1
|
Neetu, Ramya TNC. A comparative study of the efficacy of alginate lyases in the presence of metal ions elevated in the cystic fibrosis lung milieu. Biochem Biophys Rep 2024; 40:101821. [PMID: 39286289 PMCID: PMC11404220 DOI: 10.1016/j.bbrep.2024.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Pseudomonas aeruginosa, a common cause of morbidity in cystic fibrosis, chronically infects the patient's lungs by forming an alginate-containing biofilm. Alginate lyases are polysaccharide lyases that lyse alginate and are, therefore, potential biofilm-disruptive agents. However, cystic fibrosis sputum contains high levels of metals such as iron and zinc. The efficacy of alginate lyases under these conditions of elevated metal concentrations has not been categorically determined. Here, we have assessed the enzyme activity of two exolytic and five endolytic alginate lyases in the presence of metal ions (Fe2+, Zn2+, Mn2+, Mg2+, Ca2+, Ni2+, Cu2+) elevated in the cystic fibrosis lung milieu. Several of these alginate lyases exhibited increased activity in the presence of Ca2+, and the polysaccharide lyase family 7 members studied here exhibited decreased activity in the presence of Zn2+. The enzyme activity of the PL7 alginate lyases from Cellulophaga algicola (CaAly/CaFLDAly) and Vibrio sp. (VspAlyVI) was not affected in the presence of a mix of all the above-mentioned metal ions at the elevated concentrations found in the cystic fibrosis lung milieu. Specific alginate lyases might, therefore, retain the ability to degrade the alginate-containing Pseudomonas biofilm in the presence of metal ions elevated in the cystic fibrosis lung milieu.
Collapse
Affiliation(s)
- Neetu
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Wen H, Zhang Y, Mi Z, Zhang H, Sun C, Liu X, Fan X. Rational design of PspAlgL to improve its thermostability and anti-biofilm activity against Pseudomonas aeruginosa. Int J Biol Macromol 2024; 269:132084. [PMID: 38719003 DOI: 10.1016/j.ijbiomac.2024.132084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Pseudomonas aeruginosa biofilm enhances tolerance to antimicrobials and immune system defenses. Alginate is an important component of biofilm and a virulence factor of P. aeruginosa. The degradation of alginate by alginate lyases has come to serve as an adjunctive therapeutic strategy against P. aeruginosa biofilm, but poor stability of the enzyme limited this application. Thus, PspAlgL, an alginate lyase, can degrade acetylated alginate but has poor thermostability. The 3D structure of PspAlgL was predicted, and the thermostability of PspAlgL was rationally designed by GRAPE strategy, resulting in two variants with better stability. These variants, PspAlgLS270F/E311P and PspAlgLG291S/E311P, effectively degraded the alginate in biofilm. In addition, compared with PspAlgL, these variants were more efficient in inhibiting biofilm formation and degrading the established biofilm of P. aeruginosa PAO1, and they were also able to destroy the biofilm attached to catheters and to increase the sensitivity of P. aeruginosa to the antibiotic amikacin. This study provides one potential anti-biofilm agent for P. aeruginosa infection.
Collapse
Affiliation(s)
- Huamei Wen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Yanyu Zhang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Zhongwen Mi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Haichuan Zhang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenyang Sun
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Xiaolong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China.
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China.
| |
Collapse
|
3
|
Benítez SV, Carrasco R, Giraldo JD, Schoebitz M. Microbeads as carriers for Bacillus pumilus: a biofertilizer focus on auxin production. J Microencapsul 2024; 41:170-189. [PMID: 38469757 DOI: 10.1080/02652048.2024.2324812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
The study aimed to develop a solid biofertilizer using Bacillus pumilus, focusing on auxin production to enhance plant drought tolerance. Methods involved immobilising B. pumilus in alginate-starch beads, focusing on microbial concentration, biopolymer types, and environmental conditions. The optimal formulation showed a diameter of 3.58 mm ± 0.18, a uniform size distribution after 15 h of drying at 30 °C, a stable bacterial concentration (1.99 × 109 CFU g-1 ± 1.03 × 109 over 180 days at room temperature), a high auxin production (748.8 µg g-1 ± 10.3 of IAA in 7 days), and a water retention capacity of 37% ± 4.07. In conclusion, this new formulation of alginate + starch + L-tryptophan + B. pumilus has the potential for use in crops due to its compelling water retention, high viability in storage at room temperature, and high auxin production, which provides commercial advantages.
Collapse
Affiliation(s)
- Solange V Benítez
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Rocio Carrasco
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Puerto Montt, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
- Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, University of Concepción, Concepción, Chile
| |
Collapse
|
4
|
Enhancement of Inhibition of the Pseudomonas sp. Biofilm Formation on Bacterial Cellulose-Based Wound Dressing by the Combined Action of Alginate Lyase and Gentamicin. Int J Mol Sci 2023; 24:ijms24054740. [PMID: 36902169 PMCID: PMC10002595 DOI: 10.3390/ijms24054740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Bacterial biofilms generally contribute to chronic infections, including wound infections. Due to the antibiotic resistance mechanisms protecting bacteria living in the biofilm, they are a serious problem in the wound healing process. To accelerate the wound healing process and avoid bacterial infection, it is necessary to select the appropriate dressing material. In this study, the promising therapeutic properties of alginate lyase (AlgL) immobilised on BC membranes for protecting wounds from Pseudomonas aeruginosa infection were investigated. The AlgL was immobilised on never dried BC pellicles via physical adsorption. The maximum adsorption capacity of AlgL was 6.0 mg/g of dry BC, and the equilibrium was reached after 2 h. The adsorption kinetics was studied, and it has been proven that the adsorption was consistent with Langmuir isotherm. In addition, the impact of enzyme immobilisation on bacterial biofilm stability and the effect of simultaneous immobilisation of AlgL and gentamicin on the viability of bacterial cells was investigated. The obtained results showed that the AlgL immobilisation significantly reduced the amount of polysaccharides component of the P. aeruginosa biofilm. Moreover, the biofilm disruption by AlgL immobilised on BC membranes exhibited synergism with the gentamicin, resulting in 86.5% more dead P. aeruginosa PAO-1 cells.
Collapse
|
5
|
Targeting Multidrug-Recalcitrant Pseudomonas aeruginosa Biofilms: Combined-Enzyme Treatment Enhances Antibiotic Efficacy. Antimicrob Agents Chemother 2023; 67:e0135822. [PMID: 36602373 PMCID: PMC9872604 DOI: 10.1128/aac.01358-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms during infection, resulting in recalcitrance to antibiotic treatment. Biofilm inhibition is a promising research direction for the treatment of biofilm-associated infections. Here, a combined-enzyme biofilm-targeted strategy was put forward for the first time to simultaneously prevent biofilm formation and break down preformed biofilms. The N-acylhomoserine lactonase AidH was used as a quorum-sensing inhibitor and was modified to enhance the inhibitory effect on biofilms by rational design. Mutant AidHA147G exerted maximum activity at the human body temperature and pH and could reduce the expression of virulence factors as well as biofilm-related genes of P. aeruginosa. Subsequently, the P. aeruginosa self-produced glycosyl hydrolase PslG joined with AidHA147G to disrupt biofilms. Interestingly, under the combined-enzyme intervention for P. aeruginosa wild-type strain PAO1 and clinical strains, no biofilm was observed on the bottom of NEST glass-bottom cell culture dishes. The combination strategy also helped multidrug-resistant clinical strains change from resistant to intermediate or sensitive to many antibiotics commonly used in clinical practice. These results demonstrated that the combined-enzyme approach for inhibiting biofilms is a potential clinical treatment for P. aeruginosa infection.
Collapse
|
6
|
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022; 27:3375. [PMID: 35684316 PMCID: PMC9181867 DOI: 10.3390/molecules27113375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 9145, Iran;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
7
|
Cao S, Li Q, Xu Y, Tang T, Ning L, Zhu B. Evolving strategies for marine enzyme engineering: recent advances on the molecular modification of alginate lyase. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:106-116. [PMID: 37073348 PMCID: PMC10077200 DOI: 10.1007/s42995-021-00122-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 05/03/2023]
Abstract
Alginate, an acidic polysaccharide, is formed by β-d-mannuronate (M) and α-l-guluronate (G). As a type of polysaccharide lyase, alginate lyase can efficiently degrade alginate into alginate oligosaccharides, having potential applications in the food, medicine, and agriculture fields. However, the application of alginate lyase has been limited due to its low catalytic efficiency and poor temperature stability. In recent years, various structural features of alginate lyase have been determined, resulting in modification strategies that can increase the applicability of alginate lyase, making it important to summarize and discuss the current evidence. In this review, we summarized the structural features and catalytic mechanisms of alginate lyase. Molecular modification strategies, such as rational design, directed evolution, conserved domain recombination, and non-catalytic domain truncation, are also described in detail. Lastly, the application of alginate lyase is discussed. This comprehensive summary can inform future applications of alginate lyases.
Collapse
Affiliation(s)
- Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Yinxiao Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Limin Ning
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
8
|
Gao SK, Yin R, Wang XC, Jiang HN, Liu XX, Lv W, Ma Y, Zhou YX. Structure Characteristics, Biochemical Properties, and Pharmaceutical Applications of Alginate Lyases. Mar Drugs 2021; 19:628. [PMID: 34822499 PMCID: PMC8618178 DOI: 10.3390/md19110628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and β-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure-substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (S.-K.G.); (R.Y.); (X.-C.W.); (H.-N.J.); (X.-X.L.); (W.L.); (Y.M.)
| |
Collapse
|
9
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
10
|
Dawson LF, Peltier J, Hall CL, Harrison MA, Derakhshan M, Shaw HA, Fairweather NF, Wren BW. Extracellular DNA, cell surface proteins and c-di-GMP promote biofilm formation in Clostridioides difficile. Sci Rep 2021; 11:3244. [PMID: 33547340 PMCID: PMC7865049 DOI: 10.1038/s41598-020-78437-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Clostridioides difficile is the leading cause of nosocomial antibiotic-associated diarrhoea worldwide, yet there is little insight into intestinal tract colonisation and relapse. In many bacterial species, the secondary messenger cyclic-di-GMP mediates switching between planktonic phase, sessile growth and biofilm formation. We demonstrate that c-di-GMP promotes early biofilm formation in C. difficile and that four cell surface proteins contribute to biofilm formation, including two c-di-GMP regulated; CD2831 and CD3246, and two c-di-GMP-independent; CD3392 and CD0183. We demonstrate that C. difficile biofilms are composed of extracellular DNA (eDNA), cell surface and intracellular proteins, which form a protective matrix around C. difficile vegetative cells and spores, as shown by a protective effect against the antibiotic vancomycin. We demonstrate a positive correlation between biofilm biomass, sporulation frequency and eDNA abundance in all five C. difficile lineages. Strains 630 (RT012), CD305 (RT023) and M120 (RT078) contain significantly more eDNA in their biofilm matrix than strains R20291 (RT027) and M68 (RT017). DNase has a profound effect on biofilm integrity, resulting in complete disassembly of the biofilm matrix, inhibition of biofilm formation and reduced spore germination. The addition of exogenous DNase could be exploited in treatment of C. difficile infection and relapse, to improve antibiotic efficacy.
Collapse
Affiliation(s)
- Lisa F Dawson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Johann Peltier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Catherine L Hall
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark A Harrison
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Maria Derakhshan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Helen A Shaw
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- National Institute for Biological Standards and Control, Potters Bar, UK
| | - Neil F Fairweather
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
11
|
Xu D, Zhang Y, Cheng P, Wang Y, Li X, Wang Z, Yi H, Chen H. Inhibitory effect of a novel chicken-derived anti-biofilm peptide on P. aeruginosa biofilms and virulence factors. Microb Pathog 2020; 149:104514. [PMID: 32976967 DOI: 10.1016/j.micpath.2020.104514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/04/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
The antibiotic resistance of Pseudomonas aeruginosa (P. aeruginosa) is correlated with the formation of biofilms. Several studies have focused on biofilms and the treatment of biofilm infection by antimicrobial peptides (AMPs). The present study analyzed the feasibility of cCATH-2 (a chicken-derived antimicrobial peptide) as a new strategy for anti-biofilm activities. Biofilm biomass (crystal violet staining) and viability of biofilm bacteria (colony counting) were measured in P. aeruginosa PAO1 biofilm at the stage of attachment (4 h), formation (14 h), and maturation (24 h). cCATH-2 (1/2MIC) had the ability to reduce the initial attachment of viable bacteria due to decreasing planktonic bacteria. All tested concentrations of cCATH-2 (1/32-1/2MIC) significantly reduced the biomass at the biofilm formation stage. In addition, cCATH-2 (2MIC) had significant effects on the biomass and viability of bacteria of pre-biofilms, which caused significant killing (>90%) of the bacteria in the biofilm. Thus, it was confirmed that cCATH-2 could infiltrate into pre-biofilm to kill the biofilm cells, as assessed by confocal laser scanning microscopy (CLSM). Furthermore, cCATH-2 had an obvious effect on the production of the majority of the virulence factors of PAO1 biofilms, and the effect was better than that of ciprofloxacin, especially on alginate (the structural component of biofilms). These findings suggested that cCATH-2 is a putative candidate for the development of anti-biofilm and anti-infective drugs.
Collapse
Affiliation(s)
- Dengfeng Xu
- Chongqing Academy of Animal Sciences,Chongqing, 402460, China
| | - Yang Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Peng Cheng
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yidong Wang
- Hunan Reseach Center for Safety Evaluation of Drugs,Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs,Changsha, 410331, China
| | - Xiaofen Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Zhiying Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
12
|
Dharani SR, Srinivasan R, Sarath R, Ramya M. Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications. Folia Microbiol (Praha) 2020; 65:937-954. [DOI: 10.1007/s12223-020-00802-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
|
13
|
Dharshini RS, Fathima AA, Dharani SR, Ramya M. Utilization of Alginate from Brown Macroalgae for Ethanol Production by Clostridium phytofermentans. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820020040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
In vivo demonstration of Pseudomonas aeruginosa biofilms as independent pharmacological microcompartments. J Cyst Fibros 2020; 19:996-1003. [PMID: 32067957 DOI: 10.1016/j.jcf.2020.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is difficult to eradicate from the lungs of cystic fibrosis (CF) patients due to biofilm formation. Organs and blood are independent pharmacokinetic (PK) compartments. Previously, we showed in vitro biofilms behave as independent compartments impacting the pharmacodynamics. The present study investigated this phenomenon in vivo. METHODS Seaweed alginate beads with P. aeruginosa resembling biofilms, either freshly produced (D0) or incubated for 5 days (D5) were installed s.c in BALB/c mice. Mice (n = 64) received tobramycin 40 mg/kg s.c. and were sacrificed at 0.5, 3, 6, 8, 16 or 24 h after treatment. Untreated controls (n = 14) were sacrificed, correspondingly. Tobramycin concentrations were determined in serum, muscle tissue, lung tissue and beads. Quantitative bacteriology was determined. RESULTS The tobramycin peak concentrations in serum was 58.3 (±9.2) mg/L, in lungs 7.1 mg/L (±2.3), muscle tissue 2.8 mg/L (±0.5) all after 0.5 h and in D0 beads 19.8 mg/L (±3.5) and in D5 beads 24.8 mg/L (±4.1) (both 3 h). A 1-log killing of P. aeruginosa in beads was obtained at 8h, after which the bacterial level remained stable at 16 h and even increased in D0 beads at 24 h. Using the established diffusion retardation model the free tobramycin concentration inside the beads showed a delayed buildup of 3 h but remained lower than the MIC throughout the 24 h. CONCLUSIONS The present in vivo study based on tobramycin exposure supports that biofilms behave as independent pharmacological microcompartments. The study indicates, reducing the biofilm matrix would increase free tobramycin concentrations and improve therapeutic effects.
Collapse
|
15
|
Alginate Lyase Aly36B is a New Bacterial Member of the Polysaccharide Lyase Family 36 and Catalyzes by a Novel Mechanism With Lysine as Both the Catalytic Base and Catalytic Acid. J Mol Biol 2019; 431:4897-4909. [DOI: 10.1016/j.jmb.2019.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 11/22/2022]
|