1
|
Sharma D, Gautam S, Singh S, Srivastava N, Khan AM, Bisht D. Unveiling the nanoworld of antimicrobial resistance: integrating nature and nanotechnology. Front Microbiol 2025; 15:1391345. [PMID: 39850130 PMCID: PMC11754303 DOI: 10.3389/fmicb.2024.1391345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
A significant global health crisis is predicted to emerge due to antimicrobial resistance by 2050, with an estimated 10 million deaths annually. Increasing antibiotic resistance necessitates continuous therapeutic innovation as conventional antibiotic treatments become increasingly ineffective. The naturally occurring antibacterial, antifungal, and antiviral compounds offer a viable alternative to synthetic antibiotics. This review presents bacterial resistance mechanisms, nanocarriers for drug delivery, and plant-based compounds for nanoformulations, particularly nanoantibiotics (nAbts). Green synthesis of nanoparticles has emerged as a revolutionary approach, as it enhances the effectiveness, specificity, and transport of encapsulated antimicrobials. In addition to minimizing systemic side effects, these nanocarriers can maximize therapeutic impact by delivering the antimicrobials directly to the infection site. Furthermore, combining two or more antibiotics within these nanoparticles often exhibits synergistic effects, enhancing the effectiveness against drug-resistant bacteria. Antimicrobial agents are routinely obtained from secondary metabolites of plants, including essential oils, phenols, polyphenols, alkaloids, and others. Integrating plant-based antibacterial agents and conventional antibiotics, assisted by suitable nanocarriers for codelivery, is a potential solution for addressing bacterial resistance. In addition to increasing their effectiveness and boosting the immune system, this synergistic approach provides a safer and more effective method of tackling future bacterial infections.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sakshi Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Abdul Mabood Khan
- Division of Clinical Trials and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
2
|
Sharma R, Nath PC, Das P, Rustagi S, Sharma M, Sridhar N, Hazarika TK, Rana P, Nayak PK, Sridhar K. Essential oil-nanoemulsion based edible coating: Innovative sustainable preservation method for fresh/fresh-cut fruits and vegetables. Food Chem 2024; 460:140545. [PMID: 39047488 DOI: 10.1016/j.foodchem.2024.140545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Utilizing plant-based sources for the preservation of fresh and fresh-cut fruits and vegetables offers a natural and chemical-free method. However, the inherent instability of plant bioactive compounds underscores the necessity for encapsulation techniques. Essential oil-based nanoemulsions (EO-NEs) stand out among food additives due to their distinctive antibacterial and antioxidant properties. This review delves into recent advancements in the application of EO-NEs as edible coatings for fresh and fresh-cut produce. It examines the efficacy of EO-NEs in enhancing the preservation of fruits and vegetables by harnessing their bioactive compounds for antibacterial, antifungal, and antioxidant activities. Additionally, the review accentuates the efficacy of EO-NEs in inhibiting biofilm formation on fruits and vegetables. It reveals that coatings derived from plant-source nanoemulsions exhibit exceptional mechanical, optical, and microstructural qualities, as well as superior water barrier properties. In contrast to conventional emulsions, nanocoatings facilitate the gradual and controlled release of antimicrobial and antioxidant compounds during food storage. This feature enhances bioactivity, extends shelf life, and enhances the nutritional profile of products. By preserving and protecting shelf stability, EO-NEs contribute to the maintenance of vegetable freshness. Nonetheless, ensuring their commercial viability necessitates additional research into the toxicity of EO-based nanoemulsions.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Chinniyampalayam, 641062, Coimbatore, India
| | - Pinku Chandra Nath
- Food Science and Technology Division, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua, 793101, India
| | - Puja Das
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Natarajan Sridhar
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Chinniyampalayam, 641062, Coimbatore, India
| | - Tridip Kumar Hazarika
- Department of Horticulture, Aromatic, and Medicinal Plants, Mizoram University, Mizoram 796004, India
| | - Priya Rana
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
3
|
Ashraf M, El-Sawy HS, El Zaafarany GM, Abdel-Mottaleb MMA. Eucalyptus oil nanoemulsion for enhanced skin deposition of fluticasone propionate in psoriatic plaques: A combinatorial anti-inflammatory effect to suppress implicated cytokines. Arch Pharm (Weinheim) 2024:e2400557. [PMID: 39449230 DOI: 10.1002/ardp.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease that affects patients' quality of life. This study aimed to enhance the efficacy of topical application of fluticasone propionate (FP) using a eucalyptus oil-based nanoemulsion, an oil possessing anti-inflammatory activity and extracted from the leaves, fruits, and buds of Eucalyptus globulus or Eucalyptus maidenii, to improve the skin deposition of FP and aid its anti-inflammatory effect. Box-Behnken design was employed to optimize NE formulations, which were characterized for globule size, zeta potential, polydispersity index, rheological behavior, microscopic morphology, ex vivo skin permeation/deposition, and in vivo efficacy using imiquimod-induced psoriatic lesions. The optimized formulation depicted a droplet size of 188 ± 22.4 nm, a zeta potential of -17.63 ± 1.66 mV, and a viscosity of 204.9 mPa s. In addition to the increased FP retention in different skin layers caused by the NE and the reduced PASI score compared to the marketed cream, the levels of inflammatory cytokines IL-1α, IL-6, IL17a were markedly lowered, indicating the improved anti-psoriatic curable efficacy of the optimized formulation in comparison to the FP-marketed product.
Collapse
Affiliation(s)
- Mohamed Ashraf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacy, Al-Kut University College, Kut, Wasit, Iraq
| | - Ghada M El Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Batista DG, Sganzerla WG, da Silva LR, Vieira YGS, Almeida AR, Dominguini D, Ceretta L, Pinheiro AC, Bertoldi FC, Becker D, Hotza D, Nunes MR, da Rosa CG, Masiero AV. Antimicrobial and Cytotoxic Potential of Eucalyptus Essential Oil-Based Nanoemulsions for Mouthwashes Application. Antibiotics (Basel) 2024; 13:942. [PMID: 39452209 PMCID: PMC11504657 DOI: 10.3390/antibiotics13100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Objective: An eucalyptus essential oil-based nanoemulsion was produced and evaluated for its antimicrobial properties against Streptococcus mutans and its cytotoxicity in the surface mucous cells of rabbits. Methods: The essential oil-based nanoemulsion was synthesized with two species of eucalyptus-Eucalyptus citriodora and Eucalyptus globulus-followed by physicochemical characterization and the determination of antimicrobial activity and cell viability. Subsequently, the mouthwash formulations (fluoride and fluoride-free) were functionalized with the nanoemulsion, and their in vitro antimicrobial actions were evaluated against S. mutans. Results: The nanoemulsion presented an average particle size of around 100 nm, a polydispersity index close to 0.3, a zeta potential between -19 and -30 mV, a pH close to 7, a spherical shape, and a cell viability above 50%. The antimicrobial activity analysis showed that the nanoemulsion was effective in the control of S. mutans. The mouthwashes functionalized with the nanoemulsion also presented bacteriostatic and bactericidal properties. Conclusions: The bio-based material produced with eucalyptus essential oil presented adequate physicochemical characteristics, with the potential to be used as an innovative material in preventive dentistry, contributing to the maintenance of oral and systemic health.
Collapse
Affiliation(s)
- Dione Glauco Batista
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
| | | | - Lysa Ribeiro da Silva
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
| | - Yasmin Gabriele Schmitt Vieira
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
| | - Aline R. Almeida
- Laboratory of Plasmas, Films, and Surfaces, Santa Catarina State University (UDESC), Joinville 89219-710, SC, Brazil; (A.R.A.); (D.B.)
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 88806-000, SC, Brazil;
| | - Luciane Ceretta
- Graduate Program in Collective Health, University of Southern Santa Catarina (UNESC), Criciúma 88806-000, SC, Brazil;
| | - Adriana Castro Pinheiro
- Center of Chemical, Pharmaceuticals, and Food Sciences, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil;
| | - Fabiano Cleber Bertoldi
- Agricultural Research and Rural Extension Company of Santa Catarina (EPAGRI), Itajaí 88318-112, SC, Brazil;
| | - Daniela Becker
- Laboratory of Plasmas, Films, and Surfaces, Santa Catarina State University (UDESC), Joinville 89219-710, SC, Brazil; (A.R.A.); (D.B.)
| | - Dachamir Hotza
- Graduate Program in Chemical Engineering (PosENQ), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil; (D.H.); (M.R.N.)
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Michael Ramos Nunes
- Graduate Program in Chemical Engineering (PosENQ), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil; (D.H.); (M.R.N.)
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
- Federal Institute of Santa Catarina, Lages 88506-400, SC, Brazil
| | - Cleonice Gonçalves da Rosa
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
| | - Anelise Viapiana Masiero
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
- Department of Endodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Dakhlaoui S, Bourgou S, Zar Kalai F, Hammami M, Essafi M, Jallouli S, Msaada K. Essential oil and its nanoemulsion of Eucalyptus cladocalyx: chemical characterization, antioxidant, anti-inflammatory and anticancer activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2899-2912. [PMID: 37972122 DOI: 10.1080/09603123.2023.2280119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Formulating a nanoemulsion (NE) of essential oil (EO) could enhance its efficiency while requiring lower concentrations. Eucalyptus cladocalyx F. Muell EO was rich in monoterpenes hydrocarbons. NE was prepared and the effect of surfactant (Tween 20, 40 and 80) and shearing time were investigated. The results showed that the best NE was formed using Tween 80 after 25 min of emulsification. Small droplet size (40 nm), low polydispersity index PDI (0.49), and stable zeta potential highlighted the excellent NE stability which was tested under storage conditions for 4 months. The results showed that the antioxidant and anticancer activities of NE were enhanced compared to free EO. Furthermore, NE and EO exhibited high anti-inflammatory effects by inhibiting nitric oxide (NO), Interleukin 6 (IL-6), and tumor necrosis factors alpha (TNF-α) production in liposaccharides (LPS)-induced RAW264.7 cells. In conclusion, a stable Eucalyptus cladocalyx-NE was produced, with improved biological activities.
Collapse
Affiliation(s)
- Sarra Dakhlaoui
- College of Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| | - Soumaya Bourgou
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| | - Feten Zar Kalai
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Majdi Hammami
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| | - Makram Essafi
- Laboratory Transmission, Control and Immunobiology of Infections (LTCII, LR11 IPT02), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Slim Jallouli
- Laboratory of Bioactive Substances (LSBA), Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| |
Collapse
|
6
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
7
|
Shariati A, Noei M, Askarinia M, Khoshbayan A, Farahani A, Chegini Z. Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: a helpful promise for managing biofilm community. Front Pharmacol 2024; 15:1350391. [PMID: 38628638 PMCID: PMC11019022 DOI: 10.3389/fphar.2024.1350391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Pseudomonas aeruginosa biofilm is a community of bacteria that adhere to live or non-living surfaces and are encapsulated by an extracellular polymeric substance. Unlike individual planktonic cells, biofilms possess a notable inherent resistance to sanitizers and antibiotics. Overcoming this resistance is a substantial barrier in the medical and food industries. Hence, while antibiotics are ineffective in eradicating P. aeruginosa biofilm, scientists have explored alternate strategies, including the utilization of natural compounds as a novel treatment option. To this end, curcumin, carvacrol, thymol, eugenol, cinnamaldehyde, coumarin, catechin, terpinene-4-ol, linalool, pinene, linoleic acid, saponin, and geraniol are the major natural compounds extensively utilized for the management of the P. aeruginosa biofilm community. Noteworthy, the exact interaction of natural compounds and the biofilm of this bacterium is not elucidated yet; however, the interference with the quorum sensing system and the inhibition of autoinducer production in P. aeruginosa are the main possible mechanisms. Noteworthy, the use of different drug platforms can overcome some drawbacks of natural compounds, such as insolubility in water, limited oral bioavailability, fast metabolism, and degradation. Additionally, drug platforms can deliver different antibiofilm agents simultaneously, which enhances the antibiofilm potential of natural compounds. This article explores many facets of utilizing natural compounds to inhibit and eradicate P. aeruginosa biofilms. It also examines the techniques and protocols employed to enhance the effectiveness of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Askarinia
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Guo H, Lan T, Qian J, Luo Y, Tian X, Yin H, Xu H, Cui H, Shen X, Guo Q. A Versatile Nanoemulsion of Antibiotic and Eucalyptol with Synergistic Effects Against E. Coli Infected Urocystitis. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 03/18/2025]
Abstract
AbstractThe extensive use and misuse of antibiotics have resulted in bacterial resistance becoming increasing commonplace. Essential oils (EOs) are known to possess antimicrobial properties and therefore have many potential practical applications. However, the default of hydrophobicity, chemical instability, and volatility limit scope of application. Encapsulation of EOs in colloidal delivery systems can mitigate these challenges and allow for greater efficacy. A homogenous nanoemulsion (HS15‐CE) containing a combination of eucalyptol (Euc) and cefradine (Cef) is developed to explore its synergistic effect on antibacterial activity and potentially reduce the amount of antibiotic required to treat bacterial infections. The HS15‐CE nanoemulsion displays a synergistic effect on the inhibition of Escherichia coli (E. coli) growth in vitro, significantly decreasing the minimum inhibitory concentration (MIC) by eight times. The ex vivo imaging reveals high accumulation concentrations and long retention in bladders. Moreover, the nanoemulsion alleviates the E. coli induced cystitis infection, as evidenced by decreased bacterial colonies in urine, reduced inflammatory cytokines, and increased expression of tight junctional protein ZO‐1. These findings suggest the potential of the HS15‐CE nanoemulsion in providing a synergistic effect for the treatment of bacterial urocystitis.
Collapse
Affiliation(s)
- Honglei Guo
- Department of Nephrology the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital) Nanjing 210029 China
| | - Tianyu Lan
- College of Ethnic Medicine Guizhou Minzu University Guiyang Guizhou Province 550025 China
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| | - Jun Qian
- Department of Nephrology the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital) Nanjing 210029 China
| | - Yongjun Luo
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| | - Xinxin Tian
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| | - Hao Yin
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou 215101 China
| | - Hui Xu
- Kuang Yaming Honors School, Nanjing University Nanjing 210023 China
| | - Hongqing Cui
- Department of Nephrology the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital) Nanjing 210029 China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of MediEucal Plants School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guizhou 561113 China
| |
Collapse
|
9
|
Cho MY, Lee ES, Jung HI, Kim BI. Anti-biofilm activity of a novel nanoemulsion containing Curcuma xanthorrhiza oil. J Dent 2023; 137:104647. [PMID: 37536430 DOI: 10.1016/j.jdent.2023.104647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVES We aimed to solubilize Curcuma xanthorrhiza oil (CXO) using nanoemulsification and evaluate its inhibitory effects against biofilm formation. METHODS The components of CXO were evaluated through high-performance liquid chromatography (HPLC) analysis. Healthy human saliva was inoculated onto hydroxyapatite discs to form microcosm biofilms for four days and treated six times with each antimicrobial agent: distilled water (DW), CXO emulsion (EM), CXO nanoemulsion (NE), and positive controls (Listerine and chlorhexidine). Biofilm fluorescence imaging was performed using quantitative light-induced fluorescence, and cell viability and dry-weight measurements were obtained. We compared the bacterial cell and extracellular polysaccharide (EPS) biovolume and thickness using confocal laser scanning microscopy (CLSM). RESULTS HPLC analysis revealed that CXO was composed of approximately 47% xanthorrhizol. Compared with DW, NE exhibited significantly lower red fluorescence intensity and area (42% and 37%, p < 0.001 and p < 0.001, respectively), and reduced total and aciduric bacterial cell viability (7.3% and 3.9%, p < 0.001, p = 0.01, respectively). Furthermore, the bacterial cell and EPS biovolume and thickness in NE decreased by 40-80% compared to DW, similar to chlorhexidine. Conversely, EM showed a significant difference only in cell viability against total bacteria when compared with DW (p = 0.003), with EPS biovolume and thickness exhibiting higher values than DW. CONCLUSIONS Nanoemulsification successfully solubilized CXO and demonstrated superior anti-biofilm effects compared to the emulsion form. CLINICAL SIGNIFICANCE These findings suggest the potential use of NE as a novel antimicrobial agent for preventing oral diseases.
Collapse
Affiliation(s)
- Mu-Yeol Cho
- Department of Preventive Dentistry & Public Oral Health, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eun-Song Lee
- Department of Preventive Dentistry & Public Oral Health, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Hoi-In Jung
- Department of Preventive Dentistry & Public Oral Health, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Baek-Il Kim
- Department of Preventive Dentistry & Public Oral Health, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
10
|
Neagu R, Popovici V, Ionescu LE, Ordeanu V, Popescu DM, Ozon EA, Gîrd CE. Antibacterial and Antibiofilm Effects of Different Samples of Five Commercially Available Essential Oils. Antibiotics (Basel) 2023; 12:1191. [PMID: 37508287 PMCID: PMC10376212 DOI: 10.3390/antibiotics12071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Essential oils (EOs) have gained economic importance due to their biological activities, and increasing amounts are demanded everywhere. However, substantial differences between the same essential oil samples from different suppliers are reported-concerning their chemical composition and bioactivities-due to numerous companies involved in EOs production and the continuous development of online sales. The present study investigates the antibacterial and antibiofilm activities of two to four samples of five commercially available essential oils (Oregano, Eucalyptus, Rosemary, Clove, and Peppermint oils) produced by autochthonous companies. The manufacturers provided all EOs' chemical compositions determined through GC-MS. The EOs' bioactivities were investigated in vitro against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The antibacterial and antibiofilm effects (ABE% and, respectively, ABfE%) were evaluated spectrophotometrically at 562 and 570 nm using microplate cultivation techniques. The essential oils' calculated parameters were compared with those of three standard broad-spectrum antibiotics: Amoxicillin/Clavulanic acid, Gentamycin, and Streptomycin. The results showed that at the first dilution (D1 = 25 mg/mL), all EOs exhibited antibacterial and antibiofilm activity against all Gram-positive and Gram-negative bacteria tested, and MIC value > 25 mg/mL. Generally, both effects progressively decreased from D1 to D3. Only EOs with a considerable content of highly active metabolites revealed insignificant differences. E. coli showed the lowest susceptibility to all commercially available essential oils-15 EO samples had undetected antibacterial and antibiofilm effects at D2 and D3. Peppermint and Clove oils recorded the most significant differences regarding chemical composition and antibacterial/antibiofilm activities. All registered differences could be due to different places for harvesting the raw plant material, various technological processes through which these essential oils were obtained, the preservation conditions, and complex interactions between constituents.
Collapse
Affiliation(s)
- Răzvan Neagu
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Regenerative Medicine Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Lucia Elena Ionescu
- Experimental Microbiology Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Viorel Ordeanu
- Experimental Microbiology Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Diana Mihaela Popescu
- Regenerative Medicine Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
11
|
Sadiq MU, Shah A, Haleem A, Shah SM, Shah I. Eucalyptus globulus Mediated Green Synthesis of Environmentally Benign Metal Based Nanostructures: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2019. [PMID: 37446535 DOI: 10.3390/nano13132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The progress in nanotechnology has effectively tackled and overcome numerous global issues, including climate change, environmental contamination, and various lethal diseases. The nanostructures being a vital part of nanotechnology have been synthesized employing different physicochemical methods. However, these methods are expensive, polluting, eco-unfriendly, and produce toxic byproducts. Green chemistry having exceptional attributes, such as cost-effectiveness, non-toxicity, higher stability, environment friendliness, ability to control size and shape, and superior performance, has emerged as a promising alternative to address the drawbacks of conventional approaches. Plant extracts are recognized as the best option for the biosynthesis of nanoparticles due to adherence to the environmentally benign route and sustainability agenda 2030 of the United Nations. In recent decades, phytosynthesized nanoparticles have gained much attention for different scientific applications. Eucalyptus globulus (blue gum) is an evergreen plant belonging to the family Myrtaceae, which is the targeted point of this review article. Herein, we mainly focus on the fabrication of nanoparticles, such as zinc oxide, copper oxide, iron oxide, lanthanum oxide, titanium dioxide, magnesium oxide, lead oxide, nickel oxide, gold, silver, and zirconium oxide, by utilizing Eucalyptus globulus extract and its essential oils. This review article aims to provide an overview of the synthesis, characterization results, and biomedical applications of nanoparticles synthesized using Eucalyptus globulus. The present study will be a better contribution to the readers and the students of environmental research.
Collapse
Affiliation(s)
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Syed Mujtaba Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
12
|
Sadanandan B, Vijayalakshmi V, Ashrit P, Babu UV, Sharath Kumar LM, Sampath V, Shetty K, Joglekar AP, Awaknavar R. Aqueous spice extracts as alternative antimycotics to control highly drug resistant extensive biofilm forming clinical isolates of Candida albicans. PLoS One 2023; 18:e0281035. [PMID: 37315001 PMCID: PMC10266687 DOI: 10.1371/journal.pone.0281035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Candida albicans form biofilm by associating with biotic and abiotic surfaces. Biofilm formation by C. albicans is relevant and significant as the organisms residing within, gain resistance to conventional antimycotics and are therefore difficult to treat. This study targeted the potential of spice-based antimycotics to control C. albicans biofilms. Ten clinical isolates of C. albicans along with a standard culture MTCC-3017 (ATCC-90028) were screened for their biofilm-forming ability. C. albicans M-207 and C. albicans S-470 were identified as high biofilm formers by point inoculation on Trypticase Soy Agar (TSA) medium as they formed a lawn within 16 h and exhibited resistance to fluconazole and caspofungin at 25 mcg and 8 mcg respectively. Aqueous and organic spice extracts were screened for their antimycotic activity against C. albicans M-207 and S-470 by agar and disc diffusion and a Zone of Inhibition was observed. Minimal Inhibitory Concentration was determined based on growth absorbance and cell viability measurements. The whole aqueous extract of garlic inhibited biofilms of C. albicans M-207, whereas whole aqueous extracts of garlic, clove, and Indian gooseberry were effective in controlling C. albicans S-470 biofilm within 12 h of incubation. The presence of allicin, ellagic acid, and gallic acid as dominant compounds in the aqueous extracts of garlic, clove, and Indian gooseberry respectively was determined by High-Performance Thin Layer Chromatography and Liquid Chromatography-Mass Spectrometry. The morphology of C. albicans biofilm at different growth periods was also determined through bright field microscopy, phase contrast microscopy, and fluorescence microscopy. The results of this study indicated that the alternate approach in controlling high biofilm-forming, multi-drug resistant clinical isolates of C. albicans M-207 and S-470 using whole aqueous extracts of garlic, clove, and Indian gooseberry is a safe, potential, and cost-effective one that can benefit the health care needs with additional effective therapeutics to treat biofilm infections.
Collapse
Affiliation(s)
- Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | | | - Priya Ashrit
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Uddagiri Venkanna Babu
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | | | - Vasulingam Sampath
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | | | - Rashmi Awaknavar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
13
|
Iseppi R, Mariani M, Benvenuti S, Truzzi E, Messi P. Effects of Melaleuca alternifolia Chell (Tea Tree) and Eucalyptus globulus Labill. Essential Oils on Antibiotic-Resistant Bacterial Biofilms. Molecules 2023; 28:molecules28041671. [PMID: 36838657 PMCID: PMC9961662 DOI: 10.3390/molecules28041671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
In the present investigation, the anti-biofilm potential of two essential oils (EOs), Melaleuca alternifolia Chell (Tea-Tree) (TTO) and Eucalyptus globulus Labill. (EEO) was characterized and tested "in vitro" against both mature biofilms and biofilms in the process of formation, produced by strains belonging to three main categories of antibiotic resistant bacteria (ARB): Vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and broad-spectrum β-lactamase-producing Escherichia coli (ESBL). The study was carried out in 96-well microtiter-plates using EOs alone, in association with each other and in combination with antibiotics against both single and multi-species biofilm. The study demonstrated the ability of TTO and EEO to counteract the ARB strains in sessile form, with promising results in particular against the biofilm in formation. Mature biofilm by ESBL E. coli was the most sensitive in the results from the quantification study of viable cells performed in multi-species biofilms. Lastly, in all tests, carried out using TTO/EEO associations and EOs/antibiotic combinations, the synergistic effect which emerged from the FIC-index has been confirmed, and both the reduction of biofilm in formation, and the removal of mature structure was obtained at very low concentrations, with values from 4 to >512-fold lower than the minimum inhibitory concentration (MIC) of the single compounds.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Martina Mariani
- Burn Intensive Care Unit, Hospital A. Cardarelli, Via A. Cardarelli 9, 80131 Naples, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence:
| |
Collapse
|
14
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
15
|
Han Y, Liu S, Du Y, Li D, Pan N, Chai J, Li D. A new application of surfactant-free microemulsion: Solubilization and transport of drugs and its transdermal release properties. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
de Godoi SN, Gressler LT, de Matos AFIM, Gündel A, Monteiro SG, Vianna Santos RC, Machado AK, Sagrillo MR, Ourique AF. Eucalyptus oil nanoemulsions against eggs and larvae of Haemonchus contortus. Exp Parasitol 2022; 241:108345. [PMID: 35985513 DOI: 10.1016/j.exppara.2022.108345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Haemonchus contortus is a highly pathogenic and prevalent helminth that causes many deaths in sheep herds. Anthelmintics are usually employed to overcome this issue; however, they do not guarantee immediate and lasting efficacy because of the occurrence of drug-resistant parasites. Among substances that are used in scientific studies for parasitic control, essential oils are known to have different pharmacological properties. However, they demonstrate instability owing to several factors, and therefore, nanoemulsification is considered an alternative to control the instability and degradability of these compounds. The objective of this study was to evaluate the cytotoxicity of nanoemulsions containing essential oil of Eucalyptus globulus against the blood of healthy sheep and to verify their activity against the parasite H. contortus in sheep. The results presented adequate nanotechnological characteristics (diameter 72 nm, PDI 0.2, zeta -11 mV, and acidic pH) and adequate morphology. Further, the corona effect and cytotoxic profiles of the free oil and nanoemulsion against blood cells from healthy sheep were evaluated. The tests results did not present a toxicity profile. For evaluating efficacy, we observed an important anthelmintic action of the nanoemulsion containing oil in comparison to the free oil; the results demonstrate a potential role of the nanoemulsion in the inhibition of egg hatchability and the development of larvae L1 to L3 (infective stage). Based on these results, we developed an important and potential anthelmintic alternative for the control of the parasite H. contortus.
Collapse
Affiliation(s)
- Samantha Nunes de Godoi
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, RS, Brazil
| | - Lucas Trevisan Gressler
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - André Gündel
- Departamento de Microscopia, Universidade Federal do Pampa, Santa Maria, RS, Brazil
| | - Silvia Gonzalez Monteiro
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Michele Rorato Sagrillo
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, RS, Brazil
| | - Aline Ferreira Ourique
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, RS, Brazil.
| |
Collapse
|
17
|
Mouhoub A, Guendouz A, Belkamel A, El Alaoui Talibi Z, Ibnsouda Koraichi S, El Modafar C, Delattre C. Assessment of the antioxidant, antimicrobial and antibiofilm activities of essential oils for potential application of active chitosan films in food preservation. World J Microbiol Biotechnol 2022; 38:179. [PMID: 35941332 DOI: 10.1007/s11274-022-03363-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
In the food industry, the development of microbial biofilms is a serious problem that leads to the contamination and deterioration of food products. To overcome that, our aim consists of searching for natural antimicrobial and non-toxic compounds (essential oils EOs), which might be used alone or adsorbed on natural biopolymer films (chitosan). In this work, the antioxidant activity of eight EOs was evaluated by DPPH radical-scavenging method while their antibacterial activity was determined by diffusion on agar and microdilution methods. Among all tested EOs, Eugenia caryophyllus, Cinnamomum zeylanicum Blume and Thymus satureioides Cosson showed high antioxidant activities at the concentration of 25.6 mg/mL, with respective values of (86.26%, 81.75%, and 76%), and strong antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Enterococcus hirae, with (MIC) values ≤ 4 µL/mL. At the concentration of 1 µL/mL, these EOs tested alone, showed values of antibiofilm-forming activity ranging from 79.43 to 99.33% and from 44.18 to 94.17%, when they are adsorbed onto chitosan film. These promising results confirm that these three EOs have a good potential for an eventual application in the food industry, as antimicrobial and antioxidant agents, or as active biodegradable food packaging, if combined with chitosan.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Amine Guendouz
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Abdeljalil Belkamel
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Zainab El Alaoui Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France. .,Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
18
|
Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Front Pharmacol 2022; 13:917787. [PMID: 35899117 PMCID: PMC9309813 DOI: 10.3389/fphar.2022.917787] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biofilm communities of Candida are resistant to various antifungal treatments. The ability of Candida to form biofilms on abiotic and biotic surfaces is considered one of the most important virulence factors of these fungi. Extracellular DNA and exopolysaccharides can lower the antifungal penetration to the deeper layers of the biofilms, which is a serious concern supported by the emergence of azole-resistant isolates and Candida strains with decreased antifungal susceptibility. Since the biofilms' resistance to common antifungal drugs has become more widespread in recent years, more investigations should be performed to develop novel, inexpensive, non-toxic, and effective treatment approaches for controlling biofilm-associated infections. Scientists have used various natural compounds for inhibiting and degrading Candida biofilms. Curcumin, cinnamaldehyde, eugenol, carvacrol, thymol, terpinen-4-ol, linalool, geraniol, cineole, saponin, camphor, borneol, camphene, carnosol, citronellol, coumarin, epigallocatechin gallate, eucalyptol, limonene, menthol, piperine, saponin, α-terpineol, β-pinene, and citral are the major natural compounds that have been used widely for the inhibition and destruction of Candida biofilms. These compounds suppress not only fungal adhesion and biofilm formation but also destroy mature biofilm communities of Candida. Additionally, these natural compounds interact with various cellular processes of Candida, such as ABC-transported mediated drug transport, cell cycle progression, mitochondrial activity, and ergosterol, chitin, and glucan biosynthesis. The use of various drug delivery platforms can enhance the antibiofilm efficacy of natural compounds. Therefore, these drug delivery platforms should be considered as potential candidates for coating catheters and other medical material surfaces. A future goal will be to develop natural compounds as antibiofilm agents that can be used to treat infections by multi-drug-resistant Candida biofilms. Since exact interactions of natural compounds and biofilm structures have not been elucidated, further in vitro toxicology and animal experiments are required. In this article, we have discussed various aspects of natural compound usage for inhibition and destruction of Candida biofilms, along with the methods and procedures that have been used for improving the efficacy of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Soroush
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
19
|
Bharti S, Zakir F, Mirza MA, Aggarwal G. Antifungal biofilm strategies: a less explored area in wound management. Curr Pharm Biotechnol 2022; 23:1497-1513. [PMID: 35410595 DOI: 10.2174/1389201023666220411100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Background- The treatment of wound associated infections has always remained a challenge for clinicians with the major deterring factor being microbial biofilms, majorly bacterial or fungal. Biofilm infections are becoming a global concern owing to resistance against antimicrobials. Fungal biofilms are formed by a wide variety of fungal pathogens namely Candida sp., Aspergillus fumigates, Trichosporon sp., Saccharomyces cerevisiae, Cryptococcus neoformans, among others. The rising cases of fungal biofilm resistance add to the burden of wound care. Additionally, with increase in the number of surgical procedures, transplantation and the exponential use of medical devices, fungal bioburden is on the rise. Objectives- The review discusses the methods of biofilm formation and the resistance mechanisms against conventional treatments. The potential of novel delivery strategies and the mechanisms involved therein are highlighted. Further, the prospects of nanotechnology based medical devices to combat fungal biofilm resistance have also been explored. Some of the clinical trials and up-to-date patent technologies to eradicate the biofilms are also mentioned. Conclusion- Due to the many challenges faced in preventing/eradicating biofilms, only a handful of approaches have been able to make it to the market. Fungal biofilms are a fragmentary area which needs further exploration.
Collapse
Affiliation(s)
- Shilpa Bharti
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Foziyah Zakir
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
20
|
Comparative Analysis of the Antimicrobial Activity of Essential Oils and Their Formulated Microemulsions against Foodborne Pathogens and Spoilage Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11040447. [PMID: 35453199 PMCID: PMC9025571 DOI: 10.3390/antibiotics11040447] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
The antimicrobial activity of several essential oils (EOs) and their related microemulsions (MEs) was investigated. EOs were obtained from Cannabis sativa L. cv CS (C. sativa), Carum carvi L. (C. carvi), Crithmum maritimum L. (C. maritimum), Cuminum cyminum L. (C. cyminum), x Cupressocyparis leylandii A.B. Jacks & Dallim. (C. leylandii), Cupressus arizonica Greene (C. arizonica), Ferula assa-foetida L. (F. assa-foetida)., Ferula gummosa Boiss. (F. gummosa), Juniperus communis L. (J. communis), Juniperus x pfitzeriana (Spath) P.A. Schmidt (J. pfitzeriana), Pimpinella anisum L (P. anisum). Preliminary screening revealed that Cuminum cyminum, Crithmum maritimum, and Pimpinella anisum (10% v/v) were effective against all tested microorganisms (Escherichia coli ATCC 35218, Listeria monocytogenes ATCC 7644, Staphylococcus aureus ATCC 29213, Pseudomonas fluorescens DSM 4358, and Candida albicans ATCC 10231), with growth inhibition diameter from 10 to 25 mm. These EOs were used to formulate the MEs with an average size < 50 nm and a good stability over 30 days. EOs’ antimicrobial activity was further enhanced in the MEs, with a generalized lowering of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. C. cyminum-ME reached, in most cases, MIC two times lower (0.312%) than the corresponding EO (0.625%) and even eight times lower against S. aureus (0.156 vs. 1.25%). A more remarkable microbicide effect was noted for C. cyminum-ME, with MBC values eight times lower (from 0.312 to 0.625%) than the corresponding EO (from 2.5 to 5%). Overall, MEs resulted in an efficient system for EOs encapsulation, enhancing solubility and lowering concentration to exert antimicrobial efficacy.
Collapse
|
21
|
Ghosh S, Nandi S, Basu T. Nano-Antibacterials Using Medicinal Plant Components: An Overview. Front Microbiol 2022; 12:768739. [PMID: 35273578 PMCID: PMC8902597 DOI: 10.3389/fmicb.2021.768739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Gradual emergence of new bacterial strains, resistant to one or more antibiotics, necessitates development of new antibacterials to prevent us from newly evolved disease-causing, drug-resistant, pathogenic bacteria. Different inorganic and organic compounds have been synthesized as antibacterials, but with the problem of toxicity. Other alternatives of using green products, i.e., the medicinal plant extracts with biocompatible and potent antibacterial characteristics, also had limitation because of their low aqueous solubility and therefore less bioavailability. Use of nanotechnological strategy appears to be a savior, where phytochemicals are nanonized through encapsulation or entrapment within inorganic or organic hydrophilic capping agents. Nanonization of such products not only makes them water soluble but also helps to attain high surface to volume ratio and therefore high reaction area of the nanonized products with better therapeutic potential, over that of the equivalent amount of raw bulk products. Medicinal plant extracts, whose prime components are flavonoids, alkaloids, terpenoids, polyphenolic compounds, and essential oils, are in one hand nanonized (capped and stabilized) by polymers, lipids, or clay materials for developing nanodrugs; on the other hand, high antioxidant activity of those plant extracts is also used to reduce various metal salts to produce metallic nanoparticles. In this review, five medicinal plants, viz., tulsi (Ocimum sanctum), turmeric (Curcuma longa), aloe vera (Aloe vera), oregano (Oregano vulgare), and eucalyptus (Eucalyptus globulus), with promising antibacterial potential and the nanoformulations associated with the plants' crude extracts and their respective major components (eugenol, curcumin, anthraquinone, carvacrol, eucalyptus oil) have been discussed with respect to their antibacterial potency.
Collapse
Affiliation(s)
| | | | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
22
|
Boswellia serrata Extract as an Antibiofilm Agent against Candida spp. Microorganisms 2022; 10:microorganisms10010171. [PMID: 35056620 PMCID: PMC8778954 DOI: 10.3390/microorganisms10010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
The use of antibiotics or antifungals to control infections caused by pathogenic microorganisms is currently insufficiently effective because of their emerging resistance. Thanks to the ability of microorganisms to form a biofilm and thus increase their resistance to administered drugs even more, modern medicine faces the task of finding novel substances to combat infections caused by them. In this regard, the effects of essential oils or plant extracts are often studied. Among the relatively neglected plants is Boswellia serrata, which has a high content of biologically active boswellic acids. In this study, we focused on one of the most common nosocomial infections, which are caused by Candida species. The most common representative is C. albicans, although the number of infections caused by non-albicans species has recently been increasing. We focused on the antifungal activity of Boswellia serrata extract Bioswellix against planktonic and adhering cells of Candida albicans, Candida parapsilosis and Candida krusei. The antifungal activity against adhering cells was further explored by determining the metabolic activity of cells (MTT) and determining the total amount of biofilm using crystal violet. Boswellic acid-containing plant extract was shown to suppress the growth of a suspension population of all tested Candida species. Boswellia serrata extract Bioswellix was most effective in inhibiting C. albicans biofilm formation.
Collapse
|
23
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
24
|
Mishra P, Gupta P, Srivastava AK, Poluri KM, Prasad R. Eucalyptol/ β-cyclodextrin inclusion complex loaded gellan/PVA nanofibers as antifungal drug delivery system. Int J Pharm 2021; 609:121163. [PMID: 34624448 DOI: 10.1016/j.ijpharm.2021.121163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022]
Abstract
Fungal infections pose a serious threat to humankind due to the toxicity of conventional antifungal therapy and continuous emerging incidence of multidrug resistance. Essential oils fascinated researchers because of their broad antimicrobial activity and minimal cytotoxicity. However, hydrophobic, volatile and low water solubility of essential oils hinder their applications in pharmaceutical industries. Therefore, in this study we have loaded eucalyptol/ β-cyclodextrin inclusion complex to gellan/polyvinyl alcohol nanofibers (EPNF) to eradicate Candida albicans and Candida glabrata biofilms. The electrospun nanofibers characterized by various physicochemical techniques and it was observed that EPNF possess highly hydrophilic surface property that facilitate rapid drug release. EPNF inhibited approximately 70% biofilm of C. albicans and C. glabrata. Time kill results depicted that eucalyptol (EPTL) encapsulation in the nanofibers prolonged its antifungal activity than the pure EPTL. Electron microscopy studies revealed that EPNF disrupted the cell surface of Candida. Collectively the current study suggested nanofiber encapsulation enhanced antibiofilm activity of eucalyptol and these nanoscale systems can serve as an alternative therapeutic strategy to treat fungal infections. Further, the developed nanofibrous materials can be applied as cost effective coating agent for biomedical implants.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Amit Kumar Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
25
|
Medina-Alarcón KP, Tobias da Silva IP, Ferin GG, Pereira-da-Silva MA, Marcos CM, Dos Santos MB, Regasini LO, Chorilli M, Mendes-Giannini MJS, Pavan FR, Fusco-Almeida AM. Mycobacterium tuberculosis and Paracoccidioides brasiliensis Formation and Treatment of Mixed Biofilm In Vitro. Front Cell Infect Microbiol 2021; 11:681131. [PMID: 34790584 PMCID: PMC8591247 DOI: 10.3389/fcimb.2021.681131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
Co-infection of Mycobacterium tuberculosis and Paracoccidioides brasiliensis, present in 20% in Latin America, is a public health problem due to a lack of adequate diagnosis. These microorganisms are capable of forming biofilms, mainly in immunocompromised patients, which can lead to death due to the lack of effective treatment for both diseases. The present research aims to show for the first time the formation of mixed biofilms of M. tuberculosis and P. brasiliensis (Pb18) in vitro, as well as to evaluate the action of 3’hydroxychalcone (3’chalc) -loaded nanoemulsion (NE) (NE3’chalc) against monospecies and mixed biofilms, the formation of mixed biofilms of M. tuberculosis H37Rv (ATCC 27294), 40Rv (clinical strains) and P. brasiliensis (Pb18) (ATCC 32069), and the first condition of formation (H37Rv +Pb18) and (40Rv + Pb18) and second condition of formation (Pb18 + H37Rv) with 45 days of total formation time under both conditions. The results of mixed biofilms (H37Rv + Pb18) and (40Rv + Pb18), showed an organized network of M. tuberculosis bacilli in which P. brasiliensis yeasts are connected with a highly extracellular polysaccharide matrix. The (Pb18 + H37Rv) showed a dense biofilm with an apparent predominance of P. brasiliensis and fragments of M. tuberculosis. PCR assays confirmed the presence of the microorganisms involved in this formation. The characterization of NE and NE3’chalc displayed sizes from 145.00 ± 1.05 and 151.25 ± 0.60, a polydispersity index (PDI) from 0.20± 0.01 to 0.16± 0.01, and zeta potential -58.20 ± 0.92 mV and -56.10 ± 0.71 mV, respectively. The atomic force microscopy (AFM) results showed lamellar structures characteristic of NE. The minimum inhibitory concentration (MIC) values of 3’hidroxychalcone (3’chalc) range from 0.97- 7.8 µg/mL and NE3’chalc from 0.24 - 3.9 µg/mL improved the antibacterial activity when compared with 3’chalc-free, no cytotoxicity. Antibiofilm assays proved the efficacy of 3’chalc-free incorporation in NE. These findings contribute to a greater understanding of the formation of M. tuberculosis and P. brasiliensis in the mixed biofilm. In addition, the findings present a new possible NE3’chalc treatment alternative for the mixed biofilms of these microorganisms, with a high degree of relevance due to the lack of other treatments for these comorbidities.
Collapse
Affiliation(s)
- Kaila Petronila Medina-Alarcón
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Iara Pengo Tobias da Silva
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Giovana Garcia Ferin
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Marcelo A Pereira-da-Silva
- Institute of Physics of Sao Carlos (IFSC)-University of Sao Paulo (USP) IFSC/USP, Sao Carlos, Brazil.,Exact Sciences and Engineering, Paulista Central University Center (UNICEP), Säo Carlos, Brazil
| | - Caroline Maria Marcos
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Mariana Bastos Dos Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Luis Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Maria José S Mendes-Giannini
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Fernando Rogerio Pavan
- Department of Biological, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
26
|
Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review. Antibiotics (Basel) 2021; 10:antibiotics10091142. [PMID: 34572724 PMCID: PMC8464735 DOI: 10.3390/antibiotics10091142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023] Open
Abstract
The use of natural products to promote health is as old as human civilization. In recent years, the perception of natural products derived from plants as abundant sources of biologically active compounds has driven their exploitation towards the search for new chemical products that can lead to further pharmaceutical formulations. Candida fungi, being opportunistic pathogens, increase their virulence by acquiring resistance to conventional antimicrobials, triggering diseases, especially in immunosuppressed hosts. They are also pointed to as the main pathogens responsible for most fungal infections of the oral cavity. This increased resistance to conventional synthetic antimicrobials has driven the search for new molecules present in plant extracts, which have been widely explored as alternative agents in the prevention and treatment of infections. This review aims to provide a critical view and scope of the in vitro antimicrobial and antibiofilm activity of several medicinal plants, revealing species with inhibition/reduction effects on the biofilm formed by Candida spp. in the oral cavity. The most promising plant extracts in fighting oral biofilm, given their high capacity to reduce it to low concentrations were the essential oils extracted from Allium sativum L., Cinnamomum zeylanicum Blume. and Cymbopogon citratus (DC) Stapf.
Collapse
|
27
|
Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi-Latest Findings. Antibiotics (Basel) 2021; 10:antibiotics10091053. [PMID: 34572635 PMCID: PMC8471798 DOI: 10.3390/antibiotics10091053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The development of new antifungal agents that target biofilms is an urgent need. Natural products, mainly from the plant kingdom, represent an invaluable source of these entities. The present review provides an update (2017-May 2021) on the available information on essential oils, propolis, extracts from plants, algae, lichens and microorganisms, compounds from different natural sources and nanosystems containing natural products with the capacity to in vitro or in vivo modulate fungal biofilms. The search yielded 42 articles; seven involved essential oils, two Brazilian propolis, six plant extracts and one of each, extracts from lichens and algae/cyanobacteria. Twenty articles deal with the antibiofilm effect of pure natural compounds, with 10 of them including studies of the mechanism of action and five dealing with natural compounds included in nanosystems. Thirty-seven manuscripts evaluated Candida spp. biofilms and two tested Fusarium and Cryptococcus spp. Only one manuscript involved Aspergillus fumigatus. From the data presented here, it is clear that the search of natural products with activity against fungal biofilms has been a highly active area of research in recent years. However, it also reveals the necessity of deepening the studies by (i) evaluating the effect of natural products on biofilms formed by the newly emerged and worrisome health-care associated fungi, C. auris, as well as on other non-albicans Candida spp., Cryptococcus sp. and filamentous fungi; (ii) elucidating the mechanisms of action of the most active natural products; (iii) increasing the in vivo testing.
Collapse
|
28
|
Hsu H, Sheth CC, Veses V. Herbal Extracts with Antifungal Activity against Candida albicans: A Systematic Review. Mini Rev Med Chem 2021; 21:90-117. [PMID: 32600229 DOI: 10.2174/1389557520666200628032116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
In the era of antimicrobial resistance, fungal pathogens are not an exception. Several strategies, including antimicrobial stewardship programs and high throughput screening of new drugs, are being implemented. Several recent studies have demonstrated the effectiveness of plant compounds with antifungal activity. In this systematic review, we examine the use of natural compounds as a possible avenue to fight fungal infections produced by Candida albicans, the most common human fungal pathogen. Electronic literature searches were conducted through PubMed/MEDLINE, Cochrane, and Science Direct limited to the 5 years. A total of 131 articles were included, with 186 plants extracts evaluated. Although the majority of the natural extracts exhibited antifungal activities against C. albicans (both in vivo and in vitro), the strongest antifungal activity was obtained from Lawsonia inermis, Pelargonium graveolens, Camellia sinensis, Mentha piperita, and Citrus latifolia. The main components with proven antifungal activities were phenolic compounds such as gallic acid, thymol, and flavonoids (especially catechin), polyphenols such as tannins, terpenoids and saponins. The incorporation of nanotechnology greatly enhances the antifungal properties of these natural compounds. Further research is needed to fully characterize the composition of all herbal extracts with antifungal activity as well as the mechanisms of action of the active compounds.
Collapse
Affiliation(s)
- Hsuan Hsu
- Department of Dentistry, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Moncada 46113, Valencia, Spain
| | - Chirag C Sheth
- Department of Medicine, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Moncada 46113, Valencia, Spain
| | - Veronica Veses
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Moncada 46113, Valencia, Spain
| |
Collapse
|
29
|
Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Adamczak A. Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp. J Fungi (Basel) 2021; 7:360. [PMID: 34063007 PMCID: PMC8147947 DOI: 10.3390/jof7050360] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/12/2023] Open
Abstract
Fungi from the genus Candida are very important human and animal pathogens. Many strains can produce biofilms, which inhibit the activity of antifungal drugs and increase the tolerance or resistance to them as well. Clinically, this process leads to persistent infections and increased mortality. Today, many Candida species are resistant to drugs, including C. auris, which is a multiresistant pathogen. Natural compounds may potentially be used to combat multiresistant and biofilm-forming strains. The aim of this review was to present plant-derived preparations and compounds that inhibit Candida biofilm formation by at least 50%. A total of 29 essential oils and 16 plant extracts demonstrate activity against Candida biofilms, with the following families predominating: Lamiaceae, Myrtaceae, Asteraceae, Fabaceae, and Apiacae. Lavandula dentata (0.045-0.07 mg/L), Satureja macrosiphon (0.06-8 mg/L), and Ziziphora tenuior (2.5 mg/L) have the best antifungal activity. High efficacy has also been observed with Artemisia judaica, Lawsonia inermis, and Thymus vulgaris. Moreover, 69 plant compounds demonstrate activity against Candida biofilms. Activity in concentrations below 16 mg/L was observed with phenolic compounds (thymol, pterostilbene, and eugenol), sesquiterpene derivatives (warburganal, polygodial, and ivalin), chalconoid (lichochalcone A), steroidal saponin (dioscin), flavonoid (baicalein), alkaloids (waltheriones), macrocyclic bisbibenzyl (riccardin D), and cannabinoid (cannabidiol). The above compounds act on biofilm formation and/or mature biofilms. In summary, plant preparations and compounds exhibit anti-biofilm activity against Candida. Given this, they may be a promising alternative to antifungal drugs.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland; (A.S.-M.); (H.W.)
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland
| | - Hubert Wolski
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland; (A.S.-M.); (H.W.)
- Division of Gynecology and Obstetrics, Podhale Multidisciplinary Hospital, Szpitalna 14, 34-400 Nowy Targ, Poland
| | - Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland;
| |
Collapse
|
30
|
MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications. MATERIALS 2021; 14:ma14071612. [PMID: 33806228 PMCID: PMC8036921 DOI: 10.3390/ma14071612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
The present study reports on the development and evaluation of nanostructured composite coatings of polylactic acid (PLA) embedded with iron oxide nanoparticles (Fe3O4) modified with Eucalyptus (Eucalyptus globulus) essential oil. The co-precipitation method was employed to synthesize the magnetite particles conjugated with Eucalyptus natural antibiotic (Fe3O4@EG), while their composition and microstructure were investigated using grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The matrix-assisted pulsed laser evaporation (MAPLE) technique was further employed to obtain PLA/Fe3O4@EG thin films. Optimal experimental conditions for laser processing were established by complementary infrared microscopy (IRM) and scanning electron microscopy (SEM) investigations. The in vitro biocompatibility with eukaryote cells was proven using mesenchymal stem cells, while the anti-biofilm efficiency of composite PLA/Fe3O4@EG coatings was assessed against Gram-negative and Gram-positive pathogens.
Collapse
|
31
|
Cieśluk M, Deptuła P, Piktel E, Fiedoruk K, Suprewicz Ł, Paprocka P, Kot P, Pogoda K, Bucki R. Physics Comes to the Aid of Medicine-Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens 2020; 9:pathogens9110969. [PMID: 33233696 PMCID: PMC7699805 DOI: 10.3390/pathogens9110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Despite the hope that was raised with the implementation of antibiotics to the treatment of infections in medical practice, the initial enthusiasm has substantially faded due to increasing drug resistance in pathogenic microorganisms. Therefore, there is a need for novel analytical and diagnostic methods in order to extend our knowledge regarding the mode of action of the conventional and novel antimicrobial agents from a perspective of single microbial cells as well as their communities growing in infected sites, i.e., biofilms. In recent years, atomic force microscopy (AFM) has been mostly used to study different aspects of the pathophysiology of noninfectious conditions with attempts to characterize morphological and rheological properties of tissues, individual mammalian cells as well as their organelles and extracellular matrix, and cells’ mechanical changes upon exposure to different stimuli. At the same time, an ever-growing number of studies have demonstrated AFM as a valuable approach in studying microorganisms in regard to changes in their morphology and nanomechanical properties, e.g., stiffness in response to antimicrobial treatment or interaction with a substrate as well as the mechanisms behind their virulence. This review summarizes recent developments and the authors’ point of view on AFM-based evaluation of microorganisms’ response to applied antimicrobial treatment within a group of selected bacteria, fungi, and viruses. The AFM potential in development of modern diagnostic and therapeutic methods for combating of infections caused by drug-resistant bacterial strains is also discussed.
Collapse
Affiliation(s)
- Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
- Correspondence:
| |
Collapse
|
32
|
Simvastatin-loaded nanoemulsions: development, characterization, stability study and toxicity assays. Ther Deliv 2020; 11:497-505. [PMID: 32842914 DOI: 10.4155/tde-2020-0067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The aim of this study is to prepare and characterize simvastatin-loaded nanoemulsions (SIM-LN) as well as evaluate their physicochemical properties and toxicity. Methodology & results: The SIM-LN were prepared, their characteristics evaluated for 30 days, and after that, the SIM-LN toxicity was evaluated using Vero cell culture and the in vivo model of Caenorhabditis elegans. The prepared SIM-LN had an average droplet size of 139 ± 22 nm, with high encapsulation rate (>98.4%). The storage at room temperature proved to be the most optimal condition. Toxicity assays demonstrated no toxicity. Conclusion: It was demonstrated that the surfactants used as emulsifiers optimized the properties without side effects, because no toxicity was measured in preliminary tests.
Collapse
|
33
|
Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TDC, Dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems against candidiasis: a review of studies performed over the last two decades. Crit Rev Microbiol 2020; 46:508-547. [PMID: 32795108 DOI: 10.1080/1040841x.2020.1803208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.
Collapse
Affiliation(s)
- Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
34
|
Cho MY, Kang SM, Lee ES, Kim BI. Antimicrobial activity of Curcuma xanthorrhiza nanoemulsions on Streptococcus mutans biofilms. BIOFOULING 2020; 36:825-833. [PMID: 32972257 DOI: 10.1080/08927014.2020.1823376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, an optimal nanoemulsion formulation for Curcuma xanthorrhiza oil (Xan) was investigated using different sonication times. The antimicrobial effects of the nanoemulsion, the original emulsion, distilled water (DW), and Listerine, on Streptococcus mutans biofilms were compared. The optimum ultrasonic time, determined in terms of droplet size and stability, was found to be 10 min. Cell viability was the lowest on exposure to the nanoemulsion, and significantly different compared with exposure to DW or Listerine. The emulsion's effect was similar to that of the nanoemulsion, but was non-uniform with a high interquartile range. Confocal microscope analysis revealed that the live/dead cell ratio in the nanoemulsion was 50% and 40% less than those in DW and Listerine, respectively. Biofilm treated with the nanoemulsion was thinner than biofilms exposed to the other treatments. Xan nanoemulsions exhibited stable and strong antimicrobial effects due to nano-sized particles, highlighting their potential use in oral health treatment.
Collapse
Affiliation(s)
- Mu-Yeol Cho
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, Seoul, South Korea
- BK21 PLUS project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Si-Mook Kang
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, Seoul, South Korea
- BK21 PLUS project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Song Lee
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, Seoul, South Korea
| | - Baek-Il Kim
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, Seoul, South Korea
- BK21 PLUS project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
35
|
Gündel SDS, de Godoi SN, Santos RCV, da Silva JT, Leite LBDM, Amaral AC, Ourique AF. In vivo antifungal activity of nanoemulsions containing eucalyptus or lemongrass essential oils in murine model of vulvovaginal candidiasis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Caputo L, Smeriglio A, Trombetta D, Cornara L, Trevena G, Valussi M, Fratianni F, De Feo V, Nazzaro F. Chemical Composition and Biological Activities of the Essential Oils of Leptospermum petersonii and Eucalyptus gunnii. Front Microbiol 2020; 11:409. [PMID: 32351456 PMCID: PMC7174609 DOI: 10.3389/fmicb.2020.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/27/2020] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to characterize the chemical composition and to evaluate the antimicrobial and phytotoxic properties of the essential oils (EOs) obtained from leaves of Leptospermum petersonii chemotype "Variety B" and Eucalyptus gunnii, native to Australia. Geranyl acetate, γ-terpinene, geraniol, terpinolene, α-pinene, p-cimene, and linalool were the main components in L. petersonii EO, confirming also the existence of several chemotypes in such taxa; on the other hand, 1,8-cineole, trans-sabinene hydrate acetate, globulol, longicyclene, terpinolene, and camphene were present in major amounts in the E. gunnii EO. Chemical analysis of L. petersonii revealed that it belongs to the variety "B." E. gunnii EO showed good antibacterial activity, with an MIC of 0.5 and 2 μg/mL against Staphylococcus aureus, and Pectobacterium carotovorum, respectively. The activity of E. gunnii EO was stronger than L. petersonii EO, whose maximum MIC reached 5 μg/mL. E. gunnii and L. petersonii EOs were particularly effective in inhibiting the biofilm formation by S. aureus, already at a concentration of 0.01 μg/mL. The other strains were resistant to both EOs up to a dose of 0.05 μg/mL. The maximum inhibition on biofilm formed by P. carotovorum was recorded for E. gunnii EO, reaching a value of 93.12% at 1.0 μg/mL. This is the first manuscript which studies the biofilm inhibition by EOs and evaluates their effects on biofilm metabolism. Both EOs were more effective against P. carotovorum. In addition, even though L. petersonii EO 0.1 μg/mL was unable to inhibit biofilm formation by Escherichia coli, it decreased the metabolic activity of the biofilm to 78.55% compared to control; furthermore, despite it inducing a relatively low inhibition (66.67%) on biofilm formation, it markedly affected metabolic activity, which decreased to 16.09% with respect to the control. On the contrary, L. petersonii EO 0.5 μg/mL induced a 79.88% inhibition of S. aureus biofilm, maintaining a high metabolic activity (90.89%) compared to the control. Moreover, this EO showed inhibitory activity against radical elongation of Solanum lycopersicum and the germination of radish. On the contrary, E. gunnii EO showed no phytotoxic activity.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Laura Cornara
- Department for the Earth, Environment and Life Sciences, School of Mathematical, Physical and Natural Sciences, University of Genoa, Genoa, Italy
| | - Greg Trevena
- Essentially Australia, Byron Bay, NSW, Australia
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association, Norwich, United Kingdom
| | - Florinda Fratianni
- Institute of Food Sciences, CNR-ISA, Italian National Research Council, Avellino, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Italian National Research Council, Avellino, Italy
| |
Collapse
|
37
|
Thakur K, Sharma G, Singh B, Katare OP. Topical Drug Delivery of Anti-infectives Employing Lipid-Based Nanocarriers: Dermatokinetics as an Important Tool. Curr Pharm Des 2019; 24:5108-5128. [PMID: 30657036 DOI: 10.2174/1381612825666190118155843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The therapeutic approaches for the management of topical infections have always been a difficult approach due to lack of efficacy of conventional topical formulations, high frequency of topical applications and non-patient compliance. The major challenge in the management of topical infections lies in antibiotic resistance which leads to severe complications and hospitalizations resulting in economic burden and high mortality rates. METHODS Topical delivery employing lipid-based carriers has been a promising strategy to overcome the challenges of poor skin permeation and retention along with large doses which need to be administered systemically. The use of lipid-based delivery systems is a promising strategy for the effective topical delivery of antibiotics and overcoming drug-resistant strains in the skin. The major systems include transfersomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion as the most promising drug delivery approaches to treat infectious disorders. The main advantages of these systems include lipid bilayer structure which mimics the cell membrane and can fuse with infectious microbes. The numerous advantages associated with nanocarriers like enhanced efficacy, improvement in bioavailability, controlled drug release and ability to target the desired infectious pathogen have made these carriers successful. CONCLUSION Despite the number of strides taken in the field of topical drug delivery in infectious diseases, it still requires extensive research efforts to have a better perspective of the factors that influence drug permeation along with the mechanism of action with regard to skin penetration and deposition. The final objective of the therapy is to provide a safe and effective therapeutic approach for the management of infectious diseases affecting topical sites leading to enhanced therapeutic efficacy and patient-compliance.
Collapse
Affiliation(s)
- Kanika Thakur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Bhupindar Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
38
|
Wojtunik-Kulesza KA, Kasprzak K, Oniszczuk T, Oniszczuk A. Natural Monoterpenes: Much More than Only a Scent. Chem Biodivers 2019; 16:e1900434. [PMID: 31587473 DOI: 10.1002/cbdv.201900434] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
Terpenes are a widespread group of secondary metabolites that can be found in various family plants such as the Lamiaceae. In view of their numerous valuable biological activities, the industrial production of concrete terpenes and essential oils rich in the substances is intensively studied. Monoterpenes constitute a significant part of the whole group of the aforementioned secondary metabolites. This is due to their numerous biological activities and their ability to permeate the skin. Despite the fact that these substances have gain popularity, they are not comprehensively characterized. The presented review is based on studies of the biological activities of the most important monoterpenes and the essential oils rich in these compounds. The authors focused attention on antioxidant activity, inhibition towards acetyl- and butyrylcholinesterase, and α-amylase and α-glucosidase, antifungal, hepatoprotective, sedative properties, and their skin permeation enhancement.
Collapse
Affiliation(s)
- Karolina A Wojtunik-Kulesza
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4 A. Chodźki Street, 20-093, Lublin, Poland
| | - Kamila Kasprzak
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4 A. Chodźki Street, 20-093, Lublin, Poland
| | - Tomasz Oniszczuk
- Department of Food Process Engineering, Lublin University of Life Sciences, 44 Doświadczalna Street, 20-236, Lublin, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4 A. Chodźki Street, 20-093, Lublin, Poland
| |
Collapse
|
39
|
Salehi B, Sharifi-Rad J, Quispe C, Llaique H, Villalobos M, Smeriglio A, Trombetta D, Ezzat SM, Salem MA, Zayed A, Salgado Castillo CM, Yazdi SE, Sen S, Acharya K, Sharopov F, Martins N. Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Phutanon N, Motina K, Chang YH, Ummartyotin S. Development of CuO particles onto bacterial cellulose sheets by forced hydrolysis: A synergistic approach for generating sheets with photocatalytic and antibiofouling properties. Int J Biol Macromol 2019; 136:1142-1152. [PMID: 31247232 DOI: 10.1016/j.ijbiomac.2019.06.168] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/23/2019] [Indexed: 12/22/2022]
Abstract
CuO was successfully prepared on bacterial cellulose paper as a nanocomposite using the forced hydrolysis technique. The composite paper presented outstanding photocatalytic and antibacterial properties. The effect of pH from 7 to 11 on CuO formation on bacterial cellulose was tested. The structural properties of the composite were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Thermogravimetric analysis showed that the composite has a thermal resistance of up to 200 °C. Scanning electron microscopy showed that bacterial cellulose existed as a network and that CuO particles filled the spaces in the network. Energy-dispersive and mapping analysis also showed the optimal uniformity and distribution. The composite paper will act as the prototype for both photocatalyst and antibacterial properties for paper-based technology.
Collapse
Affiliation(s)
- N Phutanon
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Patumtani, Thailand
| | - K Motina
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Patumtani, Thailand
| | - Y-H Chang
- Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan.
| | - S Ummartyotin
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Patumtani, Thailand.
| |
Collapse
|
41
|
THE EFFECT OF CHLOROPHYLLIPTUM SOLUTION ON THE ADHESIVENESS OF CANDIDA SPP. WORLD OF MEDICINE AND BIOLOGY 2019. [DOI: 10.26724/2079-8334-2019-2-68-167-170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Boutin R, Munnier E, Renaudeau N, Girardot M, Pinault M, Chevalier S, Chourpa I, Clément-Larosière B, Imbert C, Boudesocque-Delaye L. Spirulina platensis sustainable lipid extracts in alginate-based nanocarriers: An algal approach against biofilms. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Prakash A, Baskaran R, Paramasivam N, Vadivel V. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res Int 2018; 111:509-523. [PMID: 30007714 DOI: 10.1016/j.foodres.2018.05.066] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
Due to the convenience and nutritional value, minimally processed fruits and vegetables (MPFV) are one of the rapid growing sectors in the food industry. However, their microbiological safety is a cause of great concern. Essential oils (EOs), known for potent antimicrobial efficacy have been shown to reduce microbial load in MPFV, but their low water solubility, high volatility and strong organoleptic properties limit their wide use. Encapsulating EOs to nanoemulsion offers a viable remedy for such limitations. Due to the unique properties of the EOs nanoemulsion, there has been an increasing interest in their fabrication and use in food system. The present review article encompasses the overview of the prominent microflora present in MPFV, the recent developments on the fabrication and stability of EOs based nanoemulsion, their in vitro antimicrobial activity and their application in MPFV. This review also discusses the EOs based nanoemulsions antimicrobial mechanism of action and their regulatory issues related to their use. Application of EOs based nanoemulsion either as washing disinfectant or with incorporation into edible coatings have been shown to considerably improve the microbial quality and safety of MPFV. This efficacy has been further shown to increase when combined with other hurdles. However, further studies are required on the toxicity of EOs based nanoemulsion to assure its commercial exploitation.
Collapse
Affiliation(s)
- Anand Prakash
- Chemical Biology Lab (ASK-II), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Revathy Baskaran
- Department of Fruit and Vegetable Technology, Central Food Technological Research Institute (CFTRI), Mysore 570020, India
| | - Nithyanand Paramasivam
- Biofilm Biology Lab, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401,Tamil Nadu, India
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India.
| |
Collapse
|
44
|
Noshad M, Hojjati M, Alizadeh Behbahani B. Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microb Pathog 2018; 116:153-157. [PMID: 29360566 DOI: 10.1016/j.micpath.2018.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 01/16/2023]
Abstract
The aim of this study was to perform chemical compositions and phytochemical analysis of Black Zira essential oil and other goal of this research was to investigate the antimicrobial effects of Black Zira essential oil against Enterobacter aerogenes, Pseudomonas aeruginosa, Escherichia coli, Shigella flexneri, Staphylococcus epidermidis, Streptococcus pyogenes and Candida albicans. Black Zira essential oil was extracted by hydrodistillation method using clevenger apparatus. Black Zira essential oil chemical composition was identified through gas chromatography/mass spectrometry. γ-terpinene with a percentage of 24.8% was the major compound of Black Zira essential oil. The antimicrobial effect Black Zira essential oil was evaluated by several qualitative and quantitative methods (disk diffusion, well diffusion, microdilution broth, agar dilution and minimum bactericidal/fungicidal concentration). Phytochemical analysis Black Zira essential oil were appraised based on qualitative methods. Antioxidant activity (2,2-diphenyl-1-picrylhydrazyl and β-carotene/linoleic acid inhibition) and total phenolic content (Folin-Ciocalteu) were examined. The results of phytochemical analysis of Black Zira essential oil showed the existence of phenolic, flavonoids, saponins, alkaloids and tannins. The total phenolic content and antioxidant activity (reported as IC50) of Black Zira essential oil were equal to 120.50 ± 0.50 mg GAE/g and 11.55 ± 0.25 μg/ml, respectively. The MIC of the Black Zira essential oil ranged from 1 mg/ml to 8 mg/ml, while its MBC and MFC ranged from 1 mg/ml to 16 mg/ml. The results presented that the longest and the shortest inhibition zone diameter at the concentration of 8 mg/ml pertained to C. albicans and E. aerogenes, respectively.
Collapse
Affiliation(s)
- Mohammad Noshad
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Ramin Agriculture and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Mohammad Hojjati
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Ramin Agriculture and Natural Resources University of Khuzestan, Mollasani, Iran
| | | |
Collapse
|