1
|
Kaplan JB, Muzaleva A, Sailer M, Huizinga RB, Kridin K. Synergistic activity of dispersin B and benzoyl peroxide against Cutibacterium acnes/Staphylococcus epidermidis dual-species biofilms. PLoS One 2025; 20:e0320662. [PMID: 40146741 PMCID: PMC11949332 DOI: 10.1371/journal.pone.0320662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/23/2025] [Indexed: 03/29/2025] Open
Abstract
Cutibacterium acnes plays a key role in the development of acne vulgaris, with biofilm formation contributing to its persistence and resistance to antimicrobial treatments. A critical component of C. acnes biofilms is poly-N-acetylglucosamine (PNAG), an exopolysaccharide that facilitates both biofilm stability and biocide resistance. This study evaluated the efficacy of the PNAG-degrading enzyme dispersin B in enhancing the susceptibility of C. acnes biofilms to benzoyl peroxide (BP), a common anti-acne agent. Dual-species biofilms of C. acnes and Staphylococcus epidermidis, which has been shown to promote C. acnes biofilm growth under aerobic conditions, were cultivated in glass tubes and treated with dispersin B (5-80 µg/mL), BP (0.1-2.5%), or a combination of both. Dispersin B or BP alone reduced C. acnes colony-forming units (CFUs) by 1-2 log units. However, sequential treatment with dispersin B followed by BP achieved a synergistic effect, yielding a >6-log reduction in CFUs. Remarkably, concentrations as low as 5 µg/mL dispersin B combined with 0.5% BP efficiently eradicated C. acnes from the dual-species biofilms. These findings highlight the protective role of PNAG against BP and demonstrate the potential of dispersin B as an adjunctive therapy to enhance the efficacy of BP in acne treatment.
Collapse
Affiliation(s)
- Jeffrey B. Kaplan
- Department of Biology, American University, Washington, District of Columbia, United States of America
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| | | | | | | | - Khalaf Kridin
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
2
|
Venkataraman M, Infante V, Sabat G, Sanos-Giles K, Ané JM, Pfleger BF. A Novel Membrane-Associated Protein Aids Bacterial Colonization of Maize. ACS Synth Biol 2025; 14:206-215. [PMID: 39707987 PMCID: PMC11747777 DOI: 10.1021/acssynbio.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers. Unfortunately, the mechanisms by which microbes adhere and persist on plant roots are poorly understood, limiting their application. This study examined the membrane proteome shift upon adherence to roots in two bacteria of interest, Klebsiella variicola and Pseudomonas putida. From this surface proteome data, we identified a novel membrane protein from a nonlaboratory isolate of P. putida that increases binding to maize roots using unlabeled proteomics. When this protein was moved from the environmental isolate to a common lab strain (P. putida KT2440), we observed increased binding capabilities of P. putida KT2440 to both abiotic mimic surfaces and maize roots. We observed a similar increased binding capability to maize roots when the protein was heterologously expressed in K. variicola and Stutzerimonas stutzeri. With the discovery of this novel binding protein, we outline a strategy for harnessing natural selection and wild isolates to build more persistent strains of bacteria for field applications and plant growth promotion.
Collapse
Affiliation(s)
- Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Kai Sanos-Giles
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA 53706
- Department of Plant and Agroecosystem Sciences, University of Wisconsin – Madison, Madison, WI, USA 53705
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| |
Collapse
|
3
|
Temme JS, Tan Z, Li M, Yang M, Wlodawer A, Huang X, Schneekloth JS, Gildersleeve JC. Insights into biofilm architecture and maturation enable improved clinical strategies for exopolysaccharide-targeting therapeutics. Cell Chem Biol 2024; 31:2096-2111.e7. [PMID: 39637855 DOI: 10.1016/j.chembiol.2024.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Polysaccharide intercellular adhesin (PIA), an exopolysaccharide composed of poly-N-acetyl glucosamine (PNAG), is an essential component in many pathogenic biofilms. Partial deacetylation of PNAG is required for biofilm formation, but limited structural knowledge hinders therapeutic development. Employing a new monoclonal antibody (TG10) that selectively binds highly deacetylated PNAG and an antibody (F598) in clinical trials that binds highly acetylated PNAG, we demonstrate that PIA within the biofilm contains distinct regions of highly acetylated and deacetylated exopolysaccharide, contrary to the previous model invoking stochastic deacetylation throughout the biofilm. This discovery led us to hypothesize that targeting both forms of PNAG would enhance efficacy. Remarkably, TG10 and F598 synergistically increased in vitro and in vivo activity, providing 90% survival in a lethal Staphylococcus aureus challenge murine model. Our advanced model deepens the conceptual understanding of PIA architecture and maturation and reveals improved design strategies for PIA-targeting therapeutics, vaccines, and diagnostic agents.
Collapse
Affiliation(s)
- J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Zibin Tan
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Mi Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mo Yang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
4
|
Bian X, Li M, Liu X, Zhu Y, Li J, Bergen PJ, Li W, Li X, Feng M, Zhang J. Transcriptomic investigations of polymyxins and colistin/sulbactam combination against carbapenem-resistant Acinetobacter baumannii. Comput Struct Biotechnol J 2024; 23:2595-2605. [PMID: 39006922 PMCID: PMC11245955 DOI: 10.1016/j.csbj.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a Priority 1 (Critical) pathogen urgently requiring new antibiotics. Polymyxins are a last-line option against CRAB-associated infections. This transcriptomic study utilized a CRAB strain to investigate mechanisms of bacterial killing with polymyxin B, colistin, colistin B, and colistin/sulbactam combination therapy. After 4 h of 2 mg/L polymyxin monotherapy, all polymyxins exhibited common transcriptomic responses which primarily involved disruption to amino acid and fatty acid metabolism. Of the three monotherapies, polymyxin B induced the greatest number of differentially expressed genes (DEGs), including for genes involved with fatty acid metabolism. Gene disturbances with colistin and colistin B were highly similar (89 % common genes for colistin B), though effects on gene expression were generally lower (0-1.5-fold in most cases) with colistin B. Colistin alone (2 mg/L) or combined with sulbactam (64 mg/L) resulted in rapid membrane disruption as early as 1 h. Transcriptomic analysis of this combination revealed that the effects were driven by colistin, which included disturbances in fatty acid synthesis and catabolism, and inhibition of nutrient uptake. Combination therapy produced substantially higher fold changes in 72 % of DEGs shared with monotherapy, leading to substantially greater reductions in fatty acid biosynthesis and increases in biofilm, cell wall, and phospholipid synthesis. This indicates synergistic bacterial killing with the colistin/sulbactam combination results from a systematic increase in perturbation of many genes associated with bacterial metabolism. These mechanistic insights enhance our understanding of bacterial responses to polymyxin mono- and combination therapy and will assist to optimize polymyxin use in patients.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of biological medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengyao Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of biological medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Shu R, Liu G, Xu Y, Liu B, Huang Z, Wang H. AcrAB Efflux Pump Plays a Crucial Role in Bile Salts Resistance and Pathogenesis of Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:1146. [PMID: 39766536 PMCID: PMC11672700 DOI: 10.3390/antibiotics13121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Bile salts possess innate antibacterial properties and can cause significant damage to bacteria. To survive in the mammalian gut, Klebsiella pneumoniae has developed mechanisms to tolerate bile salts; however, the specific mechanisms remain unclear. Transposon library screening revealed that the efflux pump AcrAB is involved in bile salt resistance. acrA and acrB mutants exhibited high sensitivity not only to bile salts but also to SDS and various antibiotics, with a switch-loop, comprising residues G615, F616, A617, and G618, proving to be crucial in this process. A colonization defect of acrA and acrB mutants was demonstrated to be located in the mouse small intestine, where the bile salt concentration is higher compared to the large intestine. Additionally, both acrA and acrB mutants displayed reduced virulence in the Galleria mellonella model. In conclusion, our results suggest that the Resistance-Nodulation-Cell Division efflux pump serves as a critical determinant in the pathogenesis of K. pneumoniae through various aspects.
Collapse
Affiliation(s)
- Rundong Shu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Ge Liu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
- Zhengzhou Agricultural Science and Technology Research Institute, Zhengzhou 450015, China
| | - Yunyu Xu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Bojun Liu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Zhi Huang
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Hui Wang
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| |
Collapse
|
6
|
Qiu Y, Xiang L, Yin M, Fang C, Dai X, Zhang L, Li Y. RfaH contributes to maximal colonization and full virulence of hypervirulent Klebsiella pneumoniae. Front Cell Infect Microbiol 2024; 14:1454373. [PMID: 39364146 PMCID: PMC11448354 DOI: 10.3389/fcimb.2024.1454373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
Hypervirulent K. pneumoniae (hvKp) have emerged as clinically important pathogens, posing a serious threat to human health. RfaH, a transcriptional elongation factor, has been regarded as implicated in facilitating the transcription of long virulence operons in certain bacterial species. In K. pneumoniae, RfaH plays a vital role in promoting CPS synthesis and hypermucoviscosity, as well as mediating bacterial fitness during lung infection. In this study, we aim to conduct a systematic investigation of the roles of rfaH in the survival, dissemination, and colonization of hvKp through in vitro and in vivo assays. We found that bacterial cells and colonies displayed capsule -deficient phenotypes subsequent to the deletion of rfaH in K. pneumoniae NTUH-K2044. We confirmed that rfaH is required for the synthesis of capsule and lipopolysaccharide (LPS) by positively regulating the expression of CPS and LPS gene clusters. We found that the ΔrfaH mutant led to a significantly decreased mortality of K. pneumoniae in a mouse intraperitoneal infection model. We further demonstrated that the absence of rfaH was associated with slower bacterial growth under conditions of low nutrition or iron limitation. ΔrfaH displayed reduced survival rates in the presence of human serum. Besides, the engulfment of the ΔrfaH mutant was significantly higher than that of NTUH-K2044 by macrophages in vivo, indicating an indispensable role of RfaH in the phagocytosis resistance of hvKp in mice. Both mouse intranasal and intraperitoneal infection models revealed a higher bacterial clearance rate of ΔrfaH in lungs, livers, and spleens of mice compared to its wild type, suggesting an important role of RfaH in the bacterial survival, dissemination, and colonization of hvKp in vivo. Histopathological results supported that RfaH contributes to the pathogenicity of hvKp in mice. In conclusion, our study demonstrates crucial roles of RfaH in the survival, colonization and full virulence of hvKp, which provides several implications for the development of RfaH as an antibacterial target.
Collapse
Affiliation(s)
- Yichuan Qiu
- Department of Clinical Laboratory, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, Sichuan, China
| | - Li Xiang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yin
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chengju Fang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyi Dai
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhua Zhang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Sharma B, Twelker K, Nguyen C, Ellis S, Bhatia ND, Kuschner Z, Agriantonis A, Agriantonis G, Arnold M, Dave J, Mestre J, Shafaee Z, Arora S, Ghanta H, Whittington J. Bile Acids in Pancreatic Carcinogenesis. Metabolites 2024; 14:348. [PMID: 39057671 PMCID: PMC11278541 DOI: 10.3390/metabo14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is a dangerous digestive tract tumor that is becoming increasingly common and fatal. The most common form of PC is pancreatic ductal adenocarcinoma (PDAC). Bile acids (BAs) are closely linked to the growth and progression of PC. They can change the intestinal flora, increasing intestinal permeability and allowing gut microbes to enter the bloodstream, leading to chronic inflammation. High dietary lipids can increase BA secretion into the duodenum and fecal BA levels. BAs can cause genetic mutations, mitochondrial dysfunction, abnormal activation of intracellular trypsin, cytoskeletal damage, activation of NF-κB, acute pancreatitis, cell injury, and cell necrosis. They can act on different types of pancreatic cells and receptors, altering Ca2+ and iron levels, and related signals. Elevated levels of Ca2+ and iron are associated with cell necrosis and ferroptosis. Bile reflux into the pancreatic ducts can speed up the kinetics of epithelial cells, promoting the development of pancreatic intraductal papillary carcinoma. BAs can cause the enormous secretion of Glucagon-like peptide-1 (GLP-1), leading to the proliferation of pancreatic β-cells. Using Glucagon-like peptide-1 receptor agonist (GLP-1RA) increases the risk of pancreatitis and PC. Therefore, our objective was to explore various studies and thoroughly examine the role of BAs in PC.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Cecilia Nguyen
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Scott Ellis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zachary Kuschner
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Andrew Agriantonis
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Monique Arnold
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jasmine Dave
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zahra Shafaee
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Shalini Arora
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Hima Ghanta
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| |
Collapse
|
8
|
Tian S, Shi L, Ren Y, van der Mei HC, Busscher HJ. A normalized parameter for comparison of biofilm dispersants in vitro. Biofilm 2024; 7:100188. [PMID: 38495770 PMCID: PMC10943042 DOI: 10.1016/j.bioflm.2024.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Dispersal of infectious biofilms increases bacterial concentrations in blood. To prevent sepsis, the strength of a dispersant should be limited to allow the immune system to remove dispersed bacteria from blood, preferably without antibiotic administration. Biofilm bacteria are held together by extracellular polymeric substances that can be degraded by dispersants. Currently, comparison of the strength of dispersants is not possible by lack of a suitable comparison parameter. Here, a biofilm dispersal parameter is proposed that accounts for differences in initial biofilm properties, dispersant concentration and exposure time by using PBS as a control and normalizing outcomes with respect to concentration and time. The parameter yielded near-identical values based on dispersant-induced reductions in biomass or biofilm colony-forming-units and appeared strain-dependent across pathogens. The parameter as proposed is largely independent of experimental methods and conditions and suitable for comparing different dispersants with respect to different causative strains in particular types of infection.
Collapse
Affiliation(s)
- Shuang Tian
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700, RB, Groningen, the Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| |
Collapse
|
9
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
10
|
Kaplan JB, Cywes-Bentley C, Pier GB, Yakandawala N, Sailer M, Edwards MS, Kridin K. Poly- β-(1→6)- N-acetyl-D-glucosamine mediates surface attachment, biofilm formation, and biocide resistance in Cutibacterium acnes. Front Microbiol 2024; 15:1386017. [PMID: 38751716 PMCID: PMC11094747 DOI: 10.3389/fmicb.2024.1386017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Background The commensal skin bacterium Cutibacterium acnes plays a role in the pathogenesis of acne vulgaris and also causes opportunistic infections of implanted medical devices due to its ability to form biofilms on biomaterial surfaces. Poly-β-(1→6)-N-acetyl-D-glucosamine (PNAG) is an extracellular polysaccharide that mediates biofilm formation and biocide resistance in a wide range of bacterial pathogens. The objective of this study was to determine whether C. acnes produces PNAG, and whether PNAG contributes to C. acnes biofilm formation and biocide resistance in vitro. Methods PNAG was detected on the surface of C. acnes cells by fluorescence confocal microscopy using the antigen-specific human IgG1 monoclonal antibody F598. PNAG was detected in C. acnes biofilms by measuring the ability of the PNAG-specific glycosidase dispersin B to inhibit biofilm formation and sensitize biofilms to biocide killing. Results Monoclonal antibody F598 bound to the surface of C. acnes cells. Dispersin B inhibited attachment of C. acnes cells to polystyrene rods, inhibited biofilm formation by C. acnes in glass and polypropylene tubes, and sensitized C. acnes biofilms to killing by benzoyl peroxide and tetracycline. Conclusion C. acnes produces PNAG, and PNAG contributes to C. acnes biofilm formation and biocide resistance in vitro. PNAG may play a role in C. acnes skin colonization, biocide resistance, and virulence in vivo.
Collapse
Affiliation(s)
- Jeffrey B. Kaplan
- Department of Biology, American University, Washington, DC, United States
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | - Khalaf Kridin
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
11
|
Yang F, Jiang H, Ma K, Hegazy A, Wang X, Liang S, Chang G, Yu L, Tian B, Shi X. Genomic and phenotypic analyses reveal Paenibacillus polymyxa PJH16 is a potential biocontrol agent against cucumber fusarium wilt. Front Microbiol 2024; 15:1359263. [PMID: 38591040 PMCID: PMC11000672 DOI: 10.3389/fmicb.2024.1359263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
In recent years, bacterial-based biocontrol agents (BCA) have become a new trend for the control of fungal diseases such as fusarium wilt that seriously threaten the yield and quality of cucumber, which are transmitted through infested soil and water. This study was set out with the aim of figuring the mechanism of the isolated rhizobacterial strain Paenibacillus polymyxa PJH16 in preventing Fusarium oxysporum f. sp. cucumerinum (Foc). Biocontrol and growth-promoting experiments revealed that bacterial strain causes effective inhibition of the fungal disease through a significant growth-promoting ability of plants, and had activities of β-1,3-glucanase, cellulase, amylase and protease. It could produce siderophore and indole-3-acetic acid, too. Using the high-throughput sequencing tool PacBio Sequel II system and the database annotation, the bacterial strain was identified as P. polymyxa PJH16 and contained genes encoding for presence of biofilm formation, antimicrobial peptides, siderophores and hydrolyases. From comparing data between the whole genome of P. polymyxa PJH16 with four closely related P. polymyxa strains, findings revealed markedly the subtle differences in their genome sequences and proposed new antifungal substances present in P. polymyxa PJH16. Therefore, P. polymyxa PJH16 could be utilized in bioengineering a microbial formulation for application as biocontrol agent and bio-stimulant, in the future.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Huayan Jiang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Abeer Hegazy
- National Water Research Center, Shubra El Kheima, Egypt
| | - Xin Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shen Liang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Gaozheng Chang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Liqin Yu
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China
| | - Baoming Tian
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanjie Shi
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
13
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
14
|
Blanco-Romero E, Garrido-Sanz D, Durán D, Rybtke M, Tolker-Nielsen T, Redondo-Nieto M, Rivilla R, Martín M. Role of extracellular matrix components in biofilm formation and adaptation of Pseudomonas ogarae F113 to the rhizosphere environment. Front Microbiol 2024; 15:1341728. [PMID: 38333580 PMCID: PMC10850567 DOI: 10.3389/fmicb.2024.1341728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Regulating the transition of bacteria from motile to sessile lifestyles is crucial for their ability to compete effectively in the rhizosphere environment. Pseudomonas are known to rely on extracellular matrix (ECM) components for microcolony and biofilm formation, allowing them to adapt to a sessile lifestyle. Pseudomonas ogarae F113 possesses eight gene clusters responsible for the production of ECM components. These gene clusters are tightly regulated by AmrZ, a major transcriptional regulator that influences the cellular levels of c-di-GMP. The AmrZ-mediated transcriptional regulation of ECM components is primarily mediated by the signaling molecule c-di-GMP and the flagella master regulator FleQ. To investigate the functional role of these ECM components in P. ogarae F113, we performed phenotypic analyses using mutants in genes encoding these ECM components. These analyses included assessments of colony morphology, dye-staining, static attachment to abiotic surfaces, dynamic biofilm formation on abiotic surfaces, swimming motility, and competitive colonization assays of the rhizosphere. Our results revealed that alginate and PNAG polysaccharides, along with PsmE and the fimbrial low molecular weight protein/tight adherence (Flp/Tad) pilus, are the major ECM components contributing to biofilm formation. Additionally, we found that the majority of these components and MapA are needed for a competitive colonization of the rhizosphere in P. ogarae F113.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Li Y, Ni M. Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol 2023; 14:1238482. [PMID: 37744914 PMCID: PMC10513181 DOI: 10.3389/fmicb.2023.1238482] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Klebsiella pneumoniae is an important Gram-negative opportunistic pathogen that is responsible for a variety of nosocomial and community-acquired infections. Klebsiella pneumoniae has become a major public health issue owing to the rapid global spread of extensively-drug resistant (XDR) and hypervirulent strains. Biofilm formation is an important virulence trait of K. pneumoniae. A biofilm is an aggregate of microorganisms attached to an inert or living surface by a self-produced exo-polymeric matrix that includes proteins, polysaccharides and extracellular DNA. Bacteria within the biofilm are shielded from antibiotics treatments and host immune responses, making it more difficult to eradicate K. pneumoniae-induced infection. However, the detailed mechanisms of biofilm formation in K. pneumoniae are still not clear. Here, we review the factors involved in the biofilm formation of K. pneumoniae, which might provide new clues to address this clinical challenge.
Collapse
Affiliation(s)
| | - Ming Ni
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023; 9:63. [PMID: 37679355 PMCID: PMC10485009 DOI: 10.1038/s41522-023-00427-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanteng Zhao
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus, 475004, Kaifeng, Henan, China
| | - Zhifen Deng
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
- Mirimus Inc., 760 Parkside Avenue, Brooklyn, NY, 11226, USA.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
17
|
Vo LH, Hong S, Stepler KE, Liyanaarachchi SM, Yang J, Nemes P, Poulin MB. Mapping protein-exopolysaccharide binding interaction in Staphylococcus epidermidis biofilms by live cell proximity labeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555326. [PMID: 37693546 PMCID: PMC10491226 DOI: 10.1101/2023.08.29.555326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bacterial biofilms consist of cells encased in an extracellular polymeric substance (EPS) composed of exopolysaccharides, extracellular DNA, and proteins that are critical for cell-cell adhesion and protect the cells from environmental stress, antibiotic treatments, and the host immune response. Degrading EPS components or blocking their production have emerged as promising strategies for prevention or dispersal of bacterial biofilms, but we still have little information about the specific biomolecular interactions that occur between cells and EPS components and how those interactions contribute to biofilm production. Staphylococcus epidermidis is a leading cause of nosocomial infections as a result of producing biofilms that use the exopolysaccharide poly-(1→6)-β-N-acetylglucosamine (PNAG) as a major structural component. In this study, we have developed a live cell proximity labeling approach combined with quantitative mass spectrometry-based proteomics to map the PNAG interactome of live S. epidermidis biofilms. Through these measurements we discovered elastin-binding protein (EbpS) as a major PNAG-interacting protein. Using live cell binding measurements, we found that the lysin motif (LysM) domain of EbpS specifically binds to PNAG present in S. epidermidis biofilms. Our work provides a novel method for the rapid identification of exopolysaccharide-binding proteins in live biofilms that will help to extend our understanding of the biomolecular interactions that are required for bacterial biofilm formation.
Collapse
Affiliation(s)
- Luan H. Vo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Steven Hong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kaitlyn E. Stepler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sureshee M. Liyanaarachchi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jack Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Myles B. Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
18
|
Li D, Wang J, Wang X, Qiao Z, Wang L, Wang P, Song N, Li M. β-Glycosylations with 2-Deoxy-2-(2,4-dinitrobenzenesulfonyl)-amino-glucosyl/galactosyl Selenoglycosides: Assembly of Partially N-Acetylated β-(1 → 6)-Oligoglucosaminosides. J Org Chem 2023; 88:9004-9025. [PMID: 37306475 DOI: 10.1021/acs.joc.3c00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An efficient protocol has been established for β-glycosylations with 2-deoxy-2-(2,4-dinitrobenzenesulfonyl)amino (2dDNsNH)-glucopyranosyl/galactopyranosyl selenoglycosides using PhSeCl/AgOTf as an activating system. The reaction features highly β-selective glycosylation with a wide range of alcohol acceptors that are either sterically hindered or poorly nucleophilic. Thioglycoside- and selenoglycoside-based alcohols prove to be viable nucleophiles, opening up new opportunities for one-pot construction of oligosaccharides. The power of this approach is highlighted by the efficient assembly of tri-, hexa-, and nonasaccharides composed of β-(1 → 6)-glucosaminosyl residues based on one-pot preparation of a triglucosaminosyl thioglycoside with DNs, phthaloyl, and 2,2,2-trichloroethoxycarbonyl as the protecting groups of amino groups. These glycans are potential antigens for developing glycoconjugate vaccines against microbial infections.
Collapse
Affiliation(s)
- Dongwei Li
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianjun Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianyang Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhi Qiao
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lingjun Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming Li
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
19
|
Yang P, Qu C, Yuan M, Xi B, Jia X, Zhang B, Zhang L. Genetic Basis and Expression Pattern Indicate the Biocontrol Potential and Soil Adaption of Lysobacter capsici CK09. Microorganisms 2023; 11:1768. [PMID: 37512940 PMCID: PMC10384520 DOI: 10.3390/microorganisms11071768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Lysobacter species have attracted increasing attention in recent years due to their capacities to produce diverse secondary metabolites against phytopathogens. In this research, we analyzed the genomic and transcriptomic patterns of Lysobacter capsici CK09. Our data showed that L. capsici CK09 harbored various contact-independent biocontrol traits, such as fungal cell wall lytic enzymes and HSAF/WAP-8294A2 biosynthesis, as well as several contact-dependent machineries, including type 2/4/6 secretion systems. Additionally, a variety of hydrolytic enzymes, particularly extracellular enzymes, were found in the L. capsici CK09 genome and predicted to improve its adaption in soil. Furthermore, several systems, including type 4 pili, type 3 secretion system and polysaccharide biosynthesis, can provide a selective advantage to L. capsici CK09, enabling the species to live on the surface in soil. The expression of these genes was then confirmed via transcriptomic analysis, indicating the activities of these genes. Collectively, our research provides a comprehensive understanding of the biocontrol potential and soil adaption of L. capsici CK09 and implies the potential of this strain for application in the future.
Collapse
Affiliation(s)
- Pu Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Chaofan Qu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Miaomiao Yuan
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Bo Xi
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiu Jia
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
20
|
Kim B, Gurung S, Han SR, Lee JH, Oh TJ. Comparative Genomic Analysis of Biofilm-Forming Polar Microbacterium sp. Strains PAMC22086 and PAMC21962 Isolated from Extreme Habitats. Microorganisms 2023; 11:1757. [PMID: 37512929 PMCID: PMC10384088 DOI: 10.3390/microorganisms11071757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The members of Microbacterium isolated from different environments are known to form peptidoglycan. In this study, we compared the biofilm-forming abilities of Microbacterium sp. PAMC22086 (PAMC22086), which was isolated from the soil in the South Shetland Islands and Microbacterium sp. PAMC21962 (PAMC21962), which was isolated from algae in the South Shetland Islands. The analysis of average nucleotide identity and phylogeny of PAMC22086 revealed a 97% similarity to Microbacterium oxydans VIU2A, while PAMC21962 showed a 99.1% similarity to Microbacterium hominis SGAir0570. For the comparative genomic analysis of PAMC22086 and PAMC21962, the genes related to biofilm formation were identified using EggNOG and KEGG pathway databases. The genes possessed by both PAMC22086 and PAMC21962 are cpdA, phnB, rhlC, and glgC, which regulate virulence, biofilm formation, and multicellular structure. Among the genes indirectly involved in biofilm formation, unlike PAMC21962, PAMC22086 possessed csrA, glgC, and glgB, which are responsible for attachment and glycogen biosynthesis. Additionally, in PAMC22086, additional functional genes rsmA, which is involved in mobility and polysaccharide production, and dksA, GTPase, and oxyR, which play roles in cell cycle and stress response, were identified. In addition, the biofilm-forming ability of the two isolates was examined in vivo using the standard crystal violet staining technique, and morphological differences in the biofilm were investigated. It is evident from the different distribution of biofilm-associated genes between the two strains that the bacteria can survive in different niches by employing distinct strategies. Both strains exhibit distinct morphologies. PAMC22086 forms a biofilm that attaches to the side, while PAMC21962 indicates growth starting from the center. The biofilm formation-related genes in Microbacterium are not well understood. However, it has been observed that Microbacterium species form biofilm regardless of the number of genes they possess. Through comparison between different Microbacterium species, it was revealed that specific core genes are involved in cell adhesion, which plays a crucial role in biofilm formation. This study provides a comprehensive profile of the Microbacterium genus's genomic features and a preliminary understanding of biofilm in this genus, laying the foundation for further research.
Collapse
Affiliation(s)
- Byeollee Kim
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
| | - Saru Gurung
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Jun-Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
21
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
22
|
Lai SJ, Tu IF, Tseng TS, Tsai YH, Wu SH. The deficiency of poly-β-1,6-N-acetyl-glucosamine deacetylase trigger A. baumannii to convert to biofilm-independent colistin-tolerant cells. Sci Rep 2023; 13:2800. [PMID: 36797306 PMCID: PMC9935895 DOI: 10.1038/s41598-023-30065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that can be resistant to antibiotics by rapidly modulating its anti-drug mechanisms. The multidrug-resistant A. baumannii has been considered one of the most threatening pathogens to our society. Biofilm formation and persistent cells within the biofilm matrix are recognized as intractable problems, especially in hospital-acquired infections. Poly-β-1,6-N-acetyl-glucosamine (PNAG) is one of the important building blocks in A. baumannii's biofilm. Here, we discover a protein phosphoryl-regulation on PNAG deacetylase, AbPgaB1, in which residue Ser411 was phosphorylated. The phosphoryl-regulation on AbPgaB1 modulates the product turnover rate in which deacetylated PNAG is produced and reflected in biofilm production. We further uncovered the PgaB deficient A. baumannii strain shows the lowest level of biofilm production but has a high minimal inhibition concentration to antibiotic colistin and tetracycline. Based on bactericidal post-antibiotic effects and time-dependent killing assays with antibacterial drugs, we claim that the PgaB-deficient A. baumannii converts to colistin-tolerant cells. This study utilizes a biofilm-independent colistin-tolerant model of A. baumannii to further investigate its characteristics and mechanisms to better understand clinical outcomes.
Collapse
Affiliation(s)
- Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404333, Taiwan. .,Research Center for Cancer Biology, China Medical University, Taichung, 404333, Taiwan.
| | - I-Fan Tu
- grid.28665.3f0000 0001 2287 1366Institute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Tien-Sheng Tseng
- grid.260542.70000 0004 0532 3749Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsuan Tsai
- grid.510951.90000 0004 7775 6738Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132 China
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan. .,Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
23
|
Breslawec AP, Wang S, Monahan KN, Barry LL, Poulin MB. The endoglycosidase activity of Dispersin B is mediated through electrostatic interactions with cationic poly-β-(1→6)-N-acetylglucosamine. FEBS J 2023; 290:1049-1059. [PMID: 36083143 DOI: 10.1111/febs.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
Bacterial biofilms consist of bacterial cells embedded within a self-produced extracellular polymeric substance (EPS) composed of exopolysaccharides, extra cellular DNA, proteins and lipids. The enzyme Dispersin B (DspB) is a CAZy type 20 β-hexosaminidase enzyme that catalyses the hydrolysis of poly-N-acetylglucosamine (PNAG), a major biofilm polysaccharide produced by a wide variety of biofilm-forming bacteria. Native PNAG is partially de-N-acetylated, and the degree of deacetylation varies between species and dependent on the environment. We have previously shown that DspB is able to perform both endo- and exo-glycosidic bond cleavage of PNAG depending on the de-N-acetylation patterns present in the PNAG substrate. Here, we used a combination of synthetic PNAG substrate analogues, site-directed mutagenesis and in vitro biofilm dispersal assay to investigate the molecular basis for the endo-glycosidic cleavage activity of DspB and the importance of this activity for dispersal of PNAG-dependent Staphylococcus epidermidis biofilms. We found that D242 contributes to the endoglycosidase activity of DspB through electrostatic interactions with cationic substrates in the -2 binding site. A DspBD242N mutant was highly deficient in endoglycosidase activity while maintaining exoglycosidase activity. When used to disperse S. epidermidis biofilms, this DspBD242N mutant resulted in an increase in residual biofilm biomass after treatment when compared to wild-type DspB. These results suggest that the de-N-acetylation of PNAG in S. epidermidis biofilms is not uniformly distributed and that the endoglycosidase activity of DspB is required for efficient biofilm dispersal.
Collapse
Affiliation(s)
- Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Shaochi Wang
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Kathleen N Monahan
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Lucas L Barry
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Myles B Poulin
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| |
Collapse
|
24
|
Kutsuno S, Hayashi I, Yu L, Yamada S, Hisatsune J, Sugai M. Non-deacetylated poly- N-acetylglucosamine-hyperproducing Staphylococcus aureus undergoes immediate autoaggregation upon vortexing. Front Microbiol 2023; 13:1101545. [PMID: 36699608 PMCID: PMC9868172 DOI: 10.3389/fmicb.2022.1101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Biofilms are microbial communities of cells embedded in a matrix of extracellular polymeric substances generated and adhering to each other or to a surface. Cell aggregates formed in the absence of a surface and floating pellicles that form biofilms at the air-liquid interface are also considered to be a type of biofilm. Staphylococcus aureus is a well-known cause of biofilm infections and high-molecular-weight polysaccharides, poly-N-acetylglucosamine (PNAG) is a main constituent of the biofilm. An icaADBC operon comprises major machinery to synthesize and extracellularly secrete PNAG. Extracellular PNAG is partially deacetylated by IcaB deacetylase, and the positively charged PNAG hence interacts with negatively charged cell surface to form the major component of biofilm. We previously reported a new regulator of biofilm (Rob) and demonstrated that Rob binds to a unique 5-bp motif, TATTT, present in intergenic region between icaADBC operon and its repressor gene icaR in Yu et al. The deletion of the 5-bp motif induces excessive adherent biofilm formation. The real function of the 5-bp motif is still unknown. In an attempt to isolate the 5-bp motif deletion mutant, we isolated several non-adherent mutants. They grew normally in turbid broth shaking culture but immediately auto-aggregated upon weak vortexing and sedimented as a lump resulting in a clear supernatant. Whole genome sequencing of the mutants identified they all carried mutations in icaB in addition to deletion of the 5-bp motif. Purification and molecular characterization of auto-aggregating factor in the culture supernatant of the mutant identified that the factor was a massively produced non-deacetylated PNAG. Therefore, we created a double deficient strain of biofilm inhibitory factors (5-bp motif, icaR, rob) and icaB to confirm the aggregation phenomenon. This peculiar phenomenon was only observed in Δ5bpΔicaB double mutant but not in ΔicaR ΔicaB or ΔrobΔicaB mutant. This study explains large amount of extracellularly produced non-deacetylated PNAG by Δ5bpΔicaB double mutation induced rapid auto-aggregation of S. aureus cells by vortexing. This phenomenon indicated that Staphylococcus aureus may form biofilms that do not adhere to solid surfaces and we propose this as a new mechanism of non-adherent biofilm formation of S. aureus.
Collapse
Affiliation(s)
- Shoko Kutsuno
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Ikue Hayashi
- Research Facility, Hiroshima University Faculty of Dentistry, Hiroshima, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Sakuo Yamada
- Department of Medical Technology, Faculty of Health Sciences & Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan,*Correspondence: Motoyuki Sugai,
| |
Collapse
|
25
|
Du M, Wang J, Jin Y, Fan J, Zan S, Li Z. Response mechanism of microbial community during anaerobic biotransformation of marine toxin domoic acid. ENVIRONMENTAL RESEARCH 2022; 215:114410. [PMID: 36154856 DOI: 10.1016/j.envres.2022.114410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Domoic acid (DA) is a potent neurotoxin produced by toxigenic Pseudo-nitzschia blooms and quickly transfers to the benthic anaerobic environment by marine snow particles. DA anaerobic biotransformation is driven by microbial interactions, in which trace amounts of DA can cause physiological stress in marine microorganisms. However, the underlying response mechanisms of microbial community to DA stress remain unclear. In this study, we utilized an anaerobic marine DA-degrading consortium GLY (using glycine as co-substrate) to systematically investigate the global response mechanisms of microbial community during DA anaerobic biotransformation.16S rRNA gene sequencing and metatranscriptomic analyses were applied to measure microbial community structure, function and metabolic responses. Results showed that DA stress markedly changed the composition of main species, with increased levels of Firmicutes and decreased levels of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria. Several genera of tolerated bacteria (Bacillus and Solibacillus) were increased, while, Stenotrophomonas, Sphingomonas and Acinetobacter were decreased. Metatranscriptomic analyses indicated that DA stimulated the expression of quorum sensing, extracellular polymeric substance (EPS) production, sporulation, membrane transporters, bacterial chemotaxis, flagellar assembly and ribosome protection in community, promoting bacterial adaptation ability under DA stress. Moreover, amino acid metabolism, carbohydrate metabolism and lipid metabolism were modulated during DA anaerobic biotransformation to reduce metabolic burden, increase metabolic demands for EPS production and DA degradation. This study provides the new insights into response of microbial community to DA stress and its potential impact on benthic microorganisms in marine environments.
Collapse
Affiliation(s)
- Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
26
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
27
|
Iqbal J, Malviya N, Gaddy JA, Zhang C, Seier AJ, Haley KP, Doster RS, Farfán-García AE, Gómez-Duarte OG. Enteroinvasive Escherichia coli O96:H19 is an Emergent Biofilm-Forming Pathogen. J Bacteriol 2022; 204:e0056221. [PMID: 35343774 PMCID: PMC9017384 DOI: 10.1128/jb.00562-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Enteroinvasive Escherichia coli (EIEC) is a diarrheagenic E. coli pathotype carrying a virulence plasmid that encodes a type III secretion system (TTSS) directly implicated in bacterial cell invasion. Since 2012, EIEC serotype O96:H19 has been recognized in Europe, Colombia, and most recently Uruguay. In addition to the invasion phenotype, the strains isolated from Colombian children with moderate-to-severe gastroenteritis had a strong biofilm formation phenotype, and as a result, they are referred to as biofilm-forming enteroinvasive E. coli (BF-EIEC). The objective of this study was to characterize the biofilm formation phenotype of the BF-EIEC O96:H19 strain 52.1 isolated from a child with moderate-to-severe gastroenteritis in Colombia. Random mutagenesis using Tn5 transposons identified 100 mutants unable to form biofilm; 20 of those had mutations within the pgaABCD operon. Site-directed mutagenesis of pgaB and pgaC confirmed the importance of these genes in N-acetylglucosamine-mediated biofilm formation. Both biofilm formation and TTSS-mediated host cell invasion were associated with host cell damage on the basis of cytotoxic assays comparing the wild type, invasion gene mutants, and biofilm formation mutants. Multilocus sequence typing-based phylogenetic analysis showed that BF-EIEC strain 52.1 does not cluster with classic EIEC serotype strains. Instead, BF-EIEC strain 52.1 clusters with EIEC serotype O96:H19 strains described in Europe and Uruguay. In conclusion, BF-EIEC O96:H19, an emerging pathogen associated with moderate-to-severe acute gastroenteritis in children under 5 years of age in Colombia, invades cells and has a strong biofilm formation capability. Both phenotypes are independently associated with in vitro cell cytotoxicity, and they may explain, at least in part, the higher disease severity reported in Europe and Latin America. IMPORTANCE Enteroinvasive Escherichia coli (EIEC), a close relative of Shigella, is implicated in dysenteric diarrhea. EIEC pathogenicity involves cell invasion mediated by effector proteins delivered by a type III secretion system (TTSS) that disrupt the cell cytoskeleton. These proteins and the VirF global regulator are encoded by a large (>200 kb) invasion plasmid (pINV). This study reports an emergent EIEC possessing a cell invasion phenotype and a strong polysaccharide matrix-mediated biofilm formation phenotype. Both phenotypes contribute to host cell cytotoxicity in vitro and may contribute to the severe disease reported among children and adults in Europe and Latin America.
Collapse
Affiliation(s)
- Junaid Iqbal
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Paediatric and Child Health, Medical College, Aga Khan University, Karachi, Pakistan
| | - Niharika Malviya
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer A. Gaddy
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Chengxian Zhang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andrew J. Seier
- International Enteric Vaccine Research Program, Division of Pediatric Infectious Diseases, State University of New York at Buffalo, Buffalo, New York, USA
| | - Kathryn P. Haley
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ryan S. Doster
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ana E. Farfán-García
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Oscar G. Gómez-Duarte
- International Enteric Vaccine Research Program, Division of Pediatric Infectious Diseases, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
28
|
Yin L, Cheng B, Tu J, Shao Y, Song X, Pan X, Qi K. YqeH contributes to avian pathogenic Escherichia coli pathogenicity by regulating motility, biofilm formation, and virulence. Vet Res 2022; 53:30. [PMID: 35436977 PMCID: PMC9014576 DOI: 10.1186/s13567-022-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a pathotype of extraintestinal pathogenic E. coli and one of the most serious infectious diseases of poultry. It not only causes great economic losses to the poultry industry, but also poses a serious threat to public health worldwide. Here, we examined the role of YqeH, a transcriptional regulator located at E. coli type III secretion system 2 (ETT2), in APEC pathogenesis. To investigate the effects of YqeH on APEC phenotype and virulence, we constructed a yqeH deletion mutant (APEC40-ΔyqeH) and a complemented strain (APEC40-CΔyqeH) of APEC40. Compared with the wild type (WT), the motility and biofilm formation of APEC40-ΔyqeH were significantly reduced. The yqeH mutant was highly attenuated in a chick infection model compared with WT, and showed severe defects in its adherence to and invasion of chicken embryo fibroblast DF-1 cells. However, the mechanisms underlying these phenomena were unclear. Therefore, we analyzed the transcriptional effects of the yqeH deletion to clarify the regulatory mechanisms of YqeH, and the role of YqeH in APEC virulence. The deletion of yqeH downregulated the transcript levels of several flagellum-, biofilm-, and virulence-related genes. Our results demonstrate that YqeH is involved in APEC pathogenesis, and the reduced virulence of APEC40-ΔyqeH may be related to its reduced motility and biofilm formation.
Collapse
|
29
|
Zhao D, Wang H, Li Z, Han S, Han C, Liu A. LC_Glucose-Inhibited Division Protein Is Required for Motility, Biofilm Formation, and Stress Response in Lysobacter capsici X2-3. Front Microbiol 2022; 13:840792. [PMID: 35369450 PMCID: PMC8969512 DOI: 10.3389/fmicb.2022.840792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Glucose-inhibited division protein (GidA) plays a critical role in the growth, stress response, and virulence of bacteria. However, how gidA may affect plant growth-promoting bacteria (PGPB) is still not clear. Our study aimed to describe the regulatory function of the gidA gene in Lysobacter capsici, which produces a variety of lytic enzymes and novel antibiotics. Here, we generated an LC_GidA mutant, MT16, and an LC_GidA complemented strain, Com-16, by plasmid integration. The deletion of LC_GidA resulted in an attenuation of the bacterial growth rate, motility, and biofilm formation of L. capsici. Root colonization assays demonstrated that the LC_GidA mutant showed reduced colonization of wheat roots. In addition, disruption of LC_GidA showed a clear diminution of survival in the presence of high temperature, high salt, and different pH conditions. The downregulated expression of genes related to DNA replication, cell division, motility, and biofilm formation was further validated by real-time quantitative PCR (RT–qPCR). Together, understanding the regulatory function of GidA is helpful for improving the biocontrol of crop diseases and has strong potential for biological applications.
Collapse
|
30
|
Tutelyan AV, Shlykova DS, Voskanyan SL, Gaponov AM, Pisarev VM. Molecular Epidemiology of Hypervirulent K. pneumoniae and Problems of Health-Care Associated Infections. Bull Exp Biol Med 2022; 172:507-522. [PMID: 35352244 PMCID: PMC8964242 DOI: 10.1007/s10517-022-05424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/25/2022]
Abstract
The review describes virulence factors of hypervirulent K. pneumoniae (hvKp) including genes determining its virulence and discusses their role in the development of health-care associated infections. The contribution of individual virulence factors and their combination to the development of the hypervirulence and the prospects of using these factors as biomarkers and therapeutic targets are described. Virulence factors of hvKp and "classical" K. pneumoniae strains (cKp) with no hypervirulence genes were compared. The mechanisms of biofilm formation by hvKp and high incidence of its antibiotic resistance are of particular importance for in health care institutions. Therefore, the development of methods for hvKp identification allowing early prevention of severe hvKp infection and novel approaches to abrogate its spreading are new challenges for epidemiology, infection diseases, and critical care medicine. New technologies including bacteriological and molecular studies make it possible to develop innovative strategies to diagnose and treat infection caused by hvKp. These include monitoring of both genetic biomarkers of hvKp and resistance plasmid that carry of virulence genes and antibiotic resistance genes, creation of immunological agents for the prevention and therapy of hvKp (vaccines, monoclonal antibodies) as well as personalized hvKp-specific phage therapies and pharmaceuticals enhancing the effect of antibiotics. A variety of approaches can reliably prepare our medicine for a new challenge: spreading of life-threatening health-care associated infections caused by antibiotic-resistant hvKp strains.
Collapse
Affiliation(s)
- A V Tutelyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - D S Shlykova
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Sh L Voskanyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - A M Gaponov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - V M Pisarev
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia.
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.
| |
Collapse
|
31
|
Bacteroides thetaiotaomicron uses a widespread extracellular DNase to promote bile-dependent biofilm formation. Proc Natl Acad Sci U S A 2022; 119:2111228119. [PMID: 35145026 PMCID: PMC8851478 DOI: 10.1073/pnas.2111228119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Biofilms are communities of surface-attached bacteria exhibiting biofilm-specific properties. Although anaerobic biofilms impact health, industry, and environment, they are mostly studied in aerobic bacterial species. Here, we studied biofilm formation in Bacteroides thetaiotaomicron, an anaerobic gut symbiont degrading diet sugars and contributing to gut maturation. Although B. thetaiotaomicron adhesion contributes to intestinal colonization, little is known about the determinants of its biofilm capacities. We identified that bile is a physiologically relevant gut signal inducing biofilm formation in B. thetaiotaomicron and other gut Bacteroidales. Moreover, we showed that, in contrast to the known scaffolding role of extracellular DNA, bile-dependent biofilm requires a DNase degrading matrix DNA, thus revealing a previously unrecognized factor contributing to the adhesion capacity of major gut symbionts. Bacteroides thetaiotaomicron is a gut symbiont that inhabits the mucus layer and adheres to and metabolizes food particles, contributing to gut physiology and maturation. Although adhesion and biofilm formation could be key features for B. thetaiotaomicron stress resistance and gut colonization, little is known about the determinants of B. thetaiotaomicron biofilm formation. We previously showed that the B. thetaiotaomicron reference strain VPI-5482 is a poor in vitro biofilm former. Here, we demonstrated that bile, a gut-relevant environmental cue, triggers the formation of biofilm in many B. thetaiotaomicron isolates and common gut Bacteroidales species. We determined that bile-dependent biofilm formation involves the production of the DNase BT3563 or its homologs, degrading extracellular DNA (eDNA) in several B. thetaiotaomicron strains. Our study therefore shows that, although biofilm matrix eDNA provides a biofilm-promoting scaffold in many studied Firmicutes and Proteobacteria, BT3563-mediated eDNA degradation is required to form B. thetaiotaomicron biofilm in the presence of bile.
Collapse
|
32
|
Yin L, Li Q, Wang Z, Shen X, Tu J, Shao Y, Song X, Qi K, Pan X. The Escherichia coli type III secretion system 2 Is involved in the biofilm formation and virulence of avian Pathogenic Escherichia coli. Comp Immunol Microbiol Infect Dis 2021; 79:101722. [PMID: 34823134 DOI: 10.1016/j.cimid.2021.101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
The Escherichia coli type III secretion system 2 (ETT2) is found in most pathogenic E. coli strains. Although many ETT2 gene clusters carry multiple genetic mutations or deletions, ETT2 is known to be involved in bacterial virulence. To date, no studies have been conducted on the role of ETT2 in the virulence of avian pathogenic Escherichia coli (APEC), which harbours ETT2. Thus, we deleted the ETT2 of APEC strain and evaluated the phenotypes and pathogenicities of the mutant. The results showed that deletion of ETT2 had no effect on APEC growth, but significantly promoted biofilm formation. In addition, as compared to the wild-type (WT) strain, the ETT2 deletion significantly promoted adherence to and invasion of DF-1 chicken fibroblasts and facilitated survival in the sera of specific-pathogen-free chickens. Analysis of the role of ETT2 in animal infection models demonstrated that the distribution of viable bacteria in the blood and organs of chicks infected with the ΔETT2 was significantly higher than those infected with WT. The results of RNA sequencing indicated that multiple genes involved in biofilm formation, lipopolysaccharide components, fimbrial genes and virulence effector proteins are regulated by ETT2. Collectively, these results implicated ETT2 is involved in the biofilm formation and pathogenicity of APEC.
Collapse
Affiliation(s)
- Lei Yin
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Qianwen Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zeping Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xuehuai Shen
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Xiaocheng Pan
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
33
|
Béchon N, Ghigo JM. Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev 2021; 46:6440158. [PMID: 34849798 DOI: 10.1093/femsre/fuab054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are communities of adhering bacteria that express distinct properties compared to their free-living counterparts, including increased antibiotic tolerance and original metabolic capabilities. Despite the potential impact of the biofilm lifestyle on the stability and function of the dense community of micro-organisms constituting the mammalian gut microbiota, the overwhelming majority of studies performed on biofilm formation by gut bacteria focused either on minor and often aerobic members of the community or on pathogenic bacteria. In this review, we discuss the reported evidence for biofilm-like structures formed by gut bacteria, the importance of considering the anaerobic nature of gut biofilms and we present the most recent advances on biofilm formation by Bacteroides, one of the most abundant genera of the human gut microbiota. Bacteroides species can be found attached to food particles and colonizing the mucus layer and we propose that Bacteroides symbionts are relevant models to probe the physiology of gut microbiota biofilms.
Collapse
Affiliation(s)
- Nathalie Béchon
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| |
Collapse
|
34
|
Poulin MB, Kuperman LL. Regulation of Biofilm Exopolysaccharide Production by Cyclic Di-Guanosine Monophosphate. Front Microbiol 2021; 12:730980. [PMID: 34566936 PMCID: PMC8461298 DOI: 10.3389/fmicb.2021.730980] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Many bacterial species in nature possess the ability to transition into a sessile lifestyle and aggregate into cohesive colonies, known as biofilms. Within a biofilm, bacterial cells are encapsulated within an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, nucleic acids, lipids, and other small molecules. The transition from planktonic growth to the biofilm lifecycle provides numerous benefits to bacteria, such as facilitating adherence to abiotic surfaces, evasion of a host immune system, and resistance to common antibiotics. As a result, biofilm-forming bacteria contribute to 65% of infections in humans, and substantially increase the energy and time required for treatment and recovery. Several biofilm specific exopolysaccharides, including cellulose, alginate, Pel polysaccharide, and poly-N-acetylglucosamine (PNAG), have been shown to play an important role in bacterial biofilm formation and their production is strongly correlated with pathogenicity and virulence. In many bacteria the biosynthetic machineries required for assembly of these exopolysaccharides are regulated by common signaling molecules, with the second messenger cyclic di-guanosine monophosphate (c-di-GMP) playing an especially important role in the post-translational activation of exopolysaccharide biosynthesis. Research on treatments of antibiotic-resistant and biofilm-forming bacteria through direct targeting of c-di-GMP signaling has shown promise, including peptide-based treatments that sequester intracellular c-di-GMP. In this review, we will examine the direct role c-di-GMP plays in the biosynthesis and export of biofilm exopolysaccharides with a focus on the mechanism of post-translational activation of these pathways, as well as describe novel approaches to inhibit biofilm formation through direct targeting of c-di-GMP.
Collapse
Affiliation(s)
- Myles B Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, United States
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
35
|
Breslawec AP, Wang S, Li C, Poulin MB. Anionic amino acids support hydrolysis of poly-β-(1,6)-N-acetylglucosamine exopolysaccharides by the biofilm dispersing glycosidase Dispersin B. J Biol Chem 2020; 296:100203. [PMID: 33334876 PMCID: PMC7949127 DOI: 10.1074/jbc.ra120.015524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The exopolysaccharide poly-β-(1→6)-N-acetylglucosamine (PNAG) is a major structural determinant of bacterial biofilms responsible for persistent and nosocomial infections. The enzymatic dispersal of biofilms by PNAG-hydrolyzing glycosidase enzymes, such as Dispersin B (DspB), is a possible approach to treat biofilm-dependent bacterial infections. The cationic charge resulting from partial de-N-acetylation of native PNAG is critical for PNAG-dependent biofilm formation. We recently demonstrated that DspB has increased catalytic activity on de-N-acetylated PNAG oligosaccharides, but the molecular basis for this increased activity is not known. Here, we analyze the role of anionic amino acids surrounding the catalytic pocket of DspB in PNAG substrate recognition and hydrolysis using a combination of site-directed mutagenesis, activity measurements using synthetic PNAG oligosaccharide analogs, and in vitro biofilm dispersal assays. The results of these studies support a model in which bound PNAG is weakly associated with a shallow anionic groove on the DspB protein surface with recognition driven by interactions with the -1 GlcNAc residue in the catalytic pocket. An increased rate of hydrolysis for cationic PNAG was driven, in part, by interaction with D147 on the anionic surface. Moreover, we identified that a DspB mutant with improved hydrolysis of fully acetylated PNAG oligosaccharides correlates with improved in vitro dispersal of PNAG-dependent Staphylococcus epidermidis biofilms. These results provide insight into the mechanism of substrate recognition by DspB and suggest a method to improve DspB biofilm dispersal activity by mutation of the amino acids within the anionic binding surface.
Collapse
Affiliation(s)
- Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Shaochi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Crystal Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Myles B Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
36
|
Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Triplicane Dwarakanathan H, Murugan D, Umashankar Y, Monk PN, Karunakaran E, Veeraraghavan B. The Influence of Biofilms on Carbapenem Susceptibility and Patient Outcome in Device Associated K. pneumoniae Infections: Insights Into Phenotype vs Genome-Wide Analysis and Correlation. Front Microbiol 2020; 11:591679. [PMID: 33381089 PMCID: PMC7767932 DOI: 10.3389/fmicb.2020.591679] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Klebsiella pneumoniae is one of the leading causes of nosocomial infections. Carbapenem-resistant K. pneumoniae are on the rise globally. The biofilm forming ability of K. pneumoniae further complicates patient management. There is still a knowledge gap on the association of biofilm formation with patient outcome and carbapenem susceptibility, which is investigated in present study. K. pneumoniae isolates from patients admitted in critical care units with catheters and ventilators were included. K. pneumoniae (n = 72) were subjected to 96-well plate biofilm formation assay followed by MBEC assay for subset of strong biofilm formers. Whole genome sequencing and a core genome phylogenetic analysis in comparison with global isolates were performed. Phenotypic analyses showed a positive correlation between biofilm formation and carbapenem resistance. Planktonic cells observed to be susceptible in vitro exhibited higher MICs in biofilm structure, hence MICs cannot be extrapolated for treatment. The biofilm forming ability had a significant association with morbidity/mortality. Infections by stronger biofilm forming pathogens significantly (p < 0.05) resulted in fewer “average days alive” for the patient (3.33 days) in comparison to those negative for biofilms (11.33 days). Phylogenetic analysis including global isolates revealed clear association of sequence types with genes for biofilm formation and carbapenem resistance. Known hypervirulent clone-ST23 with wcaG, magA, rmpA, rmpA2, and wzc with lack of mutation for hyper-capsulation might be poor biofilm formers. ST15, ST16, ST307, and ST258 (reported global high-risk clones) were wcaJ negative indicating the high potential of biofilm forming capacity. Genes wabG and treC for CPS, bcsA and pgaC for adhesins, luxS for quorum sensing were common in all clades in addition to genes for aerobactin (iutA), allantoin (allS), type I and III fimbriae (fimA, fimH, and mrkD) and pili (pilQ and ecpA). This study is the first of its kind to compare genetic features of antimicrobial resistance with a spectrum covering most of the genetic factors for K. pneumoniae biofilm. These results highlight the importance of biofilm screening to effectively manage nosocomial infections by K. pneumoniae. Further, data obtained on epidemiology and associations of biofilm and resistance genetic factors will serve to enhance our understanding on biofilm mechanisms in K. pneumoniae.
Collapse
Affiliation(s)
- Naveen Kumar Devanga Ragupathi
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), The University of Sheffield, Sheffield, United Kingdom.,Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom.,Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | | | - Dhivya Murugan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Yamini Umashankar
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Peter N Monk
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), The University of Sheffield, Sheffield, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Esther Karunakaran
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), The University of Sheffield, Sheffield, United Kingdom.,Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
37
|
Lin D, Chen K, Guo J, Ye L, Li R, Chan EWC, Chen S. Contribution of biofilm formation genetic locus, pgaABCD, to antibiotic resistance development in gut microbiome. Gut Microbes 2020; 12:1-12. [PMID: 33190591 PMCID: PMC7671071 DOI: 10.1080/19490976.2020.1842992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human gut microbiome is the presumed site in which the emergence and evolution of antibiotic-resistant organisms constantly take place. To delineate the genetic basis of resistance formation in gut microbiome strains, we investigated the changes in the subpopulation structure of Escherichia coli in rat intestine before and after antimicrobial treatment. We observed that antibiotic treatment was selected for an originally minor subpopulation E. coli carrying the biofilm-forming genetic locus pgaABCD and the toxin-antitoxin system HipAB. Such strains possessed dramatically enhanced ability to withstand the detrimental effects of antibiotics, becoming a dominant subspecies upon antibiotic treatment and eventually evolving into resistant mutants. In contrast, E. coli strains that did not carry pgaABCD and HipAB were eradicated upon antibiotic treatment. Our findings, therefore, suggested that genes encoding biofilm-forming ability played an important role in conferring specific gut E. coli strains the ability to evolve into resistant strains upon a prolonged antibiotic treatment, and that such strains may therefore be considered bacterial antibiotic resistance progenitor cells in the gut microbiome.
Collapse
Affiliation(s)
- Dachuan Lin
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology Biology, School of Medicine, Shenzhen University, Shenzhen, China,State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jiubiao Guo
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology Biology, School of Medicine, Shenzhen University, Shenzhen, China,State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Edward Wai Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong,CONTACT : Sheng Chen Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, Room B1730, Yeung Kin Man Academic Building (Nam Shan Chuen Entrance), City University of Hong Kong, Tat Chee Road, Kowloon, Hong Kong
| |
Collapse
|
38
|
Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020; 18:3324-3334. [PMID: 33240473 PMCID: PMC7674160 DOI: 10.1016/j.csbj.2020.10.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
PIA is a key extracellular matrix component in staphylococci and other bacteria. PIA is a cationic, partially deacetylated N-acetylglucosamine polymer. PIA has a major role in bacterial biofilms and biofilm-associated infection.
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
Affiliation(s)
- Hoai T T Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA.,School of Biotechnology, International University, Vietnam National University of Ho Chi Minh City, Khu Pho 6, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Thuan H Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| |
Collapse
|
39
|
Hu Y, Anes J, Devineau S, Fanning S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog Dis 2020; 18:63-84. [PMID: 33124929 DOI: 10.1089/fpd.2020.2847] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae is considered an opportunistic pathogen, constituting an ongoing health concern for immunocompromised patients, the elderly, and neonates. Reports on the isolation of K. pneumoniae from other sources are increasing, many of which express multidrug-resistant (MDR) phenotypes. Three phylogroups were identified based on nucleotide differences. Niche environments, including plants, animals, and humans appear to be colonized by different phylogroups, among which KpI (K. pneumoniae) is commonly associated with human infection. Infections with K. pneumoniae can be transmitted through contaminated food or water and can be associated with community-acquired infections or between persons and animals involved in hospital-acquired infections. Increasing reports are describing detections along the food chain, suggesting the possibility exists that this could be a hitherto unexplored reservoir for this opportunistic bacterial pathogen. Expression of MDR phenotypes elaborated by these bacteria is due to the nature of various plasmids carrying antimicrobial resistance (AMR)-encoding genes, and is a challenge to animal, environmental, and human health alike. Raman spectroscopy has the potential to provide for the rapid identification and screening of antimicrobial susceptibility of Klebsiella isolates. Moreover, hypervirulent isolates linked with extraintestinal infections express phenotypes that may support their niche adaptation. In this review, the prevalence, reservoirs, AMR, Raman spectroscopy detection, and pathogenicity of K. pneumoniae are summarized and various extraintestinal infection pathways are further narrated to extend our understanding of its adaptation and survival ability in reservoirs, and associated disease risks.
Collapse
Affiliation(s)
- Yujie Hu
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - João Anes
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
40
|
The Great ESKAPE: Exploring the Crossroads of Bile and Antibiotic Resistance in Bacterial Pathogens. Infect Immun 2020; 88:IAI.00865-19. [PMID: 32661122 DOI: 10.1128/iai.00865-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Throughout the course of infection, many pathogens encounter bactericidal conditions that threaten the viability of the bacteria and impede the establishment of infection. Bile is one of the most innately bactericidal compounds present in humans, functioning to reduce the bacterial burden in the gastrointestinal tract while also aiding in digestion. It is becoming increasingly apparent that pathogens successfully resist the bactericidal conditions of bile, including bacteria that do not normally cause gastrointestinal infections. This review highlights the ability of Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter (ESKAPE), and other enteric pathogens to resist bile and how these interactions can impact the sensitivity of bacteria to various antimicrobial agents. Given that pathogen exposure to bile is an essential component to gastrointestinal transit that cannot be avoided, understanding how bile resistance mechanisms align with antimicrobial resistance is vital to our ability to develop new, successful therapeutics in an age of widespread and increasing antimicrobial resistance.
Collapse
|
41
|
Wang S, Breslawec AP, Li C, Poulin MB. A Colorimetric Assay to Enable High-Throughput Identification of Biofilm Exopolysaccharide-Hydrolyzing Enzymes. Chemistry 2020; 26:10719-10723. [PMID: 32589289 DOI: 10.1002/chem.202002475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/25/2020] [Indexed: 11/06/2022]
Abstract
Glycosidase enzymes that hydrolyze the biofilm exopolysaccharide poly-β-(1→6)-N-acetylglucosamine (PNAG) are critical tools to study biofilm and potential therapeutic biofilm dispersal agents. Function-driven metagenomic screening is a powerful approach for the discovery of new glycosidase but requires sensitive assays capable of distinguishing between the desired enzyme and functionally related enzymes. Herein, we report the synthesis of a colorimetric PNAG disaccharide analogue whose hydrolysis by PNAG glycosidases results in production of para-nitroaniline that can be continuously monitored at 410 nm. The assay is specific for enzymes capable of hydrolyzing PNAG and not related β-hexosaminidase enzymes with alternative glycosidic linkage specificities. This analogue enabled development of a continuous colorimetric assay for detection of PNAG hydrolyzing enzyme activity in crude E. coli cell lysates and suggests that this disaccharide probe will be critical for establishing the functional screening of metagenomic DNA libraries.
Collapse
Affiliation(s)
- Shaochi Wang
- Department of Chemistry and Biochemistry, University of Maryland College Park, 8051 Regents Drive, College Park, MD 20742, USA
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland College Park, 8051 Regents Drive, College Park, MD 20742, USA
| | - Crystal Li
- Department of Chemistry and Biochemistry, University of Maryland College Park, 8051 Regents Drive, College Park, MD 20742, USA
| | - Myles B Poulin
- Department of Chemistry and Biochemistry, University of Maryland College Park, 8051 Regents Drive, College Park, MD 20742, USA
| |
Collapse
|
42
|
D'Apolito D, Arena F, Conte V, De Angelis LH, Di Mento G, Carreca AP, Cuscino N, Russelli G, Iannolo G, Barbera F, Pasqua S, Monaco F, Cardinale F, Rossolini GM, Conaldi PG, Douradinha B. Phenotypical and molecular assessment of the virulence potential of KPC-3-producing Klebsiella pneumoniae ST392 clinical isolates. Microbiol Res 2020; 240:126551. [PMID: 32652494 DOI: 10.1016/j.micres.2020.126551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium of clinical importance, due to its resistance to several antibiotic classes. We have identified 4 clinical isolates of K. pneumoniae sequence type (ST) 392 KPC-3-producing strains from patients at the Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS-ISMETT), a Southern Italian transplantation health facility, during a routine surveillance for carbapenemase-producing Enterobacterales from in-house clinical samples. Since those were among, to the best of our knowledge, the first KPC-producing K. pneumoniae ST392 isolated in Europe, we assessed their virulence potential, to understand if this particular ST can become an endemic clinical threat. ST392 isolates were investigated to assess their virulence potential, namely resistance to human sera, formation of abiotic biofilms, adhesion to biotic surfaces, exopolysaccharide production and in vivo pathogenesis in the wax moth Galleria mellonella animal model. ST392-belonging strains were highly resistant to human sera. These strains also have a high capacity to form abiotic biofilms and high levels of adhesion to the human epithelial colorectal adenocarcinoma HT-29 cell line. An increase of transcriptional levels of genes involved in serum resistance (aroE and traT) and adhesion (pgaA) was observed when compared with the Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603 reference strain. Infection of G. mellonella larvae with ST392 clinical isolates showed that the latter were not highly pathogenic in this model. Together, our results indicate that ST392 isolates have the potential to become a strain of clinical relevance, especially in health settings where patients are immunosuppressed, e.g., transplant recipients.
Collapse
Affiliation(s)
| | - Fabio Arena
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Foggia, Italy; IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Viola Conte
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | - Gian Maria Rossolini
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Florence, Italy; SOD Microbiologia e Virologia, Azienda Ospedaliera Universitaria Careggi Florence, Italy
| | | | - Bruno Douradinha
- Fondazione Ri.MED, Palermo, Italy; IRCCS-ISMETT, Palermo, Italy.
| |
Collapse
|
43
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Chen L, Wilksch JJ, Liu H, Zhang X, Torres VVL, Bi W, Mandela E, Cao J, Li J, Lithgow T, Zhou T. Investigation of LuxS-mediated quorum sensing in Klebsiella pneumoniae. J Med Microbiol 2020; 69:402-413. [PMID: 32223838 PMCID: PMC7377169 DOI: 10.1099/jmm.0.001148] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Autoinducer-2 (AI-2) quorum sensing is a bacterial communication system that responds to cell density. The system requires luxS activity to produce AI-2, which can regulate gene expression and processes such as biofilm formation. Aim To investigate the role of luxS in biofilm formation and gene expression in the nosocomial pathogen Klebsiella pneumoniae. Methodology A ΔluxS gene deletion was made in K. pneumoniae KP563, an extensively drug-resistant isolate. AI-2 production was assessed in wild-type and ΔluxS strains grown in media supplemented with different carbohydrates. Potential roles of luxS in biofilm formation were investigated using a microtiter plate biofilm assay and scanning electron microscopy. Quantitative RT-PCR evaluated the expression of lipopolysaccharide (wzm and wbbM), polysaccharide (pgaA), and type 3 fimbriae (mrkA) synthesis genes in wild-type and ΔluxS mutant biofilm extracts. Results AI-2 production was dependent on the presence of luxS. AI-2 accumulation was highest during early stationary phase in media supplemented with glucose, sucrose or glycerol. Changes in biofilm architecture were observed in the ΔluxS mutant, with less surface coverage and reduced macrocolony formation; however, no differences in biofilm formation between the wild-type and ΔluxS mutant using a microtiter plate assay were observed. In ΔluxS mutant biofilm extracts, the expression of wzm was down-regulated, and the expression of pgaA, which encodes a porin for poly-β−1,6-N-acetyl-d-glucosamine (PNAG) polysaccharide secretion, was upregulated. Conclusion Relationships among AI-2-mediated quorum sensing, biofilm formation and gene expression of outer-membrane components were identified in K. pneumoniae. These inter-connected processes could be important for bacterial group behaviour and persistence.
Collapse
Affiliation(s)
- Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Jonathan J Wilksch
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
| | - Xiaoxiao Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Von V L Torres
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Wenzi Bi
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Eric Mandela
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| |
Collapse
|
45
|
Hamam SS, El Kholy RM, Zaki MES. Study of Various Virulence Genes, Biofilm Formation and Extended-Spectrum β-lactamase Resistance in Klebsiella pneumoniae Isolated from Urinary Tract Infections. Open Microbiol J 2019; 13:249-255. [DOI: 10.2174/1874285801913010249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023] Open
Abstract
Objective:
The aims of the current study were to evaluate the capacity of K. pneumoniae isolated from hospital-acquired urinary tract infection to form biofilm, the relation of this capacity to various virulence genes and the prevalence of Extended Spectrum β-lactamases (ESBL) among these isolates by phenotypic and genotypic methods.
Material and Methods:
The study included 100 non-duplicate strains of K. pneumoniae isolated from 100 different urine samples from patients with hospital-acquired urinary tract infection. The isolated strains were studied for biofilm formation, ESBL production by phenotypic methods. Molecular studies were applied for the detection of ESβLs genes blaTEM, blaSHV, blaCTX-M and for detection of virulence genes fimH, uge, rmpA, mag A, wzy, kfa and aerobactin genes.
Result:
The majority of the isolates had the capacity to form a biofilm (81%), with ESBL prevalence rate 41%. The most prevalent gene among ESBL producing K. pneumoniae was blaCTX-M (73.2%) followed by blaSHV (53.6%) and blaTEM (51.2%). Among the virulence genes studied in K. pneumoniae isolates, the most prevalent gene was fimH (76%), uge (70%). There was significant association between ESBL production, and resistance to amikacin, cefepime, ceftazidime, gentamicin, imipenem and meropenem and biofilm production in K. pneumoniae isolates. There was significant association between blaCTX-M, blaSHV, fimH, mag, kfa, wzy, rmpA and aerobactin and biofilm production in K. pneumoniae.
Conclusion:
The present study highlights the prevalence of virulence genes among biofilm-forming strains of K. pneumoniae isolated from hospital-acquired urinary tract infection. Moreover, there was association between biofilm formation and ESBL production. Further studies are required to elucidate the clinical impact of the association of these different mechanisms.
Collapse
|
46
|
Wang S, Breslawec AP, Alvarez E, Tyrlik M, Li C, Poulin MB. Differential Recognition of Deacetylated PNAG Oligosaccharides by a Biofilm Degrading Glycosidase. ACS Chem Biol 2019; 14:1998-2005. [PMID: 31430121 DOI: 10.1021/acschembio.9b00467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exopolysaccharides consisting of partially de-N-acetylated poly-β-d-(1→6)-N-acetyl-glucosamine (dPNAG) are key structural components of the biofilm extracellular polymeric substance of both Gram-positive and Gram-negative human pathogens. De-N-acetylation is required for the proper assembly and function of dPNAG in biofilm development suggesting that different patterns of deacetylation may be preferentially recognized by proteins that interact with dPNAG, such as Dispersin B (DspB). The enzymatic degradation of dPNAG by the Aggregatibacter actinomycetemcomitans native β-hexosaminidase enzyme DspB plays a role in biofilm dispersal. To test the role of substrate de-N-acetylation on substrate recognition by DspB, we applied an efficient preactivation-based one-pot glycosylation approach to prepare a panel of dPNAG trisaccharide analogs with defined acetylation patterns. These analogs served as effective DspB substrates, and the rate of hydrolysis was dependent on the specific substrate de-N-acetylation pattern, with glucosamine (GlcN) located +2 from the site of cleavage being preferentially hydrolyzed. The product distributions support a primarily exoglycosidic cleavage activity following a substrate assisted cleavage mechanism, with the exception of substrates containing a nonreducing GlcN that were cleaved endo leading to the exclusive formation of a nonreducing disaccharide product. These observations provide critical insight into the substrate specificity of dPNAG specific glycosidase that can help guide their design as biocatalysts.
Collapse
Affiliation(s)
- Shaochi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Alexandra P. Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Elaine Alvarez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Michal Tyrlik
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Crystal Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Myles B. Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
47
|
Ostapska H, Howell PL, Sheppard DC. Deacetylated microbial biofilm exopolysaccharides: It pays to be positive. PLoS Pathog 2018; 14:e1007411. [PMID: 30589915 PMCID: PMC6307706 DOI: 10.1371/journal.ppat.1007411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Hanna Ostapska
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases in Global Health Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - P. Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (PLH); (DCS)
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases in Global Health Program, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (PLH); (DCS)
| |
Collapse
|
48
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
49
|
Pulmonary Surfactant Promotes Virulence Gene Expression and Biofilm Formation in Klebsiella pneumoniae. Infect Immun 2018; 86:IAI.00135-18. [PMID: 29712730 DOI: 10.1128/iai.00135-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The interactions between Klebsiella pneumoniae and the host environment at the site of infection are largely unknown. Pulmonary surfactant serves as an initial point of contact for inhaled bacteria entering the lung and is thought to contain molecular cues that aid colonization and pathogenesis. To gain insight into this ecological transition, we characterized the transcriptional response of K. pneumoniae MGH 78578 to purified pulmonary surfactant. This work revealed changes within the K. pneumoniae transcriptome that likely contribute to host colonization, adaptation, and virulence in vivo Notable transcripts expressed under these conditions include genes involved in capsule synthesis, lipopolysaccharide modification, antibiotic resistance, biofilm formation, and metabolism. In addition, we tested the contributions of other surfactant-induced transcripts to K. pneumoniae survival using engineered isogenic KPPR1 deletion strains in a murine model of acute pneumonia. In these infection studies, we identified the MdtJI polyamine efflux pump and the ProU glycine betaine ABC transporter to be significant mediators of K. pneumoniae survival within the lung and confirmed previous evidence for the importance of de novo leucine synthesis to bacterial survival during infection. Finally, we determined that pulmonary surfactant promoted type 3 fimbria-mediated biofilm formation in K. pneumoniae and identified two surfactant constituents, phosphatidylcholine and cholesterol, that drive this response. This study provides novel insight into the interactions occurring between K. pneumoniae and the host at an important infection site and demonstrates the utility of purified lung surfactant preparations for dissecting host-lung pathogen interactions in vitro.
Collapse
|
50
|
Little DJ, Pfoh R, Le Mauff F, Bamford NC, Notte C, Baker P, Guragain M, Robinson H, Pier GB, Nitz M, Deora R, Sheppard DC, Howell PL. PgaB orthologues contain a glycoside hydrolase domain that cleaves deacetylated poly-β(1,6)-N-acetylglucosamine and can disrupt bacterial biofilms. PLoS Pathog 2018; 14:e1006998. [PMID: 29684093 PMCID: PMC5933820 DOI: 10.1371/journal.ppat.1006998] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/03/2018] [Accepted: 03/29/2018] [Indexed: 11/24/2022] Open
Abstract
Poly-β(1,6)-N-acetyl-D-glucosamine (PNAG) is a major biofilm component of many pathogenic bacteria. The production, modification, and export of PNAG in Escherichia coli and Bordetella species require the protein products encoded by the pgaABCD operon. PgaB is a two-domain periplasmic protein that contains an N-terminal deacetylase domain and a C-terminal PNAG binding domain that is critical for export. However, the exact function of the PgaB C-terminal domain remains unclear. Herein, we show that the C-terminal domains of Bordetella bronchiseptica PgaB (PgaBBb) and E. coli PgaB (PgaBEc) function as glycoside hydrolases. These enzymes hydrolyze purified deacetylated PNAG (dPNAG) from Staphylococcus aureus, disrupt PNAG-dependent biofilms formed by Bordetella pertussis, Staphylococcus carnosus, Staphylococcus epidermidis, and E. coli, and potentiate bacterial killing by gentamicin. Furthermore, we found that PgaBBb was only able to hydrolyze PNAG produced in situ by the E. coli PgaCD synthase complex when an active deacetylase domain was present. Mass spectrometry analysis of the PgaB-hydrolyzed dPNAG substrate showed a GlcN-GlcNAc-GlcNAc motif at the new reducing end of detected fragments. Our 1.76 Å structure of the C-terminal domain of PgaBBb reveals a central cavity within an elongated surface groove that appears ideally suited to recognize the GlcN-GlcNAc-GlcNAc motif. The structure, in conjunction with molecular modeling and site directed mutagenesis led to the identification of the dPNAG binding subsites and D474 as the probable catalytic acid. This work expands the role of PgaB within the PNAG biosynthesis machinery, defines a new glycoside hydrolase family GH153, and identifies PgaB as a possible therapeutic agent for treating PNAG-dependent biofilm infections. From plaque on teeth to infections in the lungs of cystic fibrosis patients, biofilms are a serious health concern and difficult to eradicate. One of the key building blocks involved in biofilm formation are polymeric sugar compounds that are secreted by the bacteria. Our work focuses on the biopolymer poly-β(1,6)-N-acetyl-D-glucosamine (PNAG), which is produced by numerous pathogenic organisms. Deacetylation of PNAG by the N-terminal domain of PgaB is a critical step in polymer maturation and is required for the formation of robust biofilms. Herein, we show that the C-terminal domain of PgaB is a glycoside hydrolase active on partially deacetylated PNAG, and that the enzyme disrupts PNAG-dependent biofilms and potentiates killing by antibiotics. Only deacetylated PNAG could be cleaved, suggesting that PgaB deacetylates and hydrolyses the polymer in sequential order. Analyzing the chemical structure of the cleaved dPNAG fragments revealed a distinct motif of sugar units. Structural and functional studies identify key amino acids positioned in an elongated polymer-binding groove that potentially recognize the sugar motif during cleavage. Our study provides further insight into the mechanism of periplasmic PNAG modification, and suggests PgaB could be utilized as a therapeutic agent to eliminate biofilms.
Collapse
Affiliation(s)
- Dustin J Little
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Roland Pfoh
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - François Le Mauff
- Departments of Medicine and of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Natalie C Bamford
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Christina Notte
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Perrin Baker
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Manita Guragain
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.,Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Howard Robinson
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY, United States of America
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.,Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Donald C Sheppard
- Departments of Medicine and of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|