1
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2025; 45:766-787. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Dusza I, Jama D, Skaradziński G, Śliwka P, Janek T, Skaradzińska A. Bacteriophages Improve the Effectiveness of Rhamnolipids in Combating the Biofilm of Candida albicans. Molecules 2025; 30:1772. [PMID: 40333731 PMCID: PMC12029421 DOI: 10.3390/molecules30081772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Biofilms formed by Candida albicans pose therapeutic challenges due to their resistance to conventional antimicrobials, highlighting the need for more effective treatments. Rhamnolipids (RLs) are biosurfactants with diverse antimicrobial properties. Bacteriophages are viruses that target specific bacterial strains. Recent studies have shown that they may affect biofilm formation by fungi and yeasts. This study investigated the combined antimicrobial effects of RLs and bacteriophages against C. albicans biofilms, focusing on their anti-adhesive and inhibitory effects on biofilm development. RT-PCR assays were used to analyze gene modulation in C. albicans biofilm formation in response to RLs and bacteriophage treatments, while hyphae formation was examined using microscopy. The results showed that RLs-bacteriophage combinations significantly reduced biofilm formation compared to individual treatments. A combination of 200 mg/L RLs with bacteriophage BF9 led to a 94.8% reduction in biofilm formation. In a subsequent model, the same RL concentration with bacteriophage LO5/1f nearly eliminated biofilm formation (~96%). Gene expression analysis revealed downregulation of key biofilm-associated genes when Candida cells were treated with 200 mg/L RLs and four bacteriophages (BF17, LO5/1f, JG004, FD). These results show the potential of RL and bacteriophage combinations in combating C. albicans biofilms, presenting a promising therapeutic approach against resilient infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| |
Collapse
|
3
|
Kim S, Jin YH, Mah JH. Inhibitory effects of garlic, cinnamon, and rosemary on viability, heat resistance, and biofilm formation of Bacillus cereus spores in the broth of a fermented soybean paste stew, Cheonggukjang jjigae. Food Res Int 2025; 206:116078. [PMID: 40058924 DOI: 10.1016/j.foodres.2025.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Foods prepared through heating, including broths, have the potential and risk of survival of Bacillus cereus, which has the ability to form spores and biofilms. This study evaluated the efficacy of various natural products (particularly spices) in mitigating B. cereus contamination in Cheonggukjang jjigae (CJ) broth. The following characteristics of B. cereus were examined: viability of vegetative cells (including other pathogenic bacteria) and planktonic spores, heat resistance of planktonic spores and spores in intact biofilms, and biofilm formation and persistence. In an antimicrobial test to evaluate the inhibitory effects of spice and cruciferous vegetable extracts on B. cereus CH3 vegetative cells, cinnamon, garlic, and rosemary extracts were selected as they have shown significant inhibitory effects, with inhibition zones of 20-29 mm in diameter at the highest concentration tested (160 mg/mL, unless otherwise stated). These spice extracts also exhibited antimicrobial activity against other foodborne pathogens, including Staphylococcus aureus, Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7. Garlic extract showed the greatest inhibitory effect on the viability and heat resistance of planktonic spores of B. cereus CH3, and cinnamon and rosemary extracts exhibited similar effects. Garlic extract reduced B. cereus CH3 spore counts in phosphate buffer solution (PBS) and CJ broth by 20.22 % and 14.08 %, respectively, compared to control (treated with the same ethanol amount instead of the extract), and effectively weakened spore heat resistance, reducing the D100°C-values of planktonic spores of B. cereus CH3 in PBS and CJ broth by 32.89 % and 23.08 %, respectively, compared to control. As for the characteristics related to biofilm, garlic extract showed the highest inhibitory effect on biofilm formation and persistence and heat resistance of spores in intact biofilms, followed by rosemary and cinnamon extracts. All three spice extracts completely inhibited biofilm formation even at the lowest concentration (20 mg/mL) at the early stage of biofilm formation. They completely eradicated biofilm persistence formed in brain heart infusion (BHI) and CJ broth at the highest concentration. A high garlic extract concentration (80 mg/mL) also reduced the D100°C-values of spores in biofilms formed in BHI and CJ broth by 16.34 % and 9.00 %, respectively, compared to control. Taken together, garlic extract was most effective in mitigating B. cereus contamination in a concentration-dependent manner in in vitro-menstrua and CJ broth. This study may provide one of the promising strategies to reduce the risk of B. cereus in soybean stews such as CJ.
Collapse
Affiliation(s)
- Sohyeon Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Young Hun Jin
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
4
|
Wu Q, Lu Z, Wang L, Peng S, Wang Z, Qiu Y, Liao Z, Wang Y, Qin X. Konjac glucomannan/xanthan gum hydrogels loaded with metal-phenolic networks encapsulated probiotic to promote infected wound healing. Carbohydr Polym 2025; 353:123243. [PMID: 39914948 DOI: 10.1016/j.carbpol.2025.123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 05/07/2025]
Abstract
Probiotic hydrogel systems have been reported to promote healing of infected wounds by secreting functional bioactive secondary metabolites (BSM) of probiotics. Herein, Bacillus subtilis (B. subtilis), a probiotic, are encapsulated via a metal-phenolic networks (MPNs) and loaded into konjac glucomannan/xanthan gum-based hydrogels for wound repair. This MPNs were designed and composed of Bletilla striata polysaccharide, procyanidin, Ca2+, which can enhance the cross-linking through hydrogen bonding to form the KGXM-PCB@Bsubtilis hydrogel, protects the probiotic from antibiotics and prevents B. subtilis from escaping into the wound microenvironment, thereby avoiding exposure to a possible threat. Moreover, the KGXM-PCB@Bsubtilis hydrogel not only exhibits superior mechanical characteristics and biocompatibility, but also shows excellent antimicrobial, antioxidant and anti-inflammatory properties that can inhibit the growth of Staphylococcus aureus, remove the active oxygens, and promote cell migration. In vivo experiments showed that after treatment with the KGXM-PCB@Bsubtilis hydrogel, the wound healing rate reached 98.31 % on day 14, and collagen deposition was highly expressed (81.11 ± 2.20 %), which promoted wound healing and regeneration of new tissue. This study provides new ideas for developing wound dressings based on living bacterial hydrogels.
Collapse
Affiliation(s)
- Qingxin Wu
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Zhengfeng Lu
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Lantao Wang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Shuting Peng
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Zhengxiao Wang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Yan Qiu
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Zhengping Liao
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Yarong Wang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China.
| |
Collapse
|
5
|
Tancredi M, Carandente Coscia C, Russo Krauss I, D’Errico G. Antioxidant Properties of Biosurfactants: Multifunctional Biomolecules with Added Value in Formulation Chemistry. Biomolecules 2025; 15:308. [PMID: 40001611 PMCID: PMC11852826 DOI: 10.3390/biom15020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Biosurfactants, amphiphilic metabolites produced by bacteria and yeasts, fulfill a variety of functions in microbial life. They exhibit a well-recognized multifunctionality, spanning from the reduction in surface tension to specific biological activities, including antimicrobial, antiviral, anti-inflammatory, and anticancer effects. These compounds have the potential to serve as environmentally friendly alternatives to synthetic surfactants in industrial formulations, where they could act as emulsifiers and wetting agents. The exploitation of their full potentiality could be a significant added value. Biosurfactants are often cited as effective antioxidants. However, experimental evidence for their antioxidant activity/capacity is sparse. To shed light on the subject, in this review we collect and critically examine all the available literature data for each of the major classes of microbial biosurfactants: rhamnolipids, mannosylerythritol lipids, sophorolipids, and lipopeptides. Despite the variability arising from the diverse composition and polydispersity of the samples analyzed, along with the variety of testing methodologies, the findings consistently indicate a moderate-to-strong antioxidant capacity. Several hypotheses are advanced about the molecular mechanisms behind this action; however, further studies are needed to gain a molecular understanding. This knowledge would fully define the biological roles of biosurfactants and is a prerequisite for the development of innovative formulations based on the valorization of their antioxidant properties.
Collapse
Affiliation(s)
- Matilde Tancredi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 4, I-80126 Naples, Italy; (M.T.); (C.C.C.); (I.R.K.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50019 Florence, Italy
| | - Carlo Carandente Coscia
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 4, I-80126 Naples, Italy; (M.T.); (C.C.C.); (I.R.K.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50019 Florence, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 4, I-80126 Naples, Italy; (M.T.); (C.C.C.); (I.R.K.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50019 Florence, Italy
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 4, I-80126 Naples, Italy; (M.T.); (C.C.C.); (I.R.K.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50019 Florence, Italy
| |
Collapse
|
6
|
Sonbhadra S, Mishra A, Pandey LM. Nature's Marvels: Exploring the Multifaceted Applications of Surfactin and Rhamnolipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3731-3743. [PMID: 39924911 DOI: 10.1021/acs.langmuir.4c04093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Biosurfactants are fascinating amphiphilic molecules synthesized by living sources, such as bacteria and fungi. Biosurfactants can be lipopeptides, glycolipids, lipopolysaccharides, phospholipids, proteins, and polymeric substances in nature. With their unique surface-active properties, these molecules play a vital role in numerous industrial, environmental, and biomedical applications. They are stable molecules that improve biointerfacial interactions, i.e., alter wettability properties and reduce surface tension, enabling efficient emulsification, foaming, and dispersion. For instance, surfactin (a major lipopeptide) is capable of effectively reducing the surface tension of water from 72.80 ± 0.5 to 24.09 ± 0.11 mN/m and reducing the interfacial tension to as low as 0.056 mN/m (for an oil-water interface). Rhamnolipids (a significant glycolipid) demonstrate remarkable stability across a wide range of temperatures (30 to 100 °C), pH (4-12), and salinity (0 to 9% w/v NaCl). For example, the bioremediation of hydrophobic oil molecules happens through emulsifying and solubilizing, along with improving cell surface hydrophobicity. Furthermore, these biosurfactants have also emerged as nature's elegant entity in the food and pharmaceutical sectors by exhibiting excellent antimicrobial, antioxidant, anti-inflammatory, and antitumor properties. The ongoing pursuit of research and innovation of these magic molecules assures a paradigm shift toward a greener and more sustainable future.
Collapse
Affiliation(s)
- Smrity Sonbhadra
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Anurag Mishra
- Centre for the Environment, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
- Centre for the Environment, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Chowdhury AA, Basak N, Roy T, Paul S, Yadav AN, Ali SI, Islam E. Production Optimization and Potential Bioactivities of Biosurfactant from PET Surface-Dwelling Oligotrophic Bacillus sp. EIKU23. Curr Microbiol 2025; 82:113. [PMID: 39903285 DOI: 10.1007/s00284-025-04088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
The growing demand for efficient biosurfactants in various industrial sectors has driven the search for sustainable alternatives, enhanced production methods, and low-cost substrates. This study aimed to optimize the production, characterize, and assess the bioactivities of biosurfactants produced by an oligotrophic PET plastic-associated Bacillus sp. EIKU23. The bacterium yielded the highest amount of biosurfactant after 6 days of incubation in Luria broth medium (pH 7.0) at 30 °C without any additives. FTIR and NMR analyses confirmed the lipopeptide nature of the biosurfactant, which exhibited a negative charge. The biosurfactant remained stable at 4 °C-80 °C and pH 7.0-8.0 for at least 7 days. It exhibited antioxidant properties comparable to the ascorbic acid standard, with efficacy ranging from 23.61% to 89.96% in different antioxidant assays. It showed antibacterial activity against both Gram-positive and Gram-negative potential pathogens. The biosurfactant induced substantial DNA leakage at a concentration of 10 mg/mL and eradicated approximately 48.4% of pre-formed Staphylococcus aureus biofilm and showed anti-attachment behaviour to a polystyrene surface. Additionally, the biosurfactant precipitated up to 98.7% uranium from an aqueous solution, demonstrating its potential for bioremediation. These findings suggest that the biosurfactant produced by Bacillus sp. EIKU23 is multifunctional with promising applications in bioremediation, antibacterial activity, antibiofilm formation, and antioxidant defense, offering a novel solution for sustainable industrial practices and plastic waste management.
Collapse
Affiliation(s)
- Atif Aziz Chowdhury
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100, Bolzano, Italy
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Taniya Roy
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sayantani Paul
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
8
|
Sonbhadra S, Pandey LM. Isolation, identification, and characterization of Bacillus subtilis SMP-2 from panitenga and exploring its potential for biosurfactant production. FOOD AND BIOPRODUCTS PROCESSING 2025; 149:144-157. [DOI: 10.1016/j.fbp.2024.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
9
|
Tavares J, Paixão SM, Silva TP, Alves L. New Insights on Gordonia alkanivorans Strain 1B Surface-Active Biomolecules: Gordofactin Properties. Molecules 2024; 30:1. [PMID: 39795060 PMCID: PMC11720751 DOI: 10.3390/molecules30010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, Gordonia alkanivorans strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer. This study focuses on the characterization of the properties of the lipoglycopeptide BSs/BEs produced by strain 1B, henceforth referred to as gordofactin, to better understand its potential and future applications. Strain 1B was cultivated in a chemostat using fructose as a carbon source to stimulate gordofactin production, and different purification methods were tested. The most purified sample, designated as extracted gordofactin, after lyophilization, presented a specific emulsifying activity of 9.5 U/mg and a critical micelle concentration of 13.5 mg/L. FT-IR analysis revealed the presence of basic hydroxyl, carboxyl, ether, amine/amide functional groups, and alkyl aliphatic chains, which is consistent with its lipoglycopeptide nature (60% lipids, 19.6% carbohydrates, and 9% proteins). Gordofactin displayed remarkable stability and retained emulsifying activity across a broad range of temperatures (30 °C to 80 °C) and pH (pH 3-12). Moreover, a significant tolerance of gordofactin emulsifying activity (EA) to a wide range of NaCl concentrations (1 to 100 g/L) was demonstrated. Although with a great loss of EA in the presence of NaCl concentrations above 2.5%, gordofactin could still tolerate up to 100 g/L NaCl, maintaining about 16% of its initial EA for up to 7 days. Furthermore, gordofactin exhibited growth inhibition against both Gram-positive and Gram-negative bacteria, and it demonstrated concentration-dependent free radical scavenging activity for 2,2-diphenyl-1-picrylhydrazyl (IC50 ≈ 1471 mg/L). These promising features emphasize the robustness and potential of gordofactin as an eco-friendly BS/BE alternative to conventional surfactants/emulsifiers for different industrial applications.
Collapse
Affiliation(s)
- João Tavares
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
- RCM2+–Centro de Investigação em Gestão de Ativos e Engenharia de Sistemas, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Susana M. Paixão
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Tiago P. Silva
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Luís Alves
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
10
|
Jeong GJ, Kim DK, Park DJ, Cho KJ, Kim MU, Oh DK, Tabassum N, Jung WK, Khan F, Kim YM. Control of Staphylococcus aureus infection by biosurfactant derived from Bacillus rugosus HH2: Strain isolation, structural characterization, and mechanistic insights. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136402. [PMID: 39509879 DOI: 10.1016/j.jhazmat.2024.136402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Novel antimicrobials are urgently needed to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. This study explores the potential of biosurfactants derived from Bacillus rugosus HH2 as a novel antibacterial agent against MRSA. The biosurfactant, identified as surfactin, demonstrated surface-active properties, reducing surface tension to 37.63 mN/m and lowering contact angles in a concentration-dependent manner. It remained stable across a wide range of pH (4-10), temperatures (30-80 °C), and salinity levels (3-18 %). The biosurfactant inhibited the growth of both methicillin-sensitive S. aureus and MRSA, with minimum inhibitory concentrations ranging from 128 to 256 μg/mL. Additionally, it showed anti-biofilm activity, preventing biofilm formation and dispersing established biofilms. Field-emission scanning electron microscopy revealed that the biosurfactant disrupted bacterial cell membranes, leading to leakage. Furthermore, it reduced the production of virulence factors in S. aureus, including hemolysin and lipase. Transcriptomic analysis indicated downregulation of genes associated with quorum sensing and cell adhesion in MRSA. Molecular docking studies showed strong interactions between surfactin and key MRSA proteins, underscoring its potential to overcome antibiotic resistance. Biocompatibility was confirmed through in vitro cytotoxicity and in vivo phytotoxicity tests. In summary, this study presents surfactin as a promising novel antibacterial agent against MRSA, providing insights into its mechanisms of action.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Do-Kyun Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Dong-Joo Park
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Ung Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Do Kyung Oh
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
11
|
Nguyen T, Chen X, Ma L, Feng Y. Mycotoxin Biodegradation by Bacillus Bacteria-A Review. Toxins (Basel) 2024; 16:478. [PMID: 39591233 PMCID: PMC11598562 DOI: 10.3390/toxins16110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various types of fungi that are known to contaminate various food products; their presence in the food chain poses significant risks to human and animal health and leads to enormous economic losses in the food and feed industry worldwide. Ensuring food safety and quality by detoxifying mycotoxin is therefore of paramount importance. Several procedures to control fungal toxins have been extensively investigated, such as preventive measures, physical and chemical methods, and biological strategies. In recent years, microbial degradation of mycotoxins has attracted much attention due to its reliability, efficiency, and cost-effectiveness. Notably, bacterial species from the Bacillus genus have emerged as promising candidates for mycotoxin decontamination owing to their diverse metabolic capabilities and resilience in harsh environmental conditions. This review manuscript aims to provide a summary of recent studies on the biodegradation of fungal toxins by Bacillus bacteria, thereby illustrating their potential applications in the development of mycotoxin-degrading products.
Collapse
Affiliation(s)
- Thanh Nguyen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
| | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, Brisbane, QLD 4110, Australia;
| | - Linlin Ma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
12
|
Tan X, Ma B, Wang X, Cui F, Li X, Li J. Characterization of Exopolysaccharides from Lactiplantibacillus plantarum PC715 and Their Antibiofilm Activity Against Hafnia alvei. Microorganisms 2024; 12:2229. [PMID: 39597618 PMCID: PMC11596824 DOI: 10.3390/microorganisms12112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Exopolysaccharides (EPSs) secreted by lactic acid bacteria have the potential to enhance human health by showing various biological functions. This study investigated the biological role and antibiofilm properties of EPS715, a new neutral EPS produced by pickled vegetables originating from Lactobacillus plantarum PC715. The results indicate that EPS715 is primarily composed of rhamnose, glucose, and mannose. Its molecular weight (Mw) is 47.87 kDa, containing an α-glucoside linkage and an α-pyranose ring. It showed an amorphous morphology without a triple helix structure. Furthermore, EPS715 showed improved antioxidant activity. Specifically, its scavenging capacity of ABTS+ radicals, DPPH radicals, and the hydroxyl (·OH) reduction capacity at 5 mg/mL was 98.64 ± 2.70%, 97.37 ± 0.79%, and 1.64 ± 0.05%, respectively. Its maximal scavenging capacity was >40%, and the hydroxyl (·OH) radical scavenging ability was dose-dependent. Moreover, the biofilm of various pathogens including S. aureus, B. cereus, S. saprophyticus, Acinetobacter spp., and H. alvei was substantially dispersed and affected by EPS715, with a maximum inhibition rate of 78.17% for H. alvei. The possible mechanism by which EPS715 shows antibiofilm properties against the H. alvei may be attributed to its effects on the auto-aggregation, hydrophilic characteristics, and motility of Hafnia spp. Thus, EPS715 has significant antioxidant and antibiofilm characteristics that may hold substantial potential for applications in food and medicinal products.
Collapse
Affiliation(s)
- Xiqian Tan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Bingyu Ma
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xiaoqing Wang
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Fangchao Cui
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
13
|
Essghaier B, Naccache C, Ben-Miled H, Mottola F, Ben-Mahrez K, Mezghani Khemakhem M, Rocco L. Discovery and characterization of novel lipopeptides produced by Virgibacillus massiliensis with biosurfactant and antimicrobial activities. 3 Biotech 2024; 14:258. [PMID: 39372494 PMCID: PMC11452367 DOI: 10.1007/s13205-024-04100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
The study aimed to evaluate the biosurfactants (BSs) production by SM-23 strain of Virgibacillus identified by phenotypical and WGS analysis as Virgibacillus massiliensis. We first demonstrated the lipopeptides production by Virgibacillus massiliensis specie and studied their biochemical and molecular analysis as well as their biological potential. The GC-MS analysis indicated that methyl.2-hyroxydodecanoate was the major fatty acid compound with 33.22%. The maximum BSs production was obtained in LB medium supplemented by 1% olive oil (v/v) at 30 °C and 5% NaCl with 1.92 g/l. The obtained results revealed the significant biosurfactants/bioemulsifier potential compared to triton X100 with E24 of 100%, and an emulsification stability SE of 83%. The lipopeptides types were identified by FTIR analysis. A strong antimicrobial action was observed by the produced lipopeptides by the agar diffusion method against E.coli, K. pneumoniae, S. aureus, Fusarium sp, Alternaria sp, and Phytophtora sp. The complete genome sequencing showed genes involved in the synthesis of multiple compounds identified as amphipathic cyclic lipopeptides such as locillomycin/locillomycin B/locillomycin C and bacillibactin. Our results highlighted significant lipopeptides properties displayed by V. massiliensis that can be exploited to develop a novel strategy in the formulation of natural biocidal and fungicidal agents. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04100-9.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Chahnez Naccache
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Houda Ben-Miled
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Filomena Mottola
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| | - Kamel Ben-Mahrez
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Maha Mezghani Khemakhem
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Lucia Rocco
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|
14
|
Thakur V, Baghmare P, Verma A, Verma JS, Geed SR. Recent progress in microbial biosurfactants production strategies: Applications, technological bottlenecks, and future outlook. BIORESOURCE TECHNOLOGY 2024; 408:131211. [PMID: 39102966 DOI: 10.1016/j.biortech.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Biosurfactants are surface-active compounds produced by numerous microorganisms. They have gained significant attention due to their wide applications in food, pharmaceuticals, cosmetics, agriculture, and environmental remediation. The production efficiency and yield of microbial biosurfactants have improved significantly through the development and optimization of different process parameters. This review aims to provide an in-depth analysis of recent trends and developments in microbial biosurfactant production strategies, including submerged, solid-state, and co-culture fermentation. Additionally, review discusses biosurfactants' applications, challenges, and future perspectives. It highlights their advantages over chemical surfactants, emphasizing their biodegradability, low toxicity, and diverse chemical structures. However, the critical challenges in commercializing include high production costs and low yield. Strategies like genetic engineering, process optimization, and downstream processing, have been employed to address these challenges. The review provides insights into current commercial producers and highlights future perspectives such as novel bioprocesses, efficient microbial strains, and exploring their applications in emerging industries.
Collapse
Affiliation(s)
- Vishal Thakur
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Pawan Baghmare
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow 226026, India
| | - Jitendra Singh Verma
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
| | | |
Collapse
|
15
|
Hongchao D, Ma L, Xu Z, Soteyome T, Yuan L, Yang Z, Jiao XA. Invited review: Role of Bacillus licheniformis in the dairy industry- friends or foes? J Dairy Sci 2024:S0022-0302(24)00904-4. [PMID: 38851582 DOI: 10.3168/jds.2024-24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bacillus licheniformis is one of the major spore-forming bacteria with great genotypic diversity in raw milk, dairy ingredients, final dairy products, and is found throughout the dairy processing continuum. Though being widely used as a probiotic strain, this species also serves as a potential risk in the dairy industry based on its roles in foodborne illness and dairy spoilage. Biofilm formation of B. licheniformis in combined with the heat resistance of its spores, make it impossible to prevent the presence of B. licheniformis in final dairy products by traditional cleaning and disinfection procedures. Despite the extensive efforts on the identification of B. licheniformis from various dairy samples, no reviews have been reported on both hazard and benefits of this spore-former. This review discusses the prevalence of B. licheniformis from raw milk to commercial dairy products, biofilm formation and spoilage potential of B. licheniformis, and its potential prevention methods. In addition, the potential benefits of B. licheniformis in the dairy industry were also summarized.
Collapse
Affiliation(s)
- Dai Hongchao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| | - Lili Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| |
Collapse
|
16
|
Dini S, Bekhit AEDA, Roohinejad S, Vale JM, Agyei D. The Physicochemical and Functional Properties of Biosurfactants: A Review. Molecules 2024; 29:2544. [PMID: 38893420 PMCID: PMC11173842 DOI: 10.3390/molecules29112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Surfactants, also known as surface-active agents, have emerged as an important class of compounds with a wide range of applications. However, the use of chemical-derived surfactants must be restricted due to their potential adverse impact on the ecosystem and the health of human and other living organisms. In the past few years, there has been a growing inclination towards natural-derived alternatives, particularly microbial surfactants, as substitutes for synthetic or chemical-based counterparts. Microbial biosurfactants are abundantly found in bacterial species, predominantly Bacillus spp. and Pseudomonas spp. The chemical structures of biosurfactants involve the complexation of lipids with carbohydrates (glycolipoproteins and glycolipids), peptides (lipopeptides), and phosphates (phospholipids). Lipopeptides, in particular, have been the subject of extensive research due to their versatile properties, including emulsifying, antimicrobial, anticancer, and anti-inflammatory properties. This review provides an update on research progress in the classification of surfactants. Furthermore, it explores various bacterial biosurfactants and their functionalities, along with their advantages over synthetic surfactants. Finally, the potential applications of these biosurfactants in many industries and insights into future research directions are discussed.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Shahin Roohinejad
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Jim M. Vale
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| |
Collapse
|
17
|
C FC, T K. Advances in stabilization of metallic nanoparticle with biosurfactants- a review on current trends. Heliyon 2024; 10:e29773. [PMID: 38699002 PMCID: PMC11064090 DOI: 10.1016/j.heliyon.2024.e29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Recently, research based on new biomaterials for stabilizing metallic nanoparticles has increased due to their greater environmental friendliness and lower health risk. Their stability is often a critical factor influencing their performance and shelf life. Nowadays, the use of biosurfactants is gaining interest due to their sustainable advantages. Biosurfactants are used for various commercial and industrial applications such as food processing, therapeutic applications, agriculture, etc. Biosurfactants create stable coatings surrounding nanoparticles to stop agglomeration and provide long-term stability. The present review study describes a collection of important scientific works on stabilization and capping of metallic nanoparticles as biosurfactants. This review also provides a comprehensive overview of the intrinsic properties and environmental aspects of metal nanoparticles coated with biosurfactants. In addition, future methods and potential solutions for biosurfactant-mediated stabilization in nanoparticle synthesis are also highlighted. The objective of this study is to ensure that the stabilized nanoparticles exhibit biocompatible properties, making them suitable for applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Kamalesh T
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| |
Collapse
|
18
|
Zhang J, Wu Y, Li W, Xie H, Li J, Miao Y, Yang Z, Zhou Y, Wang X. Effects of a novel Bacillus subtilis GXYX crude lipopeptide against Salmonella enterica serovar Typhimurium infection in mice. Heliyon 2024; 10:e28219. [PMID: 38524560 PMCID: PMC10958701 DOI: 10.1016/j.heliyon.2024.e28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
The increased rate of antibiotic resistance strongly limits the resolution of Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Therefore, new strategies to control bacterial infections are urgently needed. Bacillus subtilis (B. subtilis) and its metabolites are desirable antibacterial agents. Here, we aimed to evaluate the antibacterial activity of the novel B. subtilis strain GXYX (No: PRJNA940956) crude lipopeptide against S. Typhimurium. In vitro, GXYX crude lipopeptides affected S. Typhimurium biofilm formation and swimming and attenuated the adhesion and invasion abilities of S. Typhimurium toward BHK-21 cells; in addition, it inhibited the mRNA expression of the filA, filC, csgA, and csgB genes, which are related to the adhesion and invasion ability of S. Typhimurium. In vivo, pretreatment with GXYX crude lipopeptide via intragastric administration improved the survival rate by 30%, which was related to reductions in organ bacterial loads and clinical signs in mice. Intragastric administration of GXYX crude lipopeptide significantly downregulated the mRNA levels of TNF-α, IL-1β, IL-12 and IL-6 in response to S. Typhimurium-induced inflammation compared with intraperitoneal injection. Moreover, it significantly improved the intestinal barrier-related gene (ZO-1, claudin-1, occludin-1) mRNA levels in intestinal tissue damaged by S. Typhimurium infection. In conclusion, GXYX crude lipopeptides were effective at reducing S. Typhimurium colonization, laying a foundation for the further development of novel antibacterial agents.
Collapse
Affiliation(s)
- Jingya Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifan Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Honglin Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
19
|
Cerqueira Dos Santos S, Araújo Torquato C, de Alexandria Santos D, Orsato A, Leite K, Serpeloni JM, Losi-Guembarovski R, Romão Pereira E, Dyna AL, Lopes Barboza MG, Fernandes Arakawa MH, Pires Bitencourt JA, da Cruz Silva S, da Silva Sá GC, Dias Rodrigues P, Quintella CM, Faccin-Galhardi LC. Production and characterization of rhamnolipids by Pseudomonas aeruginosa isolated in the Amazon region, and potential antiviral, antitumor, and antimicrobial activity. Sci Rep 2024; 14:4629. [PMID: 38472312 DOI: 10.1038/s41598-024-54828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Biosurfactants encompass structurally and chemically diverse molecules with surface active properties, and a broad industrial deployment, including pharmaceuticals. The interest is growing mainly for the low toxicity, biodegradability, and production from renewable sources. In this work, the optimized biosurfactant production by Pseudomonas aeruginosa BM02, isolated from the soil of a mining area in the Brazilian Amazon region was assessed, in addition to its antiviral, antitumor, and antimicrobial activities. The optimal conditions for biosurfactant production were determined using a factorial design, which showed the best yield (2.28 mg/mL) at 25 °C, pH 5, and 1% glycerol. The biosurfactant obtained was characterized as a mixture of rhamnolipids with virucidal properties against Herpes Simplex Virus, Coronavirus, and Respiratory Syncytial Virus, in addition to antimicrobial properties against Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecium), at 50 µg/mL. The antitumor activity of BS (12.5 µg/mL) was also demonstrated, with potential selectivity in reducing the proliferation of breast tumor cells, after 1 min of exposure. These results demonstrate the importance of studying the interconnection between cultivation conditions and properties of industrially important compounds, such as rhamnolipid-type biosurfactant from P. aeruginosa BM02, a promising and sustainable alternative in the development of new antiviral, antitumor, and antimicrobial prototypes.
Collapse
Affiliation(s)
- Sidnei Cerqueira Dos Santos
- Biology College, Federal University of Southern and Southeast Pará (Unifesspa), Marabá, PA, 68500-000, Brazil.
| | - Chayenna Araújo Torquato
- Biology College, Federal University of Southern and Southeast Pará (Unifesspa), Marabá, PA, 68500-000, Brazil
| | | | - Alexandre Orsato
- Department of Chemistry, State University of Londrina (UEL), Londrina, PR, 86057-970, Brazil
| | - Karoline Leite
- Department of Chemistry, State University of Londrina (UEL), Londrina, PR, 86057-970, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, State University of Londrina (UEL), Londrina, PR, 86057-970, Brazil
| | | | - Erica Romão Pereira
- Department of General Biology, State University of Londrina (UEL), Londrina, PR, 86057-970, Brazil
| | - André Luiz Dyna
- Department of Microbiology, State University of Londrina (UEL), Londrina, PR, 86057-970, Brazil
| | | | | | | | - Sebastião da Cruz Silva
- Chemistry College, Federal University of Southern and Southeast Pará (Unifesspa), Marabá, PA, 68500-000, Brazil
| | - Giulian César da Silva Sá
- Biology College, Federal University of Southern and Southeast Pará (Unifesspa), Marabá, PA, 68500-000, Brazil
| | - Pamela Dias Rodrigues
- Department of General and Inorganic Chemistry, Federal University of Bahia (UFBA), Salvador, BA, 40170-115, Brazil
| | - Cristina Maria Quintella
- Department of General and Inorganic Chemistry, Federal University of Bahia (UFBA), Salvador, BA, 40170-115, Brazil
| | | |
Collapse
|
20
|
Venkataraman S, Rajendran DS, Vaidyanathan VK. An insight into the utilization of microbial biosurfactants pertaining to their industrial applications in the food sector. Food Sci Biotechnol 2024; 33:245-273. [PMID: 38222912 PMCID: PMC10786815 DOI: 10.1007/s10068-023-01435-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 01/16/2024] Open
Abstract
Microbial biosurfactants surpass synthetic alternatives due to their biodegradability, minimal toxicity, selective properties, and efficacy across a wide range of environmental conditions. Owing to their remarkable advantages, biosurfactants employability as effective emulsifiers and stabilizers, antimicrobial and antioxidant attributes, rendering them for integration into food preservation, processing, formulations, and packaging. The biosurfactants can also be derived from various types of food wastes. Biosurfactants are harnessed across multiple sectors within the food industry, ranging from condiments (mayonnaise) to baked goods (bread, muffins, loaves, cookies, and dough), and extending into the dairy industry (cheese, yogurt, and fermented milk). Additionally, their impact reaches the beverage industry, poultry feed, seafood products like tuna, as well as meat processing and instant foods, collectively redefining each sector's landscape. This review thoroughly explores the multifaceted utilization of biosurfactants within the food industry as emulsifiers, antimicrobial, antiadhesive, antibiofilm agents, shelf-life enhancers, texture modifiers, and foaming agents.
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
21
|
Qin S, Xiao X, Dai Z, Zhao G, Cui Z, Wu Y, Yang C. Effects of Bacillus licheniformis on growth performance, immune and antioxidant functions, and intestinal microbiota of broilers. Poult Sci 2024; 103:103210. [PMID: 37980737 PMCID: PMC10684393 DOI: 10.1016/j.psj.2023.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/21/2023] Open
Abstract
Bacillus licheniformis (BL) has been widely regarded as an important growth promoter in recent years. However, its usage in animal industry still needs more foundations. The aim of our study was to study the effects of BL on the growth performance, immunity, oxidative function and intestinal flora of broilers. A total of 760 one-day-old yellow-feathered broilers were randomly divided into 4 groups with 10 replicates per group and 19 broilers per replicate. The broilers in the control group (CON) were fed with basal diet. The treatment groups were supplemented with 250 mg/kg (BL250), 500 mg/kg (BL500) and 750 mg/kg (BL750) BL in the basal diet for 70 d. Results showed that BL groups significantly increased the body weight (BW) and average daily gain (ADG), decreased average daily feed intake (ADFI) and feed conversion ratio (FCR). In addition, the spleen and bursa indexes were higher in the BL groups than that in the CON group at d 70. BL supplementation also markedly increased the levels of immunoglobulins Y (IgY), IgA and anti-inflammatory interleukin 10 (IL-10), reduced the levels of proinflammatory IL-1β, tumor necrosis factor α (TNF-α) and IL-2 in the serum at 70 d in a concentration-dependent manner. Besides, BL addition significantly increased the levels of series antioxidant enzymes including total antioxidant capacity (T-AOC), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT), and decreased the level of malondialdehyde (MDA) in the serum. Moreover, BL groups showed an obvious increase of isobutyric acid markedly and BL500 group significantly promoted the level of isovaleric acid in cecal contents of broilers. Finally, microbial analysis showed that BL supplementation presented visual separations of microbial composition and increased the relative abundance of p_Proteobacteria, g_Elusimicrobium, and g_Parasutterella comparing with the CON group. Together, this study inferred that dietary BL supplementation improved the growth performance, immune and antioxidant functions, changed the intestinal microflora structure and metabolites of yellow-feathered broilers, which laid a good basis for the application of probiotics in the future.
Collapse
Affiliation(s)
- Songke Qin
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Xiao Xiao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Zhenglie Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Guiling Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Zhenchuan Cui
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China.
| |
Collapse
|
22
|
Sabino YNV, Araújo Domingues KCD, Mathur H, Gómez-Mascaraque LG, Drouin G, Martínez-Abad A, Tótola MR, Abreu LM, Cotter PD, Mantovani HC. Exopolysaccharides produced by Bacillus spp. inhibit biofilm formation by Staphylococcus aureus strains associated with bovine mastitis. Int J Biol Macromol 2023; 253:126689. [PMID: 37678679 DOI: 10.1016/j.ijbiomac.2023.126689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Bovine mastitis is a costly disease in the dairy sector worldwide. Here the objective was to identify and characterize anti-biofilm compounds produced by Bacillus spp. against S. aureus associated with bovine mastitis. Results showed that cell-free supernatants of three Bacillus strains (out of 33 analysed) reduced S. aureus biofilm formation by approximately 40 % without affecting bacterial growth. The anti-biofilm activity was associated with exopolysaccharides (EPS) secreted by Bacillus spp. The EPS decreased S. aureus biofilm formation in a dose-dependent manner, inhibiting biofilm formation by 83 % at 1 mg/mL. The EPS also showed some biofilm disruption activity (up to 36.4 %), which may be partially mediated by increased expression of the aur gene. The characterization of EPS produced by Bacillus velezensis 87 and B. velezensis TR47II revealed macromolecules with molecular weights of 31.2 and 33.7 kDa, respectively. These macromolecules were composed mainly of glucose (mean = 218.5 μg/mg) and mannose (mean = 241.5 μg/mg) and had similar functional groups (pyranose ring, beta-type glycosidic linkage, and alkynes) as revealed by FT-IR. In conclusion, this study shows the potential applications of EPS produced by B. velezensis as an anti-biofilm compound that could contribute to the treatment of bovine mastitis caused by S. aureus.
Collapse
Affiliation(s)
| | | | - Harsh Mathur
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | - Gaetan Drouin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | - Marcos Rogério Tótola
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lucas Magalhães Abreu
- Department of Phytopathology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Hilario Cuquetto Mantovani
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
23
|
Xie Y, Gong L, Liu S, Yan J, Zhao S, Xia C, Li K, Liu G, Mazhar MW, Zhao J. Antioxidants improve β-cypermethrin degradation by alleviating oxidative damage and increasing bioavailability by Bacillus cereus GW-01. ENVIRONMENTAL RESEARCH 2023; 236:116680. [PMID: 37500036 DOI: 10.1016/j.envres.2023.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Microbial degradation of pesticide residues has the potential to reduce their hazards to human and environmental health. However, in some cases, degradation can activate pesticides, making them more toxic to microbes. Here we report on the β-cypermethrin (β-CY) toxicity to Bacillus cereus GW-01, a recently described β-CY degrader, and effects of antioxidants on β-CY degradation. GW-01 exposed to β-CY negatively affected the growth rate. The highest maximum specific growth rate (μm) appeared at 25 mg/L β-CY. β-CY induced the oxidative stress in GW-01. The activities of superoxide dismutase (SOD), catalyse (CAT), and glutathione-S-transferase (GST) were significantly higher than that in control (p < 0.01); but they are decreased as growth phase pronged, which is contrary to the β-CY degradation by GW-01 cells obtaining from various growth phase. Ascorbic acid (Vc), tea polyphenols (TP), and adenosine monophosphate (AMP) improved the degradation through changing the physiological property of GW-01. TP and AMP prompted the expression of gene encoding β-CY degradation in GW-01, while Vc does the opposite. Biofilm formation was significantly inhibited by β-CY, while was significantly enhanced by certain concentrations of TP and AMP (p < 0.05); while cell surface hydrophobicity (CSH) was negatively associated with β-CY concentrations from 25 to 100 mg/L, and these 4 antioxidants all boosted the CSH. Cells grown with β-CY had lower levels of saturated fatty acids but increased levels of some unsaturated and branched fatty acids, and these antioxidants alleviated the FA composition changes and gene expression related with FA metabolism. We also mined transcriptome analyses at lag, logarithmic, and stationary phases, and found that β-CY induced oxidative stress. The objective of this study was to elaborate characteristics in relation to the microbial resistance of pesticide poisoning and the efficiency of pesticide degradation, and to provide a promising method for improving pesticide degradation by microbes.
Collapse
Affiliation(s)
- Yuxuan Xie
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Lanmin Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China
| | - Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Jisha Yan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Chen Xia
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 610066, Chengdu, Sichuan, PR China
| | - Ke Li
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 610066, Chengdu, Sichuan, PR China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Muhammad Waqar Mazhar
- Department of Bioinformatics and Biotechnology, Government College University, 38000, Faisalabad, Pakistan; Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China.
| |
Collapse
|
24
|
Jimoh AA, Booysen E, van Zyl L, Trindade M. Do biosurfactants as anti-biofilm agents have a future in industrial water systems? Front Bioeng Biotechnol 2023; 11:1244595. [PMID: 37781531 PMCID: PMC10540235 DOI: 10.3389/fbioe.2023.1244595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are bacterial communities embedded in exopolymeric substances that form on the surfaces of both man-made and natural structures. Biofilm formation in industrial water systems such as cooling towers results in biofouling and biocorrosion and poses a major health concern as well as an economic burden. Traditionally, biofilms in industrial water systems are treated with alternating doses of oxidizing and non-oxidizing biocides, but as resistance increases, higher biocide concentrations are needed. Using chemically synthesized surfactants in combination with biocides is also not a new idea; however, these surfactants are often not biodegradable and lead to accumulation in natural water reservoirs. Biosurfactants have become an essential bioeconomy product for diverse applications; however, reports of their use in combating biofilm-related problems in water management systems is limited to only a few studies. Biosurfactants are powerful anti-biofilm agents and can act as biocides as well as biodispersants. In laboratory settings, the efficacy of biosurfactants as anti-biofilm agents can range between 26% and 99.8%. For example, long-chain rhamnolipids isolated from Burkholderia thailandensis inhibit biofilm formation between 50% and 90%, while a lipopeptide biosurfactant from Bacillus amyloliquefaciens was able to inhibit biofilms up to 96% and 99%. Additionally, biosurfactants can disperse preformed biofilms up to 95.9%. The efficacy of antibiotics can also be increased by between 25% and 50% when combined with biosurfactants, as seen for the V9T14 biosurfactant co-formulated with ampicillin, cefazolin, and tobramycin. In this review, we discuss how biofilms are formed and if biosurfactants, as anti-biofilm agents, have a future in industrial water systems. We then summarize the reported mode of action for biosurfactant molecules and their functionality as biofilm dispersal agents. Finally, we highlight the application of biosurfactants in industrial water systems as anti-fouling and anti-corrosion agents.
Collapse
Affiliation(s)
| | | | | | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
25
|
Amer MA, Wasfi R, Hamed SM. Biosurfactant from Nile Papyrus endophyte with potential antibiofilm activity against global clones of Acinetobacter baumannii. Front Cell Infect Microbiol 2023; 13:1210195. [PMID: 37520441 PMCID: PMC10373939 DOI: 10.3389/fcimb.2023.1210195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Acinetobacter baumannii is a leading cause of biofilm-associated infections, particularly catheter-related bloodstream infections (CRBSIs) that are mostly recalcitrant to antimicrobial therapy. One approach to reducing the burden of CRBSIs is inhibiting biofilm formation on catheters. Owing to their prodigious microbial diversity, bacterial endophytes might be a valuable source of biosurfactants, which are known for their great capacity to disperse microbial biofilms. With this in mind, our study aimed to screen bacterial endophytes from plants growing on the banks of the River Nile for the production of powerful biosurfactants capable of reducing the ability of A. baumannii to form biofilms on central venous catheters (CVCs). This was tested on multidrug- and extensive drug-resistant (M/XDR) clinical isolates of A. baumannii that belong to high-risk global clones and on a standard strain of A. baumannii ATCC 19606. The drop collapse and oil dispersion assays were employed in screening the cell-free supernatants (CFS) of all endophytes for biosurfactant activity. Of the 44 bacterial endophytes recovered from 10 plants, the CFS of Bacillus amyloliquefaciens Cp24, isolated from Cyperus papyrus, showed the highest biosurfactant activity. The crude biosurfactant extract of Cp24 showed potent antibacterial activity with minimum inhibitory concentrations (MICs) ranging from 0.78 to 1.56 mg/ml. It also showed significant antibiofilm activity (p-value<0.01). Sub-MICs of the extract could reduce biofilm formation by up to 89.59%, while up to 87.3% of the preformed biofilms were eradicated by the MIC. A significant reduction in biofilm formation on CVCs impregnated with sub-MIC of the extract was demonstrated by CV assay and further confirmed by scanning electron microscopy. This was associated with three log10 reductions in adhered bacteria in the viable count assay. GC-MS analysis of the crude biosurfactant extract revealed the presence of several compounds, such as saturated, unsaturated, and epoxy fatty acids, cyclopeptides, and 3-Benzyl-hexahydro-pyrrolo [1, 2-a] pyrazine-1,4-dione, potentially implicated in the potent biosurfactant and antibiofilm activities. In the present study, we report the isolation of a B. amyloliquefaciens endophyte from the plant C. papyrus that produces a biosurfactant with potent antibiofilm activity against MDR/XDR global clones of A. baumannii. The impregnation of CVCs with the biosurfactant was demonstrated to reduce biofilms and, hence, proposed as a potential strategy for reducing CRBSIs.
Collapse
|
26
|
Shleeva MO, Kondratieva DA, Kaprelyants AS. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023; 15:1893. [PMID: 37514078 PMCID: PMC10383908 DOI: 10.3390/pharmaceutics15071893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Bacillus licheniformis produces several classes of antimicrobial substances, including bacteriocins, which are peptides or proteins with different structural composition and molecular mass: ribosomally synthesized by bacteria (1.4-20 kDa), non-ribosomally synthesized peptides and cyclic lipopeptides (0.8-42 kDa) and exopolysaccharides (>1000 kDa). Different bacteriocins act against Gram-positive or Gram-negative bacteria, fungal pathogens and amoeba cells. The main mechanisms of bacteriocin lytic activity include interaction of peptides with membranes of target cells resulting in structural alterations, pore-forming, and inhibition of cell wall biosynthesis. DNase and RNase activity for some bacteriocines are also postulated. Non-ribosomal peptides are synthesized by special non-ribosomal multimodular peptide synthetases and contain unnatural amino acids or fatty acids. Their harmful effect is due to their ability to form pores in biological membranes, destabilize lipid packaging, and disrupt the peptidoglycan layer. Lipopeptides, as biosurfactants, are able to destroy bacterial biofilms. Secreted polysaccharides are high molecular weight compounds, composed of repeated units of sugar moieties attached to a carrier lipid. Their antagonistic action was revealed in relation to bacteria, viruses, and fungi. Exopolysaccharides also inhibit the formation of biofilms by pathogenic bacteria and prevent their colonization on various surfaces. However, mechanism of the harmful effect for many secreted antibacterial substances remains unknown. The antimicrobial activity for most substances has been studied in vitro only, but some substances have been characterized in vivo and they have found practical applications in medicine and veterinary. The cyclic lipopeptides that have surfactant properties are used in some industries. In this review, special attention is paid to the antimycobacterials produced by B. licheniformis as a possible approach to combat multidrug-resistant and latent tuberculosis. In particular, licheniformins and bacitracins have shown strong antimycobacterial activity. However, the medical application of some antibacterials with promising in vitro antimycobacterial activity has been limited by their toxicity to animals and humans. As such, similar to the enhancement in the antimycobacterial activity of natural bacteriocins achieved using genetic engineering, the reduction in toxicity using the same approach appears feasible. The unique capability of B. licheniformis to synthesize and produce a range of different antibacterial compounds means that this organism can act as a natural universal vehicle for antibiotic substances in the form of probiotic cultures and strains to combat various types of pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria A Kondratieva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
27
|
Sánchez-Lozano I, Muñoz-Cruz LC, Hellio C, Band-Schmidt CJ, Cruz-Narváez Y, Becerra-Martínez E, Hernández-Guerrero CJ. Metabolomic Insights of Biosurfactant Activity from Bacillus niabensis against Planktonic Cells and Biofilm of Pseudomonas stutzeri Involved in Marine Biofouling. Int J Mol Sci 2023; 24:ijms24044249. [PMID: 36835662 PMCID: PMC9965525 DOI: 10.3390/ijms24044249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In marine environments, biofilm can cause negative impacts, including the biofouling process. In the search for new non-toxic formulations that inhibit biofilm, biosurfactants (BS) produced by the genus Bacillus have demonstrated considerable potential. To elucidate the changes that BS from B. niabensis promote in growth inhibition and biofilm formation, this research performed a nuclear magnetic resonance (NMR) metabolomic profile analysis to compare the metabolic differences between planktonic cells and biofilms of Pseudomonas stutzeri, a pioneer fouling bacteria. The multivariate analysis showed a clear separation between groups with a higher concentration of metabolites in the biofilm than in planktonic cells of P. stutzeri. When planktonic and biofilm stages were treated with BS, some differences were found among them. In planktonic cells, the addition of BS had a minor effect on growth inhibition, but at a metabolic level, NADP+, trehalose, acetone, glucose, and betaine were up-regulated in response to osmotic stress. When the biofilm was treated with the BS, a clear inhibition was observed and metabolites such as glucose, acetic acid, histidine, lactic acid, phenylalanine, uracil, and NADP+ were also up-regulated, while trehalose and histamine were down-regulated in response to the antibacterial effect of the BS.
Collapse
Affiliation(s)
- Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Luz Clarita Muñoz-Cruz
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Claire Hellio
- CNRS, IRD, Ifremer, LEMAR, Univ. Brest, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France
| | - Christine J. Band-Schmidt
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Instituto Politécnico Nacional-ESIQIE-UPALM, Unidad Profesional Adolfo López Mateos, Edificio 7, 1.er Piso, Sección A, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| | - Claudia J. Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| |
Collapse
|
28
|
Verboni M, Sisti M, Campana R, Benedetti S, Palma F, Potenza L, Lucarini S, Duranti A. Synthesis and Biological Evaluation of 6- O-Sucrose Monoester Glycolipids as Possible New Antifungal Agents. Pharmaceuticals (Basel) 2023; 16:136. [PMID: 37259288 PMCID: PMC9966131 DOI: 10.3390/ph16020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 10/28/2023] Open
Abstract
A small library of 6-O-sucrose monoester surfactants has been synthesized and tested against various microorganisms. The synthetic procedure involved a modified Mitsunobu reaction, which showed improved results compared to those present in the literature (higher yields and larger scope). The antifungal activities of most of these glycolipids were satisfactory. In particular, sucrose palmitoleate (URB1537) showed good activity against Candida albicans ATCC 10231, Fusarium spp., and Aspergillus fumigatus IDRAH01 (MIC value: 16, 32, 64 µg/mL, respectively), and was further characterized through radical scavenging, anti-inflammatory, and biocompatibility tests. URB1537 has been shown to control the inflammatory response and to have a safe profile.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | | |
Collapse
|
29
|
Optimization of Medium Components for Fed-Batch Fermentation Using Central Composite Design to Enhance Lichenysin Production by Bacillus licheniformis Ali5. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lichenysin, an amphiphilic biosurfactant with structural and physicochemical properties similar to surfactin, is produced by Bacillus licheniformis. Its low toxicity, good environmental compatibility, solubilization, foaming, emulsification and detergent activities have led to a wide range of applications in agricultural biocontrol, enhanced oil recovery, foaming agents for cosmetics and detergents for household cleaning products. However, despite the extraordinary surface-active properties and potential applications of lichenysin, the number of wild bacteria found so far is relatively low. Low titers and high costs are the main limiting factors for widespread industrial applications. In this study, a factorial design was used to optimize the composition of the medium for the production of lichenysin by Bacillus licheniformis Ali5. Firstly, the solutions of carbon, nitrogen, amino acids, inorganic salts and trace elements in the medium were evaluated in flasks using a single-factor optimization method. Meanwhile, the operating conditions were optimized in the same way. Afterwards, a partial factorial design was used to investigate the effect of six variables (five medium compositions and inoculum size) on lichenysin production. Based on the results obtained, the concentrations of sucrose and ammonium nitrate and the inoculum size were considered to be important for lichenysin production. Subsequently, a full factorial design was used to optimize these three variables. The optimized medium composition were sucrose 19.8 g/L, NH4NO3 3.9 g/L, K2HPO4·3H2O 4.0 g/L, MgSO4·7H2O 0.6 g/L, FeSO4·7H2O 0.1 g/L, CaCl2 0.01 g/L, NaCl 3.0, trace elements 1.2 mL/L. Finally, the titer of lichenysin after fed-batch fermentation reached 1425.85 mg/L, which was approximately 5.5 times higher than the titer of lichenysin from the original medium. Consequently, the method was further demonstrated to be suitable for lichenysin production.
Collapse
|
30
|
Nageshwar L, Parameshwar J, Rahman PKSM, Banat IM, Hameeda B. Anti-oxidative property of xylolipid produced by Lactococcus lactis LNH70 and its potential use as fruit juice preservative. Braz J Microbiol 2022; 53:2157-2172. [PMID: 36219343 PMCID: PMC9679099 DOI: 10.1007/s42770-022-00837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/27/2022] [Indexed: 01/13/2023] Open
Abstract
In the present study, 20 lactic acid bacteria (LAB) were isolated from different fruit juices, milk, and milk products. Based on preliminary screening methods like emulsification index, oil displacement method, hemolysis, and reduction in surface tension, strain LNH70 was selected for further studies. Further, it was evaluated for preliminary probiotic characteristics, identified by 16 s rRNA sequencing as Lactococcus lactis, submitted to NCBI, and an accession number was obtained (MH174454). In addition, LNH70 was found to tolerate over wide range of temperatures (10-45 °C), pH (3-10), NaCl (up to 9%), bile (0.7%), and phenol (0.1%) concentrations. Further, optimization studies at flask level revealed that lactose as carbon source, peptone as organic nitrogen, and inorganic nitrogen (ammonium sulfate) enhanced biosurfactant production. Chemical composition of purified biosurfactant obtained from LNH70 was characterized by various physico-chemical analytical techniques and identified as xylolipid. Xylolipid biosurfactant exhibited anti-adhesion activity against food borne pathogens in in vitro conditions. Its anti-oxidative property by 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and ferric reducing antioxidant power (FRAP) radical scavenging activity was found in range of 60.76 ± 0.5 to 83.50 ± 0.73%. Furthermore, xylolipid (0.05, 0.1, 0.3 mg/mL) when used for its potential as orange and pineapple juices preservation revealed miniature changes in the physico-chemical parameters evaluated in this study. However, the microbial population slightly lowered when xylolipid was used at 0.3 mg/mL after 5th day. Hence, this study supports the potential use of biosurfactant from L. lactis for its application as food preservative.
Collapse
Affiliation(s)
- L Nageshwar
- Department of Microbiology, Osmania University, Hyderabad-07, India
| | - J Parameshwar
- Department of Microbiology, Osmania University, Hyderabad-07, India
| | - Pattanathu K S M Rahman
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Bee Hameeda
- Department of Microbiology, Osmania University, Hyderabad-07, India.
| |
Collapse
|
31
|
Naya-Català F, Piazzon MC, Torrecillas S, Toxqui-Rodríguez S, Calduch-Giner JÀ, Fontanillas R, Sitjà-Bobadilla A, Montero D, Pérez-Sánchez J. Genetics and Nutrition Drive the Gut Microbiota Succession and Host-Transcriptome Interactions through the Gilthead Sea Bream ( Sparus aurata) Production Cycle. BIOLOGY 2022; 11:1744. [PMID: 36552254 PMCID: PMC9774573 DOI: 10.3390/biology11121744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Fish genetically selected for growth (GS) and reference (REF) fish were fed with CTRL (15% FM, 5-7% FO) or FUTURE (7.5% FM, 10% poultry meal, 2.2% poultry oil + 2.5% DHA-algae oil) diets during a 12-months production cycle. Samples from initial (t0; November 2019), intermediate (t1; July 2020) and final (t2; November 2020) sampling points were used for Illumina 16S rRNA gene amplicon sequencing of the adherent microbiota of anterior intestine (AI). Samples from the same individuals (t1) were also used for the gene expression profiling of AI by RNA-seq, and subsequent correlation analyses with microbiota abundances. Discriminant analyses indicated the gut bacterial succession along the production cycle with the proliferation of some valuable taxa for facing seasonality and different developmental stages. An effect of genetic background was evidenced along time, decreasing through the progression of the trial, namely the gut microbiota of GS fish was less influenced by changes in diet composition. At the same time, these fish showed wider transcriptomic landmarks in the AI to cope with these changes. Our results highlighted an enhanced intestinal sphingolipid and phospholipid metabolism, epithelial turnover and intestinal motility in GS fish, which would favour their improved performance despite the lack of association with changes in gut microbiota composition. Furthermore, in GS fish, correlation analyses supported the involvement of different taxa with the down-regulated expression of pro-inflammatory markers and the boosting of markers of extracellular remodelling and response to bacterium. Altogether, these findings support the combined action of the gut microbiome and host transcriptionally mediated effects to preserve and improve gut health and function in a scenario of different growth performance and potentiality.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | - M. Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - Socorro Toxqui-Rodríguez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | - Josep À. Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | | | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain
| |
Collapse
|
32
|
Polaka S, Katare P, Pawar B, Vasdev N, Gupta T, Rajpoot K, Sengupta P, Tekade RK. Emerging ROS-Modulating Technologies for Augmentation of the Wound Healing Process. ACS OMEGA 2022; 7:30657-30672. [PMID: 36092613 PMCID: PMC9453976 DOI: 10.1021/acsomega.2c02675] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) is considered a double-edged sword. The slightly elevated level of ROS helps in wound healing by inhibiting microbial infection. In contrast, excessive ROS levels in the wound site show deleterious effects on wound healing by extending the inflammation phase. Understanding the ROS-mediated molecular and biomolecular mechanisms and their effect on cellular homeostasis and inflammation thus substantially improves the possibility of exogenously augmenting and manipulating wound healing with the emerging antioxidant therapeutics. This review comprehensively delves into the relationship between ROS and critical phases of wound healing and the processes underpinning antioxidant therapies. The manuscript also discusses cutting-edge antioxidant therapeutics that act via ROS scavenging to enhance chronic wound healing.
Collapse
|
33
|
Chauhan V, Dhiman VK, Kanwar SS. Purification and characterization of a novel bacterial Lipopeptide(s) biosurfactant and determining its antimicrobial and cytotoxic properties. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Díaz PR, Torres MJ, Petroselli G, Erra-Balsells R, Audisio MC. Antibacterial activity of Bacillus licheniformis B6 against viability and biofilm formation of foodborne pathogens of health importance. World J Microbiol Biotechnol 2022; 38:181. [PMID: 35951268 DOI: 10.1007/s11274-022-03377-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
Abstract
We studied a strain of Bacillus isolated from an artisanal tannery in Salta, Argentina. It was identified as Bacillus licheniformis B6 by 16 S phylogenetic analysis and MALDI TOF (GenBank accession code No. KP776730). The synthesis of lipopeptides by B6 and their antibacterial activity against clinical pathogenic strains was analyzed both in the cell-free supernatant (CFS) and in the crude fraction of lipopeptides (LF). Overall, the CFS did not significantly reduce the viability of the studied strains (Staphylococcus aureus 269 and ATCC 43,300, Escherichia coli 4591 and 25,922, Klebsiella sp. 1087 and 1101). However, LF at 9 mg/mL reduced the viability of those pathogenic strains by 2 and 3 log orders compared to those of the control. When the effects of LF and ampicillin were compared, they showed different sensitivity against pathogenic strains. For example, E. coli 4591 was the strain most resistant to ampicillin, requiring 250 mg/mL of antibiotic to achieve the same inhibitory effect as 9 mg/mL of B6 LF. SEM observations of the effect of LF on biofilm formation by E. coli 4591 and Klebsiella sp. 1087 clearly showed that biofilm structures were destabilized, these strains turning into weak biofilm formers. Signals in the CFS and LF corresponding to kurstakin and iturin were identified by MALDI TOF. Interestingly, surfactin was detected, rather than lichenysin, the expected lipopeptide in B. licheniformis species. Signals of bacitracin and fengycins were also found, the latter with a higher number of homologues and relative intensity in the LF than the other lipopeptides. These results show that the lipopeptides synthesized by B. licheniformis B6 have both potential antibacterial and anti-biofilm activity against pathogenic bacteria of health importance.
Collapse
Affiliation(s)
- Pablo R Díaz
- Consejo Nacional de Investigaciones Científicas (CONICET), Buenos Aires, Argentina
| | - María J Torres
- Consejo Nacional de Investigaciones Científicas (CONICET), Buenos Aires, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, CIHIDECAR-CONICET, Universidad de Buenos Aires, Pabellón, II, Argentina
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de Salta, Av. Bolivia, 5150. 4400, Salta, Argentina
| | - Gabriela Petroselli
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, CIHIDECAR-CONICET, Universidad de Buenos Aires, Pabellón, II, Argentina
| | - Rosa Erra-Balsells
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, CIHIDECAR-CONICET, Universidad de Buenos Aires, Pabellón, II, Argentina
| | - Marcela Carina Audisio
- Consejo Nacional de Investigaciones Científicas (CONICET), Buenos Aires, Argentina.
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, CIHIDECAR-CONICET, Universidad de Buenos Aires, Pabellón, II, Argentina.
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de Salta, Av. Bolivia, 5150. 4400, Salta, Argentina.
| |
Collapse
|
35
|
Dussert E, Tourret M, Dupuis C, Noblecourt A, Behra-Miellet J, Flahaut C, Ravallec R, Coutte F. Evaluation of Antiradical and Antioxidant Activities of Lipopeptides Produced by Bacillus subtilis Strains. Front Microbiol 2022; 13:914713. [PMID: 35794911 PMCID: PMC9251515 DOI: 10.3389/fmicb.2022.914713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 01/07/2023] Open
Abstract
This study investigated the antiradical and antioxidant potential of the three families of lipopeptides (i.e., surfactin, mycosubtilin, and plipastatin/fengycin) produced by Bacillus subtilis strains. The antiradical/antioxidant activities of highly purified lipopeptides were studied in acellular models using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide anion (O 2 . - ), hydrogen peroxide, (H2O2) and hydroxyl radical (HO.). At a lipopeptide concentration of 500 mg.L-1, the maximum inhibition of DPPH reached 22.88% (obtained for plipastatin). Moreover, the scavenging effects ofO 2 . - , H2O2, and HO. at the highest concentration tested (250 mg.L-1) were found to be 6, 21, and 3% for surfactin, 19, 9, and 15% for mycosubtilin, 21, 18, and 59% for plipastatin, 21, 31, and 61% for the mixture of surfactin/plipastatin, and 13, 16, and 15% for the mixture of surfactin/mycosubtilin, respectively. These results showed that plipastatin was the best candidate due to its antioxidant activities.
Collapse
Affiliation(s)
- Elodie Dussert
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - Mélissa Tourret
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - Chloé Dupuis
- Univ. Lille, UMRT 1158 BioEcoAgro - Métabolites secondaires d'origine microbienne, Institut Charles Viollette, Lille, France
| | | | - Josette Behra-Miellet
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - Christophe Flahaut
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - Rozenn Ravallec
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - François Coutte
- Univ. Lille, UMRT 1158 BioEcoAgro - Métabolites secondaires d'origine microbienne, Institut Charles Viollette, Lille, France
- LIPOFABRIK, Lesquin, France
| |
Collapse
|
36
|
Comprehensive Review on Applications of Surfactants in Vaccine Formulation, Therapeutic and Cosmetic Pharmacy and Prevention of Pulmonary Failure due to COVID-19. CHEMISTRY AFRICA 2022. [PMCID: PMC8934726 DOI: 10.1007/s42250-022-00345-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our world is under serious threat of environmental degradation, climate change and in association with this the out breaks of diseases as pandemics. The devastating impact of the very recent COVID-19, The sharp increase in cases of Cancer, Pulmonary failure, Heart health has triggered questions for the sustainable development of pharmaceutical and medical sciences. In the search of inclusive and effective strategies to meet today’s demand, improvised methodologies and alternative green chemical, bio-based precursors are being introduced by scientists around the globe. In this extensive review we have presented the potentiality and Realtime applications of both synthetic and bio-based surfactants in bio-medical and pharmaceutical fields. For their excellent unique amphoteric nature and ability to solubilise in both organic and inorganic drugs, surfactants are one of the most potential candidates for bio-medicinal fields such as dermatology, drug delivery, anticancer treatment, surfactant therapy, vaccine formulation, personal hygiene care and many more. The self-assembly property of surfactants is a very powerful function for drug delivery systems that increases the bio-availability of the poorly aqueous soluble pharmaceutical products by influencing their solubility. Over the decades many researchers have reported the antimicrobial, anti-adhesive, antibiofilm, anti-inflammatory, antioxidant activities of surfactants regarding its utility in medicinal purposes. In some reports surfactants are found to have spermicidal and laxative activity too. This comprehensive report is targeted to enlighten the versatile applications of Surfactants in drug delivery, vaccine formulation, Cancer Treatment, Therapeutic and cosmetic Pharmaceutical Sciences and prevention of pulmonary failure due to COVID-19.
Collapse
|
37
|
Interactive analysis of biosurfactants in fruit-waste fermentation samples using BioSurfDB and MEGAN. Sci Rep 2022; 12:7769. [PMID: 35546170 PMCID: PMC9095615 DOI: 10.1038/s41598-022-11753-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
Agroindustrial waste, such as fruit residues, are a renewable, abundant, low-cost, commonly-used carbon source. Biosurfactants are molecules of increasing interest due to their multifunctional properties, biodegradable nature and low toxicity, in comparison to synthetic surfactants. A better understanding of the associated microbial communities will aid prospecting for biosurfactant-producing microorganisms. In this study, six samples of fruit waste, from oranges, mangoes and mixed fruits, were subjected to autochthonous fermentation, so as to promote the growth of their associated microbiota, followed by short-read metagenomic sequencing. Using the DIAMOND+MEGAN analysis pipeline, taxonomic analysis shows that all six samples are dominated by Proteobacteria, in particular, a common core consisting of the genera Klebsiella, Enterobacter, Stenotrophomonas, Acinetobacter and Escherichia. Functional analysis indicates high similarity among samples and a significant number of reads map to genes that are involved in the biosynthesis of lipopeptide-class biosurfactants. Gene-centric analysis reveals Klebsiella as the main assignment for genes related to putisolvins biosynthesis. To simplify the interactive visualization and exploration of the surfactant-related genes in such samples, we have integrated the BiosurfDB classification into MEGAN and make this available. These results indicate that microbiota obtained from autochthonous fermentation have the genetic potential for biosynthesis of biosurfactants, suggesting that fruit wastes may provide a source of biosurfactant-producing microorganisms, with applications in the agricultural, chemical, food and pharmaceutical industries.
Collapse
|
38
|
Lipopeptide Biosurfactants from Bacillus spp.: Types, Production, Biological Activities, and Applications in Food. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3930112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biosurfactants are a functionally and structurally heterogeneous group of biomolecules produced by multiple filamentous fungi, yeast, and bacteria, and characterized by their distinct surface and emulsifying ability. The genus Bacillus is well studied for biosurfactant production as it produces various types of lipopeptides, for example, lichenysins, bacillomycin, fengycins, and surfactins. Bacillus lipopeptides possess a broad spectrum of biological activities such as antimicrobial, antitumor, immunosuppressant, and antidiabetic, in addition to their use in skincare. Moreover, Bacillus lipopeptides are also involved in various food products to increase the antimicrobial, surfactant, and emulsification impact. From the previously published articles, it can be concluded that biosurfactants have strong potential to be used in food, healthcare, and agriculture. In this review article, we discuss the versatile functions of lipopeptide Bacillus species with particular emphasis on the biological activities and their applications in food.
Collapse
|
39
|
Verboni M, Benedetti S, Campana R, Palma F, Potenza L, Sisti M, Duranti A, Lucarini S. Synthesis and Biological Characterization of the New Glycolipid Lactose Undecylenate (URB1418). Pharmaceuticals (Basel) 2022; 15:456. [PMID: 35455453 PMCID: PMC9030338 DOI: 10.3390/ph15040456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/16/2022] Open
Abstract
As a follow-up to our previous studies on glycolipid surfactants, a new molecule, that is lactose 6′-O-undecylenate (URB1418), was investigated. To this end, a practical synthesis and studies aimed at exploring its specific properties were carried out. URB1418 showed antifungal activities against Trichophyton rubrum F2 and Candida albicans ATCC 10231 (MIC 512 μg/mL) and no significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. At the same time, it presented anti-inflammatory properties, as documented by the dose-dependent reduction in LPS-induced NO release in RAW 264.7 cells, while a low antioxidant capacity in the range of concentrations tested (EC50 > 200 µM) was also observed. Moreover, URB1418 offers the advantage of being more stable than the reference polyunsaturated lactose esters and of being synthesized using a “green” procedure, involving an enzymatic method, high yield and low manufacturing cost. For all these reasons and the absence of toxicity (HaCaT cells), the new glycolipid presented herein could be considered an interesting compound for applications in various fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (M.V.); (S.B.); (R.C.); (F.P.); (L.P.); (M.S.); (S.L.)
| | | |
Collapse
|
40
|
Mishra N, Rana K, Seelam SD, Kumar R, Pandey V, Salimath BP, Agsar D. Characterization and Cytotoxicity of Pseudomonas Mediated Rhamnolipids Against Breast Cancer MDA-MB-231 Cell Line. Front Bioeng Biotechnol 2021; 9:761266. [PMID: 34950641 PMCID: PMC8691732 DOI: 10.3389/fbioe.2021.761266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
A biosurfactant producing bacterium was identified as Pseudomonas aeruginosa DNM50 based on molecular characterization (NCBI accession no. MK351591). Structural characterization using MALDI-TOF revealed the presence of 12 different congeners of rhamnolipid such as Rha-C8-C8:1, Rha-C10-C8:1, Rha-C10-C10, Rha-C10-C12:1, Rha-C16:1, Rha-C16, Rha-C17:1, Rha-Rha-C10:1-C10:1, Rha-Rha-C10-C12, Rha-Rha-C10-C8, Rha-Rha-C10-C8:1, and Rha-Rha-C8-C8. The radical scavenging activity of rhamnolipid (DNM50RL) was determined by 2, 3-diphenyl-1-picrylhydrazyl (DPPH) assay which showed an IC50 value of 101.8 μg/ ml. The cytotoxic activity was investigated against MDA-MB-231 breast cancer cell line by MTT (4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide) assay which showed a very low IC50 of 0.05 μg/ ml at 72 h of treatment. Further, its activity was confirmed by resazurin and trypan blue assay with IC50 values of 0.01 μg/ml and 0.64 μg/ ml at 72 h of treatment, respectively. Thus, the DNM50RL would play a vital role in the treatment of breast cancer targeting inhibition of p38MAPK.
Collapse
Affiliation(s)
- Neelam Mishra
- Department of Microbiology, Gulbarga University, Gulbarga, India
| | - Kavita Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | | | - Rakesh Kumar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kadaganchi, India
| | - Vijyendra Pandey
- Department of Psychology, School of Social and Behavioural Sciences, Central University of Karnataka, Kadaganchi, India
| | - Bharathi P Salimath
- Department of Biotechnology, University of Mysore, Mysore, India.,Sanorva Biotech Pvt. Ltd., Mysuru, India
| | - Dayanand Agsar
- Department of Microbiology, Gulbarga University, Gulbarga, India
| |
Collapse
|
41
|
Zhang W, Tong Q, You J, Lv X, Liu Z, Ni L. The Application of Bacillus subtilis for Adhesion Inhibition of Pseudomonas and Preservation of Fresh Fish. Foods 2021; 10:foods10123093. [PMID: 34945644 PMCID: PMC8701017 DOI: 10.3390/foods10123093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/28/2023] Open
Abstract
Inhibiting the growth of spoilage bacteria, such as Pseudomonas spp., is key to reducing spoilage in fish. The mucus adhesion test in vitro showed that the adhesion ability of Bacillus subtilis was positively correlated with its inhibition ability to Pseudomonas spp. In vivo experiments of tilapia showed that dietary supplementation with B. subtilis could reduce the adhesion and colonization of Pseudomonas spp. in fish intestines and flesh, as well as reduce total volatile basic nitrogen (TVB-N) production. High throughput and metabolomic analysis showed treatment with B. subtilis, especially C6, reduced the growth of Pseudomonas spp., Aeromonas spp., Fusobacterium spp., and Enterobacterium spp., as well as aromatic spoilage compounds associated with these bacteria, such as indole, 2,4-bis(1,1-dimethylethyl)-phenol, 3-methyl-1-butanol, phenol, and 1-octen-3-ol. Our work showed that B. subtilis could improve the flavor of fish by changing the intestinal flora of fish, and it shows great promise as a microecological preservative.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Ni
- Correspondence: ; Tel.: +86-591-22866378
| |
Collapse
|
42
|
Naya-Català F, do Vale Pereira G, Piazzon MC, Fernandes AM, Calduch-Giner JA, Sitjà-Bobadilla A, Conceição LEC, Pérez-Sánchez J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream ( Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front Physiol 2021; 12:748265. [PMID: 34675821 PMCID: PMC8523787 DOI: 10.3389/fphys.2021.748265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023] Open
Abstract
New types of fish feed based on processed animal proteins (PAPs), insect meal, yeast, and microbial biomasses have been used with success in gilthead sea bream. However, some drawback effects on feed conversion and inflammatory systemic markers were reported in different degrees with PAP- and non-PAP-based feed formulations. Here, we focused on the effects of control and two experimental diets on gut mucosal-adherent microbiota, and how it correlated with host transcriptomics at the local (intestine) and systemic (liver and head kidney) levels. The use of tissue-specific PCR-arrays of 93 genes in total rendered 13, 12, and 9 differentially expressed (DE) genes in the intestine, liver, and head kidney, respectively. Illumina sequencing of gut microbiota yielded a mean of 125,350 reads per sample, assigned to 1,281 operational taxonomic unit (OTUs). Bacterial richness and alpha diversity were lower in fish fed with the PAP diet, and discriminant analysis displayed 135 OTUs driving the separation between groups with 43 taxa correlating with 27 DE genes. The highest expression of intestinal pcna and alpi was achieved in PAP fish with intermediate values in non-PAP, being the pro-inflammatory action of alpi associated with the presence of Psychrobacter piscatorii. The intestinal muc13 gene was down-regulated in non-PAP fish, with this gene being negatively correlated with anaerobic (Chloroflexi and Anoxybacillus) and metal-reducing (Pelosinus and Psychrosinus) bacteria. Other inflammatory markers (igm, il8, tnfα) were up-regulated in PAP fish, positively correlating the intestinal igm gene with the inflammasome activator Escherichia/Shigella, whereas the systemic expression of il8 and tnfα was negatively correlated with the Bacilli class in PAP fish and positively correlated with Paracoccus yeei in non-PAP fish. Overall changes in the expression pattern of il10, galectins (lgals1, lgals8), and toll-like receptors (tlr2, tlr5, tlr9) reinforced the anti-inflammatory profile of fish fed with the non-PAP diet, with these gene markers being associated with a wide range of OTUs. A gut microbiota-liver axis was also established, linking the microbial generation of short chain fatty acids with the fueling of scd1- and elovl6-mediated lipogenesis. In summary, by correlating the microbiome with host gene expression, we offer new insights in the evaluation of fish diets promoting gut and metabolism homeostasis, and ultimately, the health of farmed fish.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ana Margarida Fernandes
- SPAROS Lda, Area Empresarial de Marim, Olhăo, Portugal.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
43
|
Englerová K, Bedlovičová Z, Nemcová R, Király J, Maďar M, Hajdučková V, Styková E, Mucha R, Reiffová K. Bacillus amyloliquefaciens-Derived Lipopeptide Biosurfactants Inhibit Biofilm Formation and Expression of Biofilm-Related Genes of Staphylococcus aureus. Antibiotics (Basel) 2021; 10:1252. [PMID: 34680832 PMCID: PMC8532693 DOI: 10.3390/antibiotics10101252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Biosurfactants (BSs) are surface-active compounds produced by diverse microorganisms, including the genus Bacillus. These bioactive compounds possess biological activities such as antiadhesive, antimicrobial and antibiofilm effects that can lead to important applications in combating many infections. Based on these findings, we decided to investigate the antibiofilm activity of BSs from the marine Bacillus amyloliquefaciens against Staphylococcus aureus CCM 4223. Expression of biofilm-related genes was also evaluated using qRT-PCR. Isolated and partially purified BSs were identified and characterized by molecular tools and by UHPLC-DAD and MALDI-TOF/MS. Bacillus amyloliquefaciens 3/22, that exhibited surfactant activity evaluated by oil spreading assay, was characterized using the 16S rRNA sequencing method. Screening by PCR detected the presence of the sfp, srfAA, fenD and ituD genes, suggesting production of the lipopeptides (LPs) surfactin, fengycin and iturin. The above findings were further supported by the results of UHPLC-DAD and MALDI-TOF/MS. As quantified by the crystal violet method, the LPs significantly (p < 0.001) reduced biofilm formation of S. aureus in a dose-dependent manner and decreased expression of biofilm-related genes fnbA, fnbB, sortaseA and icaADBC operon. Data from our investigation indicate a promising therapeutic application for LPs isolated from B. amyloliquefaciens toward prevention of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Karolína Englerová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Zdenka Bedlovičová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Radomíra Nemcová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Ján Király
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Marián Maďar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Vanda Hajdučková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Eva Styková
- Equine Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Rastislav Mucha
- Institute of Neurobiology BMC, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia;
| | - Katarína Reiffová
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesová 11, 041 54 Košice, Slovakia;
| |
Collapse
|
44
|
Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H, Bhatia SK, Saratale GD, Saratale RG, Chung SM, Kumar M. Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries. Antioxidants (Basel) 2021; 10:1472. [PMID: 34573103 PMCID: PMC8469275 DOI: 10.3390/antiox10091472] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the current scenario of changing climatic conditions and the rising global population, there is an urgent need to explore novel, efficient, and economical natural products for the benefit of humankind. Biosurfactants are one of the latest explored microbial synthesized biomolecules that have been used in numerous fields, including agriculture, pharmaceuticals, cosmetics, food processing, and environment-cleaning industries, as a source of raw materials, for the lubrication, wetting, foaming, emulsions formulations, and as stabilizing dispersions. The amphiphilic nature of biosurfactants have shown to be a great advantage, distributing themselves into two immiscible surfaces by reducing the interfacial surface tension and increasing the solubility of hydrophobic compounds. Furthermore, their eco-friendly nature, low or even no toxic nature, durability at higher temperatures, and ability to withstand a wide range of pH fluctuations make microbial surfactants preferable compared to their chemical counterparts. Additionally, biosurfactants can obviate the oxidation flow by eliciting antioxidant properties, antimicrobial and anticancer activities, and drug delivery systems, further broadening their applicability in the food and pharmaceutical industries. Nowadays, biosurfactants have been broadly utilized to improve the soil quality by improving the concentration of trace elements and have either been mixed with pesticides or applied singly on the plant surfaces for plant disease management. In the present review, we summarize the latest research on microbial synthesized biosurfactant compounds, the limiting factors of biosurfactant production, their application in improving soil quality and plant disease management, and their use as antioxidant or antimicrobial compounds in the pharmaceutical industries.
Collapse
Affiliation(s)
- Ajay Kumar
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel; (A.K.); (A.M.); (S.D.)
| | - Sandeep Kumar Singh
- Centre of Advance Study in Botany, Banaras Hindu University, Varanasi 221005, India; (S.K.S.); (D.K.); (P.P.S.)
| | - Chandra Kant
- Department of Botany, Dharma Samaj College, Aligarh 202001, India;
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College, Sonbhadra, Duddhi 231218, India;
| | - Dharmendra Kumar
- Centre of Advance Study in Botany, Banaras Hindu University, Varanasi 221005, India; (S.K.S.); (D.K.); (P.P.S.)
| | - Prem Pratap Singh
- Centre of Advance Study in Botany, Banaras Hindu University, Varanasi 221005, India; (S.K.S.); (D.K.); (P.P.S.)
| | - Arpan Modi
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel; (A.K.); (A.M.); (S.D.)
| | - Samir Droby
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel; (A.K.); (A.M.); (S.D.)
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India;
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | | | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Seoul 10326, Korea;
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| |
Collapse
|
45
|
Vieira IMM, Santos BLP, Ruzene DS, Silva DP. An overview of current research and developments in biosurfactants. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. BIORESOURCE TECHNOLOGY 2021; 330:124963. [PMID: 33744735 DOI: 10.1016/j.biortech.2021.124963] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 05/05/2023]
Abstract
Microbial surfactants are a large number of amphipathic biomolecules with a myriad of biomolecule constituents from various microbial sources that have been studied for their surface tension reduction activities. With unique properties, their applications have been increased in different areas including environment, medicine, healthcare, agriculture and industries. The present review aims to study the biochemistry and biosynthesis of biosurfactants exhibiting varying biomolecular structures which are produced by different microbial sources. It also provides details on roles played by biosurfactants in nature as well as their potential applications in various sectors. Basic biomolecule content of all the biosurfactants studied showed presence of carbohydrates, aminoacids, lipids and fattyacids. The data presented here would help in designing, synthesis and application of tailor-made novel biosurfactants. This would pave a way for perspectives of research on biosurfactants to overcome the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Anoop R Markande
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa - 388 421, Anand, Gujarat, India
| | - Divya Patel
- Multi-disciplinary Research Unit, Surat Municipal Institute of Medical Education & Research, Surat 395010, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| |
Collapse
|
47
|
Zhang S, Liang X, Gadd GM, Zhao Q. Marine Microbial-Derived Antibiotics and Biosurfactants as Potential New Agents against Catheter-Associated Urinary Tract Infections. Mar Drugs 2021; 19:255. [PMID: 33946845 PMCID: PMC8145997 DOI: 10.3390/md19050255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are among the leading nosocomial infections in the world and have led to the extensive study of various strategies to prevent infection. However, despite an abundance of anti-infection materials having been studied over the last forty-five years, only a few types have come into clinical use, providing an insignificant reduction in CAUTIs. In recent decades, marine resources have emerged as an unexplored area of opportunity offering huge potential in discovering novel bioactive materials to combat human diseases. Some of these materials, such as antimicrobial compounds and biosurfactants synthesized by marine microorganisms, exhibit potent antimicrobial, antiadhesive and antibiofilm activity against a broad spectrum of uropathogens (including multidrug-resistant pathogens) that could be potentially used in urinary catheters to eradicate CAUTIs. This paper summarizes information on the most relevant materials that have been obtained from marine-derived microorganisms over the last decade and discusses their potential as new agents against CAUTIs, providing a prospective proposal for researchers.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK;
| | - Xinjin Liang
- The Bryden Center, School of Chemical and Chemistry Engineering, Queen’s University Belfast, Belfast BT7 1NN, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | | | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
48
|
De Giani A, Zampolli J, Di Gennaro P. Recent Trends on Biosurfactants With Antimicrobial Activity Produced by Bacteria Associated With Human Health: Different Perspectives on Their Properties, Challenges, and Potential Applications. Front Microbiol 2021; 12:655150. [PMID: 33967992 PMCID: PMC8104271 DOI: 10.3389/fmicb.2021.655150] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
The attention towards the bacteria associated with human health is growing more and more, above all regarding the bacteria that inhabit the niches offered by the human body, i.e., the gastrointestinal tract, skin, vaginal environment, and lungs. Among the secondary metabolites released by microorganisms associated with human health, little consideration is given to the biosurfactants, molecules with both hydrophobic and hydrophilic nature. Their role in the complex human environment is not only the mere biosurfactant function, but they could also control the microbiota through the quorum sensing system and the antimicrobial activity. These functions protect them and, accordingly, the human body principally from microbial and fungal pathogens. Consequently, nowadays, biosurfactants are emerging as promising bioactive molecules due to their very different structures, biological functions, low toxicity, higher biodegradability, and versatility. Therefore, this review provides a comprehensive perspective of biosurfactants with antimicrobial activity produced by bacteria associated with the human body and related to everything human beings are in contact with, e.g., food, beverages, and food-waste dumping sites. For the first time, the role of an "-omic" approach is highlighted to predict gene products for biosurfactant production, and an overview of the available gene sequences is reported. Besides, antimicrobial biosurfactants' features, challenges, and potential applications in the biomedical, food, and nutraceutical industries are discussed.
Collapse
Affiliation(s)
| | | | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
49
|
Ceresa C, Fracchia L, Fedeli E, Porta C, Banat IM. Recent Advances in Biomedical, Therapeutic and Pharmaceutical Applications of Microbial Surfactants. Pharmaceutics 2021; 13:466. [PMID: 33808361 PMCID: PMC8067001 DOI: 10.3390/pharmaceutics13040466] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
The spread of antimicrobial-resistant pathogens typically existing in biofilm formation and the recent COVID-19 pandemic, although unrelated phenomena, have demonstrated the urgent need for methods to combat such increasing threats. New avenues of research for natural molecules with desirable properties to alleviate this situation have, therefore, been expanding. Biosurfactants comprise a group of unique and varied amphiphilic molecules of microbial origin capable of interacting with lipidic membranes/components of microorganisms and altering their physicochemical properties. These features have encouraged closer investigations of these microbial metabolites as new pharmaceutics with potential applications in clinical, hygiene and therapeutic fields. Mounting evidence has indicated that biosurfactants have antimicrobial, antibiofilm, antiviral, immunomodulatory and antiproliferative activities that are exploitable in new anticancer treatments and wound healing applications. Some biosurfactants have already been approved for use in clinical, food and environmental fields, while others are currently under investigation and development as antimicrobials or adjuvants to antibiotics for microbial suppression and biofilm eradication strategies. Moreover, due to the COVID-19 pandemic, biosurfactants are now being explored as an alternative to current products or procedures for effective cleaning and handwash formulations, antiviral plastic and fabric surface coating agents for shields and masks. In addition, biosurfactants have shown promise as drug delivery systems and in the medicinal relief of symptoms associated with SARS-CoV-2 acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK;
| |
Collapse
|
50
|
Englerová K, Nemcová R, Bedlovičová Z, Styková E. Antiadhesive, antibiofilm and dispersion activity of biosurfactants isolated from Bacillus amyloliquefaciens 3/22. CESKA A SLOVENSKA FARMACIE : CASOPIS CESKE FARMACEUTICKE SPOLECNOSTI A SLOVENSKE FARMACEUTICKE SPOLECNOSTI 2021; 70:172–178. [PMID: 34875839 DOI: 10.5817/csf2021-5-172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this work was to monitor the potential antibiofilm properties of biosurfactants (BS) isolated from Bacillus amyloliquefaciens 3/22 against biofilm formation of the indicator strain Staphylococcus aureus CCM 4223. In this work, the effect of BS 3/22 on biofilm growth during co-incubation, inhibition of biofilm-forming cell adhesion and biofilm dispersion was studied. BS 3/22 inhibited biofilm formation, with its formation decreasing significantly (p < 0.05; p < 0.01; p < 0.001) with increasing BS 3/22 concentration. BS 3/22 also showed antiadhesive activity, which correlated with the concentration used. The dispersing effect of isolated BS 3/22 on a 24-hour biofilm was also detected. BS 3/22 were effective in biofilm dispersion even at lower concentrations compared to antiadhesive activity and inhibition of biofilm formation.
Collapse
|