-022-01132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
Lactobacillus plantarum is an essential probiotic in the human gastrointestinal tract. L. plantarum BF_15, a functional probiotic isolated from the feces of breast-fed infants, has been reported in many in vitro and in vivo studies with strong gastrointestinal adaptability and outstanding anti-oxidative activities. Therefore, the whole genome of L. plantarum BF_15 was sequenced. Several genes, encoding the gastrointestinal adaptability-related proteins, were identified, including genes related to gastrointestinal environment-induced stress resistance, adhesive performance, and ability to transport and metabolize resistant starch and oligosaccharides. Genes related to alleviating oxidative stress were also found. Further functional verification was carried out by RT-qPCR on the 10 and 12 key adhesion and antioxidant genes. Overall, this study might provide a critical basis for L. plantarum BF_15 as a potential candidate for probiotics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01132-w.
Collapse
|
6
|
Salazar-Sánchez A, Baztarrika I, Alonso R, Fernández-Astorga A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Arcobacter butzleri Biofilms: Insights into the Genes Beneath Their Formation. Microorganisms 2022; 10:1280. [PMID: 35888999 PMCID: PMC9324650 DOI: 10.3390/microorganisms10071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to adhere to various surfaces through biofilm production. The biofilm formation capability has been related to the expression of certain genes, which have not been characterized in A. butzleri. In order to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates, and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel. Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB, fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri, although future studies are necessary to achieve a satisfactory objective.
Collapse
Affiliation(s)
- Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Aurora Fernández-Astorga
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
7
|
Duan B, Peng W, Yan K, Liu F, Tang J, Yang F, Chen H, Yuan F, Bei W. The QseB/QseC two-component system contributes to virulence of Actinobacillus pleuropneumoniae by downregulating apf gene cluster transcription. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractActinobacillus pleuropneumoniae (APP) is the major pathogen of porcine contagious pleuropneumoniae (PCP). The QseB/QseC two-component system (TCS) consists of the regulator QseB and the kinase QseC, which relates to quorum sensing (QS) and virulence in some bacteria. Here, we investigated the role of QseB/QseC in apf gene cluster (apfABCD) expression of APP. Our results have showed that QseB/QseC TCS can potentially regulate the expression of apf gene cluster. The ΔqseBC, ΔapfA, ΔapfB, ΔapfC and ΔapfD strains are more sensitive to acidic and osmotic stressful conditions, and exhibite lower biofilm formation ability than wild-type (WT) strain, whereas the complemented strains show similar phenotype to the WT strain. In additon, the mutants have defective anti-phagocytosis, adhesion and invasion when they come into contact with the host cells. In experimental animal models of infection, mice infected with ΔqseBC, ΔapfA, ΔapfB, ΔapfC and ΔapfD strains showed lower mortality and bacterial loads in the lung and the blood than those infected with WT strain. In conclusion, our results suggest that QseB/QseC TCS contributes to stress resistance, biofilm formation, phagocytosis, adhesion, invasion and virulence by downregulating expression of apf gene cluster in A. pleuropneumoniae.
Collapse
|
8
|
Ma X, Zheng B, Wang J, Li G, Cao S, Wen Y, Huang X, Zuo Z, Zhong Z, Gu Y. Quinolone Resistance of Actinobacillus pleuropneumoniae Revealed through Genome and Transcriptome Analyses. Int J Mol Sci 2021; 22:ijms221810036. [PMID: 34576206 PMCID: PMC8472844 DOI: 10.3390/ijms221810036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a pathogen that infects pigs and poses a serious threat to the pig industry. The emergence of quinolone-resistant strains of A.pleuropneumoniae further limits the choice of treatment. However, the mechanisms behind quinolone resistance in A.pleuropneumoniae remain unclear. The genomes of a ciprofloxacin-resistant strain, A. pleuropneumoniae SC1810 and its isogenic drug-sensitive counterpart were sequenced and analyzed using various bioinformatics tools, revealing 559 differentially expressed genes. The biological membrane, plasmid-mediated quinolone resistance genes and quinolone resistance-determining region were detected. Upregulated expression of efflux pump genes led to ciprofloxacin resistance. The expression of two porins, OmpP2B and LamB, was significantly downregulated in the mutant. Three nonsynonymous mutations in the mutant strain disrupted the water–metal ion bridge, subsequently reducing the affinity of the quinolone–enzyme complex for metal ions and leading to cross-resistance to multiple quinolones. The mechanism of quinolone resistance in A. pleuropneumoniae may involve inhibition of expression of the outer membrane protein genes ompP2B and lamB to decrease drug influx, overexpression of AcrB in the efflux pump to enhance its drug-pumping ability, and mutation in the quinolone resistance-determining region to weaken the binding of the remaining drugs. These findings will provide new potential targets for treatment.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
| | - Bowen Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Jiafan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Gen Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
- Bioengineering Department, Sichuan Water Conservancy Vocational College, Chengdu 611231, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
- Correspondence: (S.C.); (Y.G.)
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.C.); (Y.G.)
| |
Collapse
|
9
|
Li J, Wang Y, Du Y, Zhang H, Fan Q, Sun L, Yi L, Wang S, Wang Y. mRNA-Seq reveals the quorum sensing system luxS gene contributes to the environmental fitness of Streptococcus suis type 2. BMC Microbiol 2021; 21:111. [PMID: 33849451 PMCID: PMC8045309 DOI: 10.1186/s12866-021-02170-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Background Streptococcus suis type 2 (SS2) is an important zoonotic pathogen. We have previously reported the structure of LuxS protein and found that the luxS gene is closely related to biofilm, virulence gene expression and drug resistance of SS2. However, the mechanism of luxS mediated SS2 stress response is unclear. Therefore, this experiment performed stress response to luxS mutant (ΔluxS) and complement strain (CΔluxS), overexpression strain (luxS+) and wild-type SS2 strain HA9801, and analyzed the differential phenotypes in combination with transcriptome data. Results The results indicate that the luxS gene deletion causes a wide range of phenotypic changes, including chain length. RNA sequencing identified 278 lx-regulated genes, of which 179 were up-regulated and 99 were down-regulated. Differential genes focus on bacterial growth, stress response, metabolic mechanisms and drug tolerance. Multiple mitotic genes were down-regulated; while the ABC transporter system genes, cobalamin /Fe3+-iron carrier ABC transporter ATPase and oxidative stress regulators were up-regulated. The inactivation of the luxS gene caused a significant reduction in the growth and survival in the acid (pH = 3.0, 4.0, 5.0) and iron (100 mM iron chelator 2,2′-dipyridyl) stress environments. However, the mutant strain ΔluxS showed increased antioxidant activity to H2O2 (58.8 mmol/L). Conclusions The luxS gene in SS2 appears to play roles in iron metabolism and protective responses to acidic and oxidative environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02170-w.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yanbin Du
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China. .,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
10
|
Wu L, Luo Y. Bacterial Quorum-Sensing Systems and Their Role in Intestinal Bacteria-Host Crosstalk. Front Microbiol 2021; 12:611413. [PMID: 33584614 PMCID: PMC7876071 DOI: 10.3389/fmicb.2021.611413] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Quorum-sensing (QS) system is a rapidly developing field in which we are gradually expanding our understanding about how bacteria communicate with each other and regulate their activities in bacterial sociality. In addition to collectively modifying bacterial behavior, QS-related autoinducers may also be embedded in the crosstalk between host and parasitic microbes. In this review, we summarize current studies on QS in the intestinal microbiome field and its potential role in maintaining homeostasis under physiological conditions. Additionally, we outline the canonical autoinducers and their related QS signal-response systems by which several pathogens interact with the host under pathological conditions, with the goal of better understanding intestinal bacterial sociality and facilitating novel antimicrobial therapeutic strategies.
Collapse
Affiliation(s)
- Liang Wu
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Li P, Dong X, Wang XY, Du T, Du XJ, Wang S. Comparative Proteomic Analysis of Adhesion/Invasion Related Proteins in Cronobacter sakazakii Based on Data-Independent Acquisition Coupled With LC-MS/MS. Front Microbiol 2020; 11:1239. [PMID: 32582128 PMCID: PMC7296052 DOI: 10.3389/fmicb.2020.01239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cronobacter sakazakii is foodborne pathogen that causes serious illnesses such as necrotizing enterocolitis, meningitis and septicemia in infants. However, the virulence determinants and mechanisms of pathogenicity of these species remain unclear. In this study, multilocus sequence typing (MLST) was performed on 34 C. sakazakii strains and two strains with the same sequence type (ST) but distinct adhesion/invasion capabilities were selected for identification of differentially expressed proteins using data-independent acquisition (DIA) proteomic analysis. A total of 2,203 proteins were identified and quantified. Among these proteins, 210 exhibited differential expression patterns with abundance ratios ≥3 or ≤0.33 and P values ≤0.05. Among these 210 proteins, 67 were expressed higher, and 143 were expressed lower in C. sakazakii SAKA80220 (strongly adhesive/invasive strain) compared with C. sakazakii SAKA80221 (weakly adhesive/invasive strain). Based on a detailed analysis of the differentially expressed proteins, the highly expressed genes involved in flagellar assembly, lipopolysaccharide synthesis, LuxS/AI-2, energy metabolic pathways and iron-sulfur cluster may be associated with the adhesion/invasion capability of C. sakazakii. To verify the accuracy of the proteomic results, real-time qPCR was used to analyze the expression patterns of some genes at the transcriptional level, and consistent results were observed. This study, for the first time, used DIA proteomic to investigate potential adhesion/invasion related factors as a useful reference for further studies on the pathogenic mechanism of C. sakazakii.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Xuan Dong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Xiao-Yi Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Gao L, Zhang L, Xu H, Zhao F, Ke W, Chen J, Yang J, Qi C, Liu J. The Actinobacillus pleuropneumoniae sulfate-binding protein is required for the acquisition of sulfate and methionine, but is not essential for virulence. Vet Microbiol 2020; 245:108704. [DOI: 10.1016/j.vetmic.2020.108704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
|
13
|
Zhang B, Ku X, Zhang X, Zhang Y, Chen G, Chen F, Zeng W, Li J, Zhu L, He Q. The AI-2/ luxS Quorum Sensing System Affects the Growth Characteristics, Biofilm Formation, and Virulence of Haemophilus parasuis. Front Cell Infect Microbiol 2019; 9:62. [PMID: 30941317 PMCID: PMC6434701 DOI: 10.3389/fcimb.2019.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Haemophilus parasuis (H. parasuis) is a kind of opportunistic pathogen of the upper respiratory tract of piglets. Under certain circumstances, virulent strains can breach the mucosal barrier and enter the bloodstream, causing severe Glässer's disease. Many virulence factors are found to be related to the pathogenicity of H. parasuis strain, but the pathogenic mechanism remains unclear. LuxS/AI-2, as a kind of very important quorum sensing system, affects the growth characteristics, biofilm formation, antibiotic production, virulence, and metabolism of different strains. In order to investigate the effect of luxS/AI-2 quorum sensing system on the virulence of H. parasuis, a deletion mutant strain (ΔluxS) and complemented strain (C-luxS) were constructed and characterized. The results showed that the luxS gene participated in regulating and controlling stress resistance, biofilm formation and virulence. Compared with wild-type strain, ΔluxS strain decreased the production of AI-2 molecules and the tolerance toward oxidative stress and heat shock, and it reduced the abilities of autoagglutination, hemagglutination, and adherence, whereas it increased the abilities to form biofilm in vitro. In vivo experiments showed that ΔluxS strain attenuated its virulence about 10-folds and significantly decreased its tissue burden of bacteria in mice, compared with the wild-type strain. Taken together, the luxS/AI-2 quorum sensing system in H. parasuis not only plays an important role in growth and biofilm formation, but also affects the pathogenicity of H. parasuis.
Collapse
Affiliation(s)
- Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xugang Ku
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqian Zhang
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- College of Animal Sciences and Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Guo Chen
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhu
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Yao Z, Guo Z, Wang Y, Li W, Fu Y, Lin Y, Lin W, Lin X. Integrated Succinylome and Metabolome Profiling Reveals Crucial Role of S-Ribosylhomocysteine Lyase in Quorum Sensing and Metabolism of Aeromonas hydrophila. Mol Cell Proteomics 2019; 18:200-215. [PMID: 30352804 PMCID: PMC6356075 DOI: 10.1074/mcp.ra118.001035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/27/2018] [Indexed: 01/21/2023] Open
Abstract
Protein modification by lysine succinylation is a newly identified post-translational modification (PTM) of lysine residues and plays an important role in diverse physiological functions, although their associated biological characteristics are still largely unknown. Here, we investigated the effects of lysine succinylation on the physiological regulation within a well-known fish pathogen, Aeromonas hydrophila A high affinity purification method was used to enrich peptides with lysine succinylation in A. hydrophila ATCC 7966, and a total of 2,174 lysine succinylation sites were identified on 666 proteins using LC-MS/MS. Gene ontology analysis indicated that these succinylated proteins are involved in diverse metabolic pathways and biological processes, including translation, protein export, and central metabolic pathways. The modifications of several selected candidates were further validated by Western blotting. Using site-directed mutagenesis, we observed that the succinylation of lysines on S-ribosylhomocysteine lyase (LuxS) at the K23 and K30 sites positively regulate the production of the quorum sensing autoinducer AI-2, and that these PTMs ultimately alter its competitiveness with another pathogen, Vibrio alginolyticus Moreover, subsequent metabolomic analyses indicated that K30 succinylation on LuxS may suppress the activated methyl cycle (AMC) and that both the K23 and K30 sites are involved in amino acid metabolism. Taken together, the results from this study provide significant insights into the functions of lysine succinylation and its critical roles on LuxS in regulating the cellular physiology of A. hydrophila.
Collapse
Affiliation(s)
- Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China;; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, PR China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China;.
| |
Collapse
|
15
|
Li T, Zhang Q, Wang R, Zhang S, Pei J, Li Y, Li L, Zhou R. The roles of flp1 and tadD in Actinobacillus pleuropneumoniae pilus biosynthesis and pathogenicity. Microb Pathog 2019; 126:310-317. [DOI: 10.1016/j.micpath.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
|
16
|
Yang Y, Li W, Hou B, Zhang C. Quorum sensing LuxS/autoinducer-2 inhibits Enterococcus faecalis biofilm formation ability. J Appl Oral Sci 2018; 26:e20170566. [PMID: 30304123 PMCID: PMC6172024 DOI: 10.1590/1678-7757-2017-0566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To investigate the relation between biofilm formation ability and quorum sensing gene LuxS/AI-2. MATERIALS AND METHODS Enterococcus faecalis (E. faecalis) standard strain ATCC 29212 was used in the study. Long flanking homology polymerase chain reaction method was used to build the LuxS gene knockout strain. Sequential culture turbidity measurement and CFU counting were used to assess the proliferation ability of E. faecalis after the depletion of LuxS. 96-well plate assay was used to quantify the biofilm formation ability; CLSM was used to observe the attached bacteria areas, while scanning electron microscopy (SEM) was performed to observe biofilm microstructure conditions. RESULTS LuxS gene knockout strains were successfully constructed and identified. The results showed that proliferation ability of E. faecalis was not affected by the depletion of the luxS gene, and the biofilm formation ability of ΔLuxS 29212 significantly decreased (P<0.05). CONCLUSIONS Collectively, our studies provide the LuxS gene's key role in controlling biofilm formation of E. faecalis, which presented a negative regulation, and furthermore, providing us a possible way to conquer the persistent apical periodontitis.
Collapse
Affiliation(s)
- Yue Yang
- Capital Medical University School of Stomatology, Department of Endodontics, Beijing, China
| | - Wenzhi Li
- Capital Medical University School of Stomatology, Department of Endodontics, Beijing, China
| | - Benxiang Hou
- Capital Medical University School of Stomatology, Department of Endodontics, Beijing, China
| | - Chen Zhang
- Capital Medical University School of Stomatology, Department of Endodontics, Beijing, China
| |
Collapse
|
17
|
Liu J, Cao Y, Gao L, Zhang L, Gong S, Yang J, Zhao H, Yang D, Zhao J, Meng J, Gao Q, Qi C. Outer Membrane Lipoprotein Lip40 Modulates Adherence, Colonization, and Virulence of Actinobacillus pleuropneumoniae. Front Microbiol 2018; 9:1472. [PMID: 30018613 PMCID: PMC6038445 DOI: 10.3389/fmicb.2018.01472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Bacterial lipoproteins are a set of membrane proteins with various functions; many of which are virulence factors of pathogenic bacteria. In the present study, we investigated the role of an outer membrane lipoprotein Lip40 in the pathogenesis of Actinobacillus pleuropneumoniae. A mutant strain (Δlip40) lacking Lip40 and a complemented strain (CΔlip40) were constructed. Δlip40 exhibited reduced adherence to the St. Jude porcine lung cells. The ability of the Δlip40 mutant to colonize the mouse lung tissues was significantly impaired compared to that of the wild type and complementation strains. Furthermore, an infection assay revealed that pigs infected with Δlip40 showed fewer clinical signs and lung lesions, indicating that Lip40 contributed to the development of porcine pleuropneumonia. Collectively, our data suggest that Lip40 is involved in the virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Jinlin Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Yurou Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lulu Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Siying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Jihong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Dengfu Yang
- Lichuan Municipal Bureau of Animal Husbandry and Veterinary Medicine, Lichuan, China
| | - Jin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Jianzhong Meng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Qishuang Gao
- Department of Animal Biotechnology and Cell Engineering, Wuhan Institute of Animal Husbandry and Veterinary Sciences, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
18
|
Kaur A, Capalash N, Sharma P. Quorum sensing in thermophiles: prevalence of autoinducer-2 system. BMC Microbiol 2018; 18:62. [PMID: 29954335 PMCID: PMC6022435 DOI: 10.1186/s12866-018-1204-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/19/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Quorum sensing is a mechanism of cell to cell communication that requires the production and detection of signaling molecules called autoinducers. Although mesophilic bacteria is known to utilize this for synchronization of physiological processes such as bioluminescence, virulence, biofilm formation, motility and cell competency through signaling molecules (acyl homoserine lactones, AI-1; oligopeptides, peptide based system and furanosyl borate diester, AI-2), the phenomenon of quorum sensing in thermophiles is largely unknown. RESULTS In this study, proteomes of 106 thermophilic eubacteria and 21 thermophilic archaea have been investigated for the above three major quorum sensing systems to find the existence of quorum sensing in these thermophiles as there are evidences for the formation of biofilms in hot environments. Our investigation demonstrated that AI-1 system is absent in thermophiles. Further, complete peptide based two component systems for quorum sensing was also not found in any thermophile however the traces for the presence of response regulators for peptide based system were found in some of them. BLASTp search using LuxS (AI-2 synthase) protein sequence of Escherichia coli str. K-12 substr. MG1655 and autoinducer-2 receptors (LuxP of Vibrio harveyi, LsrB of E. coli str. K-12 substr. MG1655 and RbsB of Aggregatibacter actinomycetemcomitans) as queries revealed that 17 thermophilic bacteria from phyla Deinococcus- Thermus and Firmicutes possess complete AI-2 system (LuxS and LsrB and/or RbsB). Out of 106 thermophilic eubacteria 18 from phyla Deinococcus- Thermus, Proteobacteria and Firmicutes have only LuxS that might function as AI-2 synthesizing protein whereas, 16 are having only LsrB and/or RbsB which may function as AI-2 receptor in biofilms. CONCLUSIONS We anticipate that thermophilic bacteria may use elements of LsrB and RbsB operon for AI-2 signal transduction and they may use quorum sensing for purposes like biofilm formation. Nevertheless, thermophiles in which no known quorum sensing system was found may use some unknown mechanisms as the mode of communication. Further information regarding quorum sensing will be explored to develop strategies to disrupt the biofilms of thermophiles.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
19
|
Wang Y, Wang Y, Sun L, Grenier D, Yi L. The LuxS/AI-2 system of Streptococcus suis. Appl Microbiol Biotechnol 2018; 102:7231-7238. [PMID: 29938319 DOI: 10.1007/s00253-018-9170-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 11/24/2022]
Abstract
Quorum sensing (QS) is an important protective mechanism that allows bacteria to adapt to its environment. A limited number of signal molecules play the key role of transmitting information in this mechanism. Signals are transmitted between individual bacterium through QS systems, resulting in the expression of specific genes. QS plays an important role in a variety of bacterial processes, including drug resistance, biofilm formation, motility, adherence, and virulence. Most Gram-positive and Gram-negative bacteria possess QS systems, mainly the LuxS/AI-2-mediated QS system. Evidence has been brought that LuxS/AI-2 system controls major virulence determinants in Streptococcus suis and, as such, the ability of this bacterial species to cause infections in humans and pigs. Understanding the S. suis LuxS/AI-2 system may open up novel avenues for decreasing the drug resistance and infectivity of S. suis. This article focuses on the progress made to date on the S. suis LuxS/AI-2-mediated QS system.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Li Yi
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada. .,College of Life Science, Luoyang Normal University, Luoyang, China.
| |
Collapse
|
20
|
Zhang T, Dong J, Cheng Y, Lu Q, Luo Q, Wen G, Liu G, Shao H. Genotypic diversity, antimicrobial resistance and biofilm-forming abilities of Campylobacter isolated from chicken in Central China. Gut Pathog 2017; 9:62. [PMID: 29151896 PMCID: PMC5680748 DOI: 10.1186/s13099-017-0209-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Campylobacter is considered to be the leading cause of human bacterial gastroenteritis, of which poultry is the main reservoir. Campylobacter contaminated chicken products are a major cause of human Campylobacter infection. In this study, the prevalence of Campylobacter in chicken in central China was investigated, and the genotypic diversity, antimicrobial resistance and biofilm of these isolates were characterized. Results A total of 206 Campylobacter isolates, including 166 C. jejuni and 40 C. coli, were isolated from chicken farms and live poultry markets in central China. Multilocus sequence typing and phylogenetic analysis showed that the Campylobacter isolates had diverse genetic backgrounds, which covered most of the dominant clone complexes (CCs) reported throughout China. The most prevalent CCs were CC-464, CC-1150, CC-353, and CC-828. All the isolates showed resistance to norfloxacin, ciprofloxacin and Cefazolin, and a prevalent resistance to fluoroquinolones, β-lactams and tetracyclines was also observed. Among all the isolates, 133 strains showed the ability to form biofilm, thereinto, the isolates in two genetic branches, mainly including CC-21, CC-48, CC-677 and CC-45, showed a significantly lower ability to form biofilm than other genetic branches (p < 0.05). However, in general, the ability to form biofilm varied among different genetic branches, suggesting a complex genetic background to biofilm formation, but not only the genetic lineages. Compared with the strains unable to form biofilm, biofilm-producing strains possessed a significantly higher resistance to ampicillin, neomycin, sulfamethoxazole, amikacin, clindamycin and erythromycin (p < 0.05). Conclusions To the best of our knowledge, this is the first report on the relationship of the genotypic diversity, antimicrobial resistance and biofilm-forming abilities of Campylobacter isolated from chicken in Central China, which showed the potential importance of biofilm in antimicrobial resistance. This study will help us better understand the epidemiology and antimicrobial resistance of Campylobacter.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jun Dong
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,College of Animal Science, Yangtze University, Jingzhou, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yiluo Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,College of Animal Science, Yangtze University, Jingzhou, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,College of Animal Science, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
21
|
Actinobacillus pleuropneumoniae biofilms: Role in pathogenicity and potential impact for vaccination development. Anim Health Res Rev 2017; 19:17-30. [DOI: 10.1017/s146625231700010x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractActinobacillus pleuropneumoniae is a Gram-negative bacterium that belongs to the family Pasteurellaceae. It is the causative agent of porcine pleuropneumonia, a highly contagious respiratory disease that is responsible for major economic losses in the global pork industry. The disease may present itself as a chronic or an acute infection characterized by severe pathology, including hemorrhage, fibrinous and necrotic lung lesions, and, in the worst cases, rapid death. A. pleuropneumoniae is transmitted via aerosol route, direct contact with infected pigs, and by the farm environment. Many virulence factors associated with this bacterium are well characterized. However, much less is known about the role of biofilm, a sessile mode of growth that may have a critical impact on A. pleuropneumoniae pathogenicity. Here we review the current knowledge on A. pleuropneumoniae biofilm, factors associated with biofilm formation and dispersion, and the impact of biofilm on the pathogenesis A. pleuropneumoniae. We also provide an overview of current vaccination strategies against A. pleuropneumoniae and consider the possible role of biofilms vaccines for controlling the disease.
Collapse
|
22
|
Comparative transcriptional profiling of tildipirosin-resistant and sensitive Haemophilus parasuis. Sci Rep 2017; 7:7517. [PMID: 28790420 PMCID: PMC5548900 DOI: 10.1038/s41598-017-07972-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
Numerous studies have been conducted to examine the molecular mechanism of Haemophilus parasuis resistance to antibiotic, but rarely to tildipirosin. In the current study, transcriptional profiling was applied to analyse the variation in gene expression of JS0135 and tildipirosin-resistant JS32. The growth curves showed that JS32 had a higher growth rate but fewer bacteria than JS0135. The cell membranes of JS32 and a resistant clinical isolate (HB32) were observed to be smoother than those of JS0135. From the comparative gene expression profile 349 up- and 113 downregulated genes were observed, covering 37 GO and 63 KEGG pathways which are involved in biological processes (11), cellular components (17), molecular function (9), cellular processes (1), environmental information processing (4), genetic information processing (9) and metabolism (49) affected in JS32. In addition, the relative overexpression of genes of the metabolism pathway (HAPS_RS09315, HAPS_RS09320), ribosomes (HAPS_RS07815) and ABC transporters (HAPS_RS10945) was detected, particularly the metabolism pathway, and verified with RT-qPCR. Collectively, the gene expression profile in connection with tildipirosin resistance factors revealed unique and highly resistant determinants of H. parasuis to macrolides that warrant further attention due to the significant threat of bacterial resistance.
Collapse
|
23
|
Loera-Muro A, Jacques M, Avelar-González FJ, Labrie J, Tremblay YDN, Oropeza-Navarro R, Guerrero-Barrera AL. Auxotrophic Actinobacillus pleurpneumoniae grows in multispecies biofilms without the need for nicotinamide-adenine dinucleotide (NAD) supplementation. BMC Microbiol 2016; 16:128. [PMID: 27349384 PMCID: PMC4924255 DOI: 10.1186/s12866-016-0742-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/15/2016] [Indexed: 12/22/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, which causes important worldwide economic losses in the swine industry. Several respiratory tract infections are associated with biofilm formation, and A. pleuropneumoniae has the ability to form biofilms in vitro. Biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that are attached to an abiotic or biotic surface. Virtually all bacteria can grow as a biofilm, and multi-species biofilms are the most common form of microbial growth in nature. The goal of this study was to determine the ability of A. pleuropneumoniae to form multi-species biofilms with other bacteria frequently founded in pig farms, in the absence of pyridine compounds (nicotinamide mononucleotide [NMN], nicotinamide riboside [NR] or nicotinamide adenine dinucleotide [NAD]) that are essential for the growth of A. pleuropneumoniae. Results For the biofilm assay, strain 719, a field isolate of A. pleuropneumoniae serovar 1, was mixed with swine isolates of Streptococcus suis, Bordetella bronchiseptica, Pasteurella multocida, Staphylococcus aureus or Escherichia coli, and deposited in 96-well microtiter plates. Based on the CFU results, A. pleuropneumoniae was able to grow with every species tested in the absence of pyridine compounds in the culture media. Interestingly, A. pleuropneumoniae was also able to form strong biofilms when mixed with S. suis, B. bronchiseptica or S. aureus. In the presence of E. coli, A. pleuropneumoniae only formed a weak biofilm. The live and dead populations, and the matrix composition of multi-species biofilms were also characterized using fluorescent markers and enzyme treatments. The results indicated that poly-N-acetyl-glucosamine remains the primary component responsible for the biofilm structure. Conclusions In conclusion, A. pleuropneumoniae apparently is able to satisfy the requirement of pyridine compounds through of other swine pathogens by cross-feeding, which enables A. pleuropneumoniae to grow and form multi-species biofilms. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0742-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abraham Loera-Muro
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., Mexico, 20131
| | - Mario Jacques
- Groupe de recherche sur la maladies infectieuses du porc, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | | | - Josée Labrie
- Groupe de recherche sur la maladies infectieuses du porc, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Yannick D N Tremblay
- Groupe de recherche sur la maladies infectieuses du porc, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Ricardo Oropeza-Navarro
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico, 62260
| | - Alma L Guerrero-Barrera
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., Mexico, 20131. .,Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., Mexico, 20131.
| |
Collapse
|
24
|
Abstract
The gut microbiota is a complex, densely populated community, home to many different species that collectively provide huge benefits for host health. Disruptions to this community, as can result from recurrent antibiotic exposure, alter the existing network of interactions between bacteria and can render this community susceptible to invading pathogens. Recent findings show that direct antagonistic and metabolic interactions play a critical role in shaping the microbiota. However, the part played by quorum sensing, a means of regulating bacterial behavior through secreted chemical signals, remains largely unknown. We have recently shown that the interspecies signal, autoinducer-2 (AI-2), can modulate the structure of the gut microbiota by using Escherichia coli to manipulate signal levels. Here, we discuss how AI-2 could influence bacterial behaviors to restore the balance between the 2 major bacteria phyla, the Bacteroidetes and Firmicutes, following antibiotic treatment. We explore how this may impact on host physiology, community susceptibility or resistance to pathogens, and the broader potential of AI-2 as a means to redress the imbalances in microbiota composition that feature in many infectious and non-infectious diseases.
Collapse
|
25
|
Hu X, Yan H, Liu K, Hu J, Qi C, Yang J, Liu Y, Zhao J, Liu J. Identification and characterization of a novel stress-responsive outer membrane protein Lip40 from Actinobacillus pleuropneumoniae. BMC Biotechnol 2015; 15:106. [PMID: 26608465 PMCID: PMC4660844 DOI: 10.1186/s12896-015-0199-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/29/2015] [Indexed: 01/30/2023] Open
Abstract
Background Actinobacillus pleuropneumoniae, a Gram-negative bacterium, is the causative agent of porcine pleuropneumonia, a highly contagious and often fatal disease. Because current vaccines confer limited protection against A. pleuropneumoniae infection, the development of more effective vaccines is urgently required. The identification of immunogenic and protective antigens, such as an outer-membrane lipoprotein, will advance this purpose. Results Sixty putative lipoproteins were predicted from the genomic sequence of A. pleuropneumoniae using multiple algorithms. Here, we focused on the characteristics of the putative lipoprotein Lip40 from A. pleuropneumoniae strain SLW01 (serovar 1). Lip40 shares sequence similarity with many bacterial lipoproteins, and the structural prediction of Lip40 suggests that it is similar to A. pleuropneumoniae TbpB. The N-terminus of Lip40 contains an interesting tandemly repeated sequence, Q(E/D/P)QPK. Real-time RT–PCR indicated that the expression of lip40 was significantly upregulated at 42 °C, at 16 °C, and under anaerobic conditions. Recombinant Lip40 (rLip40) produced in Escherichia coli BL21(DE3) was specifically recognized by porcine convalescent serum directed against A. pleuropneumoniae. Lip40 was confirmed to localize at the bacterial outer membrane, and its expression was significantly stimulated when A. pleuropneumoniae was cultured under various stress conditions. Lip40 also protected 75 % of mice from fatal virulent A. pleuropneumoniae infection. Conclusions The immunogenic outer-membrane protein Lip40 is stress responsive, protects mice against infection, and might be a virulence determinant. Further investigation of Lip40 should expedite vaccine development and provide insight into the pathogenesis of A. pleuropneumoniae. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0199-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuehe Hu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Hao Yan
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Ke Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jiansheng Hu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Chao Qi
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jihong Yang
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Yanli Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jin Zhao
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jinlin Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
26
|
Li L, Chen Z, Bei W, Su Z, Huang Q, Zhang L, Chen H, Zhou R. Catecholamines promote Actinobacillus pleuropneumoniae growth by regulating iron metabolism. PLoS One 2015; 10:e0121887. [PMID: 25849041 PMCID: PMC4388731 DOI: 10.1371/journal.pone.0121887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/04/2015] [Indexed: 01/18/2023] Open
Abstract
Catecholamines are host stress hormones that can induce the growth of many bacteria by facilitating iron utilization and/or regulate the expression of virulence genes through specific hormone receptors. Whether these two responsive pathways are interconnected is unknown. In our previous study, it was found that catecholamines can regulate the expression of a great number of genes of Actinobacillus pleuropneumoniae, an important swine respiratory pathogen. However, bacterial growth was not affected by catecholamines in rich medium. In this study, it was discovered that catecholamines affected A. pleuropneumoniae growth in chemically defined medium (CDM). We found that serum inhibited A. pleuropneumoniae growth in CDM, while epinephrine, norepinephrine and dopamine promoted A. pleuropneumoniae growth in the CDM containing serum. The known bacterial hormone receptor QseC didn’t play roles in this process. Ion-supplementation and transcriptome analysis indicated that serum addition resulted in iron-restricted conditions which were alleviated by the addition of catecholamines. Transferrin, one of the components in serum, inhibited the growth of A. pleuropneumoniae in CDM, an effect reversed by addition of catecholamines in a TonB2-dependent manner. Our data demonstrate that catecholamines promote A. pleuropneumoniae growth by regulating iron-acquisition and metabolism, which is independent of the adrenergic receptor QseC.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- * E-mail: (LL); (RZ)
| | - Zhaohui Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhipeng Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- * E-mail: (LL); (RZ)
| |
Collapse
|
27
|
Liu J, Hu L, Xu Z, Tan C, Yuan F, Fu S, Cheng H, Chen H, Bei W. Actinobacillus pleuropneumoniae two-component system QseB/QseC regulates the transcription of PilM, an important determinant of bacterial adherence and virulence. Vet Microbiol 2015; 177:184-92. [PMID: 25796134 DOI: 10.1016/j.vetmic.2015.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 01/01/2023]
Abstract
QseB/QseC is one of the five predicted two-component systems (TCSs) in Actinobacillus pleuropneumoniae. To understand the roles of this TCS in A. pleuropneumoniae, a markerless gene-deletion mutant ΔqseBC was constructed. Differentially expressed (DE) genes in ΔqseBC were filtered by microarray analysis. A total of 44 DE genes were found to be regulated by QseB/QseC system. The transcriptional profile of A. pleuropneumoniae ΔqseBC was compared with that of ΔluxS and catecholamine (CA) stimulations, 13 genes regulated by QseB/QseC were found also regulated by LuxS, and 3 Qse-regulons were co-regulated by CA stimulations, respectively. Binding of QseB to the promoters of three regulons (pilM, glpK and hugZ), which were co-regulated by QseB/QseC and LuxS, was evaluated by electrophoretic mobility-shift assay. Results indicated that pilM was directly regulated by phosphorylated-QseB. Then the pilM deletion mutant ΔpilM was constructed and characterized. Data presented here revealed that adherence ability of ΔpilM to St. Jude porcine lung cells was significantly decreased, and ΔpilM exhibited reduced virulence in pigs, suggesting PilM contributes to the process of A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Jinlin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shulin Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
28
|
Christiaen SEA, O'Connell Motherway M, Bottacini F, Lanigan N, Casey PG, Huys G, Nelis HJ, van Sinderen D, Coenye T. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PLoS One 2014; 9:e98111. [PMID: 24871429 PMCID: PMC4037206 DOI: 10.1371/journal.pone.0098111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/29/2014] [Indexed: 01/13/2023] Open
Abstract
In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.
Collapse
Affiliation(s)
| | - Mary O'Connell Motherway
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Francesca Bottacini
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Noreen Lanigan
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Pat G. Casey
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Geert Huys
- Laboratory of Microbiology & BCCM/LMG Bacteria Collection, Ghent University, Ghent, Belgium
| | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
29
|
Li L, Zhu J, Yang K, Xu Z, Liu Z, Zhou R. Changes in gene expression of Actinobacillus pleuropneumoniae in response to anaerobic stress reveal induction of central metabolism and biofilm formation. J Microbiol 2014; 52:473-81. [DOI: 10.1007/s12275-014-3456-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/23/2013] [Accepted: 01/03/2014] [Indexed: 01/07/2023]
|
30
|
Karim MM, Hisamoto T, Matsunaga T, Asahi Y, Noiri Y, Ebisu S, Kato A, Azakami H. LuxS affects biofilm maturation and detachment of the periodontopathogenic bacterium Eikenella corrodens. J Biosci Bioeng 2013; 116:313-8. [DOI: 10.1016/j.jbiosc.2013.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/08/2013] [Accepted: 03/19/2013] [Indexed: 01/25/2023]
|
31
|
Li L, Sun L, Song Y, Wu X, Zhou X, Liu Z, Zhou R. Screening of Actinobacillus pleuropneumoniae LuxS inhibitors. Curr Microbiol 2013; 67:564-71. [PMID: 23743601 DOI: 10.1007/s00284-013-0403-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023]
Abstract
LuxS, a conserved bacterial enzyme involved in the activated methyl cycle, catalyzes S-ribosylhomocysteine (SRH) into homocysteine and AI-2 (the inter-species quorum-sensing signal molecule). This enzyme has been reported to be essential for the survival of Actinobacillus pleuropneumoniae in its natural host. Therefore, it is a potential drug target against A. pleuropneumoniae, an important swine respiratory pathogen causing great economic losses in the pig industry worldwide. In this study, the enzymatic activity determination method was established using the recombinant LuxS of A. pleuropneumoniae. Thirty-five compounds similar to the shape of SRH were screened from the Specs compound library by the software vROCS and were evaluated for LuxS inhibition. Three compounds could inhibit LuxS activity. Two of them were confirmed to be competitive inhibitors and the third one was uncompetitive. All the three compounds displayed inhibitory effects on the growth of A. pleuropneumoniae and two other important swine pathogens, Haemophilis parasuis and Streptococcus suis, with MIC50 values ranging from 11 to 51 μg/ml. No significant cytotoxic effect of the compounds was detected on porcine PK-15 cells at the concentration which showed inhibitory effect on bacterial growth. These results suggest that LuxS is an ideal target to develop antimicrobials for porcine bacterial pathogens. The three LuxS inhibitors identified in this study can be used as lead compounds for drug design.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Loera-Muro VM, Jacques M, Tremblay YDN, Avelar-González FJ, Loera Muro A, Ramírez-López EM, Medina-Figueroa A, González-Reynaga HM, Guerrero-Barrera AL. Detection of Actinobacillus pleuropneumoniae in drinking water from pig farms. MICROBIOLOGY-SGM 2013; 159:536-544. [PMID: 23347956 DOI: 10.1099/mic.0.057992-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Actinobacillus pleuropneumoniae is the aetiological agent of porcine pleuropneumonia and is normally transmitted by aerosols and direct contact between animals. A. pleuropneumoniae has traditionally been considered an obligate pathogen of pigs and its presence in the environment has yet to be investigated. Here, the presence of A. pleuropneumoniae was detected in drinking water of pig farms in Mexico using a PCR specific for the RTX toxin gene, apxIV. The presence of A. pleuropneumoniae in farm drinking water was confirmed by indirect immunofluorescence using an A. pleuropneumoniae-specific polyclonal antibody and by fluorescent in situ hybridization. Viable bacteria from the farm drinking water were detected using the Live/Dead BacLight stain. Additionally, viable A. pleuropneumoniae was selected and isolated using the cAMP test and the identity of the isolated bacteria were confirmed by Gram staining, a specific polyclonal antibody and an A. pleuropneumoniae-specific PCR. Furthermore, biofilms were observed by scanning electron microscopy in A. pleuropneumoniae-positive samples. In conclusion, our data suggest that viable A. pleuropneumoniae is present in the drinking water of swine farms and may use biofilm as a strategy to survive in the environment.
Collapse
Affiliation(s)
- Victor M Loera-Muro
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., C. P. 20131, Mexico
| | - Mario Jacques
- Groupe de recherche sur la maladies infectieuses du porc, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Yannick D N Tremblay
- Groupe de recherche sur la maladies infectieuses du porc, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Francisco J Avelar-González
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., C. P. 20131, Mexico
| | - Abraham Loera Muro
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., C. P. 20131, Mexico
| | - Elsa M Ramírez-López
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., C. P. 20131, Mexico
| | - Alejandra Medina-Figueroa
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., C. P. 20131, Mexico
| | - Higinio M González-Reynaga
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., C. P. 20131, Mexico
| | - Alma L Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., C. P. 20131, Mexico
| |
Collapse
|
33
|
Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiol 2012; 12:288. [PMID: 23216979 PMCID: PMC3539994 DOI: 10.1186/1471-2180-12-288] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/29/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is an important pathogen that causes biofilm-associated infection in humans. Autoinducer 2 (AI-2), a quorum-sensing (QS) signal for interspecies communication, has a wide range of regulatory functions in both Gram-positive and Gram-negative bacteria, but its exact role in biofilm formation in S. aureus remains unclear. RESULTS Here we demonstrate that mutation of the AI-2 synthase gene luxS in S. aureus RN6390B results in increased biofilm formation compared with the wild-type (WT) strain under static, flowing and anaerobic conditions and in a mouse model. Addition of the chemically synthesized AI-2 precursor in the luxS mutation strain (ΔluxS) restored the WT phenotype. Real-time RT-PCR analysis showed that AI-2 activated the transcription of icaR, a repressor of the ica operon, and subsequently a decreased level of icaA transcription, which was presumably the main reason why luxS mutation influences biofilm formation. Furthermore, we compared the roles of the agr-mediated QS system and the LuxS/AI-2 QS system in the regulation of biofilm formation using the ΔluxS strain, RN6911 and the Δagr ΔluxS strain. Our data indicate a cumulative effect of the two QS systems on the regulation of biofilm formation in S. aureus. CONCLUSION These findings demonstrate that AI-2 can decrease biofilm formation in S. aureus via an icaR-activation pathway. This study may provide clues for therapy in S. aureus biofilm-associated infection.
Collapse
|
34
|
Chen X, Xu Z, Li L, Chen H, Zhou R. Identification of conserved surface proteins as novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae. J Microbiol 2012; 50:978-86. [PMID: 23274984 DOI: 10.1007/s12275-012-2214-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/06/2012] [Indexed: 02/02/2023]
Abstract
Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing great economic losses worldwide. Identification of conserved surface antigenic proteins is helpful for developing effective vaccines. In this study, a genome-wide strategy combined with bioinformatic and experimental approaches, was applied to discover and characterize surface-associated immunogenic proteins of A. pleuropneumoniae. Thirty nine genes encoding outer membrane proteins (OMPs) and lipoproteins were identified by comparative genomics and gene expression profiling as being-highly conserved and stably transcribed in the different serotypes of A. pleuropneumoniae reference strains. Twelve of these conserved proteins were successfully expressed in Escherichia coli and their immunogenicity was estimated by homologous challenge in the mouse model, and then three of these proteins (APJL_0126, HbpA and OmpW) were further tested in the natural host (swine) by homologous and heterologous challenges. The results showed that these proteins could induce high titers of antibodies, but vaccination with each protein individually elicited low protective immunity against A. pleuropneumoniae. This study gives novel insights into immunogenicity of the conserved OMPs and lipoproteins of A. pleuropneumoniae. Although none of the surface proteins characterized in this study could individually induce effective protective immunity against A. pleuropneumoniae, they are potential candidates for subunit vaccines in combination with Apx toxins.
Collapse
Affiliation(s)
- Xiabing Chen
- Division of Animal Infectious Diseases in State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | | | |
Collapse
|
35
|
Liu Y, Chen P, Wang Y, Li W, Cheng S, Wang C, Zhang A, He Q. Transcriptional profiling of Haemophilus parasuis SH0165 response to tilmicosin. Microb Drug Resist 2012; 18:604-15. [PMID: 22935051 DOI: 10.1089/mdr.2012.0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Haemophilus parasuis respiratory tract pathogen poses a severe threat to the swine industry despite available antimicrobial therapies. To gain a more detailed understanding of the molecular mechanisms underlying H. parasuis response to tilmicosin treatment, microarray technology was applied to analyze the variation in gene expression of isolated H. parasuis SH0165 treated in vitro with subinhibitory (0.25 μg/ml) and inhibitory (8 μg/ml) concentrations. Tilmicosin treatment induced differential expression of 405 genes, the encoded products of which are mainly involved in the heat shock response, protein synthesis, and intracellular transportation. The subinhibitory and inhibitory concentrations of tilmicosin induced distinctive gene expression profiles of shared and unique changes, respectively. These changes included 302 genes mainly involved in protein export and the phosphotransferase system to sustain cell growth, and 198 genes mainly related to RNA polymerase, recombination, and repair to inhibit cell growth. In silico analysis of functions related to the differentially expressed genes suggested that adaptation of H. parasuis SH0165 to tilmicosin involves modulation of protein synthesis and membrane transport. Collectively, the genes comprising each transcriptional profile of H. parasuis response to tilmicosin provide novel insights into the physiological functions of this economically significant bacterium and may represent targets of future molecular therapeutic strategies.
Collapse
Affiliation(s)
- Yingyu Liu
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 2012; 37:156-81. [PMID: 22712853 DOI: 10.1111/j.1574-6976.2012.00345.x] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 02/06/2023] Open
Abstract
Success in nature depends upon an ability to perceive and adapt to the surrounding environment. Bacteria are not an exception; they recognize and constantly adjust to changing situations by sensing environmental and self-produced signals, altering gene expression accordingly. Autoinducer-2 (AI-2) is a signal molecule produced by LuxS, an enzyme found in many bacterial species and thus proposed to enable interspecies communication. Two classes of AI-2 receptors and many layers and interactions involved in downstream signalling have been identified so far. Although AI-2 has been implicated in the regulation of numerous niche-specific behaviours across the bacterial kingdom, interpretation of these results is complicated by the dual role of LuxS in signalling and the activated methyl cycle, a crucial central metabolic pathway. In this article, we present a comprehensive review of the discovery and early characterization of AI-2, current developments in signal detection, transduction and regulation, and the major studies investigating the phenotypes regulated by this molecule. The development of novel tools should help to resolve many of the remaining questions in the field; we highlight how these advances might be exploited in AI-2 quorum quenching, treatment of diseases, and the manipulation of beneficial behaviours caused by polyspecies communities.
Collapse
|
37
|
Global effects of catecholamines on Actinobacillus pleuropneumoniae gene expression. PLoS One 2012; 7:e31121. [PMID: 22347439 PMCID: PMC3275570 DOI: 10.1371/journal.pone.0031121] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/03/2012] [Indexed: 11/26/2022] Open
Abstract
Bacteria can use mammalian hormones to modulate pathogenic processes that play essential roles in disease development. Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry globally. Stress is known to contribute to the outcome of A. pleuropneumoniae infection. To test whether A. pleuropneumoniae could respond to stress hormone catecholamines, gene expression profiles after epinephrine (Epi) and norepinephrine (NE) treatment were compared with those from untreated bacteria. The microarray results showed that 158 and 105 genes were differentially expressed in the presence of Epi and NE, respectively. These genes were assigned to various functional categories including many virulence factors. Only 18 genes were regulated by both hormones. These genes included apxIA (the ApxI toxin structural gene), pgaB (involved in biofilm formation), APL_0443 (an autotransporter adhesin) and genes encoding potential hormone receptors such as tyrP2, the ygiY-ygiX (qseC-qseB) operon and narQ-narP (involved in nitrate metabolism). Further investigations demonstrated that cytotoxic activity was enhanced by Epi but repressed by NE in accordance with apxIA gene expression changes. Biofilm formation was not affected by either of the two hormones despite pgaB expression being affected. Adhesion to host cells was induced by NE but not by Epi, suggesting that the hormones affect other putative adhesins in addition to APL_0443. This study revealed that A. pleuropneumoniae gene expression, including those encoding virulence factors, was altered in response to both catecholamines. The differential regulation of A. pleuropneumoniae gene expression by the two hormones suggests that this pathogen may have multiple responsive systems for the two catecholamines.
Collapse
|