1
|
Yang F, Yang M, Liu F, Qi Y, Guo Y, He S. Integrating the Transcriptome and Proteome to Postulate That TpiA and Pyk Are Key Enzymes Regulating the Growth of Mycoplasma Bovis. Microorganisms 2024; 12:2012. [PMID: 39458321 PMCID: PMC11509987 DOI: 10.3390/microorganisms12102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Mycoplasma bovis is a global problem for the cattle industry due to its high infection rates and associated morbidity, although its pathophysiology is poorly understood. In this study, the M. bovis transcriptome and proteome were analyzed to further investigate the biology of clinical isolates of M. bovis. A differential analysis of M. bovis, a clinical isolate (NX114), and an international type strain (PG45) at the logarithmic stage of growth, was carried out using prokaryotic transcriptome and 4D-label-free quantitative non-labeled proteomics. Transcriptomics and proteomics identified 193 DEGs and 158 DEPs, respectively, with significant differences in 49 proteins/34 transcriptomic CDS post-translational protein sequences (15 jointly up-regulated and 21 jointly down-regulated). GO comments indicate membrane, cytoplasmic and ribosome proteins were important components of the total proteins of M. bovis NX114 clinical isolate. KEGG enrichment revealed that M. bovis NX114 is mainly associated with energy metabolism, the biosynthesis of secondary metabolites, and the ABC transporters system. In addition, we annotated a novel adhesion protein that may be closely related to M. bovis infection. Triosephosphate isomerase (TpiA) and Pyruvate kinase (Pyk) genes may be the key enzymes that regulate the growth and maintenance of M. bovis and are involved in the pathogenic process as virulence factors. The results of the study revealed the biology of different isolates of M. bovis and may provide research ideas for the pathogenic mechanism of M. bovis.
Collapse
Affiliation(s)
- Fei Yang
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Y.); (M.Y.)
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.L.); (Y.Q.)
| | - Mengmeng Yang
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Y.); (M.Y.)
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.L.); (Y.Q.)
| | - Fan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.L.); (Y.Q.)
| | - Yanrong Qi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.L.); (Y.Q.)
| | - Yanan Guo
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Y.); (M.Y.)
| | - Shenghu He
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.L.); (Y.Q.)
| |
Collapse
|
2
|
Lu D, Chen J, Zhang M, Fu Y, Raheem A, Chen Y, Chen X, Hu C, Chen J, Schieck E, Zhao G, Guo A. Identification of potential nucleomodulins of Mycoplasma bovis by direct biotinylation and proximity-based biotinylation approaches. Front Microbiol 2024; 15:1421585. [PMID: 39044956 PMCID: PMC11263210 DOI: 10.3389/fmicb.2024.1421585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Mycoplasma bovis (M. bovis) is a significant bovine pathogen associated with various diseases, including bovine bronchopneumonia and mastitis resulting in substantial economic losses within the livestock industry. However, the development of effective control measures for M. bovis is hindered by a limited understanding of its virulence factors and pathogenesis. Nucleomodulins are newly identified secreted proteins of bacteria that internalize the host nuclei to regulate host cell gene expression and serve as critical virulence factors. Although recent reports have initiated exploration of mycoplasma nucleomodulins, the efficiency of conventional techniques for identification is very limited. Therefore, this study aimed to establish high-throughput methods to identify novel nucleomodulins of M. bovis. Using a direct biotinylation (DB) approach, a total of 289 proteins were identified including 66 high abundant proteins. In parallel, the use of proximity-based biotinylation (PBB), identified 28 proteins. Finally, seven nucleomodulins were verified to be nuclear by transfecting the bovine macrophage cell line BoMac with the plasmids encoding EGFP-fused proteins and observed with Opera Phenix, including the known nucleomodulin MbovP475 and six novel nucleomodulins. The novel nucleomodulins were four ribosomal proteins (MbovP599, MbovP678, MbovP710, and MbovP712), one transposase (MbovP790), and one conserved hypothetical protein (MbovP513). Among them, one unique nucleomodulin MbovP475 was identified with DB, two unique nucleomodulins (MbovP513 and MbovP710) with PBB, and four nucleomodulins by both. Overall, these findings established a foundation for further research on M. bovis nucleomodulin-host interactions for identification of new virulence factors.
Collapse
Affiliation(s)
- Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiongxi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Menghan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingjie Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Abdul Raheem
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Elise Schieck
- International Livestock Research Institute, Nairobi, Kenya
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Wynn EL, Browne AS, Clawson ML. Diversity and antigenic potentials of Mycoplasmopsis bovis secreted and outer membrane proteins within a core genome of strains isolated from North American bison and cattle. Genome 2024; 67:204-209. [PMID: 38330385 DOI: 10.1139/gen-2023-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Mycoplasmopsis bovis is a worldwide economically important pathogen of cattle that can cause or indirectly contribute to bovine respiratory disease. M. bovis is also a primary etiological agent of respiratory disease in bison with high mortality rates. A major challenge in the development of an efficacious M. bovis vaccine is the design of antigens that contain both MHC-1 and MHC-2 T-cell epitopes, and that account for population level diversity within the species. Publicly available genomes and sequence read archive libraries of 381 M. bovis strains isolated from cattle (n = 202) and bison (n = 179) in North America were used to identify a core genome of 575 genes, including 38 that encode either known or predicted secreted or outer membrane proteins. The antigenic potentials of the proteins were characterized by the presence and strength of their T-cell epitopes, and their protein variant diversity at the population-level. The proteins had surprisingly low diversity and varying predictive levels of T-cell antigenicity. These results provide a reference for the selection or design of antigens for vaccine testing against strains infecting North American cattle and bison.
Collapse
Affiliation(s)
- Emily L Wynn
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS) US Meat Animal Research Center, Clay Center, NE, USA
| | - A Springer Browne
- USDA, Animal and Plant Health Inspection Service (APHIS), Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - Michael L Clawson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS) US Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
4
|
Zhang H, Zhang Y, Lu D, Chen X, Chen Y, Hu C, Guo A. MbovP0725, a secreted serine/threonine phosphatase, inhibits the host inflammatory response and affects metabolism in Mycoplasma bovis. mSystems 2024; 9:e0089123. [PMID: 38440990 PMCID: PMC11019793 DOI: 10.1128/msystems.00891-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
Mycoplasma species are able to produce and release secreted proteins, such as toxins, adhesins, and virulence-related enzymes, involved in bacteria adhesion, invasion, and immune evasion between the pathogen and host. Here, we investigated a novel secreted protein, MbovP0725, from Mycoplasma bovis encoding a putative haloacid dehalogenase (HAD) hydrolase function of a key serine/threonine phosphatase depending on Mg2+ for the dephosphorylation of its substrate pNPP, and it was most active at pH 8 to 9 and temperatures around 40°C. A transposon insertion mutant strain of M. bovis HB0801 that lacked the protein MbovP0725 induced a stronger inflammatory response but with a partial reduction of adhesion ability. Using transcriptome sequencing and quantitative reverse transcription polymerase chain reaction analysis, we found that the mutant was upregulated by the mRNA expression of genes from the glycolysis pathway, while downregulated by the genes enriched in ABC transporters and acetate kinase-phosphate acetyltransferase pathway. Untargeted metabolomics showed that the disruption of the Mbov_0725 gene caused the accumulation of 9-hydroxyoctadecadienoic acids and the consumption of cytidine 5'-monophosphate, uridine monophosphate, and adenosine monophosphate. Both the exogenous and endogenous MbvoP0725 protein created by purification and transfection inhibited lipopolysaccharide (LPS)-induced IL-1β, IL-6, and TNF-α mRNA production and could also attenuate the activation of MAPK-associated pathways after LPS treatment. A pull-down assay identified MAPK p38 and ERK as potential substrates for MbovP0725. These findings define metabolism- and virulence-related roles for a HAD family phosphatase and reveal its ability to inhibit the host pro-inflammatory response. IMPORTANCE Mycoplasma bovis (M. bovis) infection is characterized by chronic pneumonia, otitis, arthritis, and mastitis, among others, and tends to involve the suppression of the immune response via multiple strategies to avoid host cell immune clearance. This study found that MbovP0725, a haloacid dehalogenase (HAD) family phosphatase secreted by M. bovis, had the ability to inhibit the host pro-inflammatory response induced by lipopolysaccharide. Transcriptomic and metabolomic analyses were used to identify MbovP0725 as an important phosphatase involved in glycolysis and nucleotide metabolism. The M. bovis transposon mutant strain T8.66 lacking MbovP0725 induced a higher inflammatory response and exhibited weaker adhesion to host cells. Additionally, T8.66 attenuated the phosphorylation of MAPK P38 and ERK and interacted with the two targets. These results suggested that MbovP0725 had the virulence- and metabolism-related role of a HAD family phosphatase, performing an anti-inflammatory response during M. bovis infection.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal & Veterinary Sciences, Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yiqiu Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Gelgie AE, Desai SE, Gelalcha BD, Kerro Dego O. Mycoplasma bovis mastitis in dairy cattle. Front Vet Sci 2024; 11:1322267. [PMID: 38515536 PMCID: PMC10956102 DOI: 10.3389/fvets.2024.1322267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Mycoplasma bovis has recently been identified increasingly in dairy cows causing huge economic losses to the dairy industry. M. bovis is a causative agent for mastitis, pneumonia, endometritis, endocarditis, arthritis, otitis media, and many other clinical symptoms in cattle. However, some infected cows are asymptomatic or may not shed the pathogen for weeks to years. This characteristic of M. bovis, along with the lack of adequate testing and identification methods in many parts of the world until recently, has allowed the M. bovis to be largely undetected despite its increased prevalence in dairy farms. Due to growing levels of antimicrobial resistance among wild-type M. bovis isolates and lack of cell walls in mycoplasmas that enable them to be intrinsically resistant to beta-lactam antibiotics that are widely used in dairy farms, there is no effective treatment for M. bovis mastitis. Similarly, there is no commercially available effective vaccine for M. bovis mastitis. The major constraint to developing effective intervention tools is limited knowledge of the virulence factors and mechanisms of the pathogenesis of M. bovis mastitis. There is lack of quick and reliable diagnostic methods with high specificity and sensitivity for M. bovis. This review is a summary of the current state of knowledge of the virulence factors, pathogenesis, clinical manifestations, diagnosis, and control of M. bovis mastitis in dairy cows.
Collapse
Affiliation(s)
- Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Sarah E. Desai
- College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
Dawood AS, Zhao G, He Y, Lu D, Wang S, Zhang H, Chen Y, Hu C, Chen H, Schieck E, Guo A. Comparative Proteomic Analysis of Secretory Proteins of Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides Investigates Virulence and Discovers Important Diagnostic Biomarkers. Vet Sci 2023; 10:685. [PMID: 38133236 PMCID: PMC10748157 DOI: 10.3390/vetsci10120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The most important pathogenic Mycoplasma species in bovines are Mycoplasma bovis (M. bovis) and Mycoplasma mycoides subsp. mycoides (Mmm). Mmm causes contagious bovine pleuropneumonia (CBPP), which is a severe respiratory disease widespread in sub-Saharan Africa but eradicated in several countries, including China. M. bovis is an important cause of the bovine respiratory disease complex (BRD), characterized worldwide by pneumonia, arthritis, and mastitis. Secreted proteins of bacteria are generally considered virulence factors because they can act as toxins, adhesins, and virulent enzymes in infection. Therefore, this study performed a comparative proteomic analysis of the secreted proteins of M. bovis and Mmm in order to find some virulence-related factors as well as discover differential diagnostic biomarkers for these bovine mycoplasmas. The secretome was extracted from both species, and liquid chromatography-tandem mass spectrometry was used, which revealed 55 unique secreted proteins of M. bovis, 44 unique secreted proteins of Mmm, and 4 homologous proteins. In the M. bovis secretome, 19 proteins were predicted to be virulence factors, while 4 putative virulence factors were identified in the Mmm secretome. In addition, five unique secreted proteins of Mmm were expressed and purified, and their antigenicity was confirmed by Western blotting assay and indirect ELISA. Among them, Ts1133 and Ts0085 were verified as potential candidates for distinguishing Mmm infection from M. bovis infection.
Collapse
Affiliation(s)
- Ali Sobhy Dawood
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yujia He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shujuan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Elise Schieck
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Secretome of Paenibacillus sp. S-12 provides an insight about its survival and possible pathogenicity. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01032-4. [PMID: 36642775 DOI: 10.1007/s12223-023-01032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/01/2023] [Indexed: 01/17/2023]
Abstract
Our aim in this study was to characterize and investigate the secretome of Paenibacillus sp. S-12 by nanoLC-MS/MS tool-based analysis of trypsin digested culture supernatant proteins. Using a bioinformatics and combined approach of mass spectrometry, we identified 657 proteins in the secretome. Bioinformatic tools such as PREDLIPO, SecretomeP 2.0, SignalP 4.1, and PSORTb were used for the subcellular localization and categorization of secretome on basis of signal peptides. Among the identified proteins, more than 25% of the secretome proteins were associated with virulence proteins including flagellar, adherence, and immune modulators. Gene ontology analysis using Blast2GO tools categorized 60 proteins of the secretome into biological processes, cellular components, and molecular functions. KEGG pathway analysis identified the enzymes or proteins involved in various biosynthesis and degradation pathways. Functional analysis of secretomes reveals a large number of proteins involved in the uptake and exchange of nutrients, colonization, and chemotaxis. A good number of proteins were involved in survival and defense mechanism against oxidative stress, the production of toxins and antimicrobial compounds. The present study is the first report of the in-depth protein profiling of Paenibacillus bacterium. In summary, the current findings of Paenibacillus sp. S-12 secretome provide basic information to understand its survival and the possible pathogenic mechanism.
Collapse
|
8
|
Zubair M, Wang J, Yu Y, Faisal M, Qi M, Shah AU, Feng Z, Shao G, Wang Y, Xiong Q. Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases. Front Vet Sci 2022; 9:1079359. [PMID: 36601329 PMCID: PMC9806867 DOI: 10.3389/fvets.2022.1079359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Proteomics is playing an increasingly important role in identifying pathogens, emerging and re-emerging infectious agents, understanding pathogenesis, and diagnosis of diseases. Recently, more advanced and sophisticated proteomics technologies have transformed disease diagnostics and vaccines development. The detection of pathogens is made possible by more accurate and time-constrained technologies, resulting in an early diagnosis. More detailed and comprehensive information regarding the proteome of any noxious agent is made possible by combining mass spectrometry with various gel-based or short-gun proteomics approaches recently. MALDI-ToF has been proved quite useful in identifying and distinguishing bacterial pathogens. Other quantitative approaches are doing their best to investigate bacterial virulent factors, diagnostic markers and vaccine candidates. Proteomics is also helping in the identification of secreted proteins and their virulence-related functions. This review aims to highlight the role of cutting-edge proteomics approaches in better understanding the functional genomics of pathogens. This also underlines the limitations of proteomics in bacterial secretome research.
Collapse
Affiliation(s)
- Muhammad Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Faisal
- Division of Hematology, Department of Medicine, The Ohio State University College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Mingpu Qi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abid Ullah Shah
- National Research Centre of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Wang
- China Pharmaceutical University, Nanjing, China,*Correspondence: Yu Wang
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,School of Life Sciences, Jiangsu University, Zhenjiang, China,Qiyan Xiong
| |
Collapse
|
9
|
Zhao G, Lu D, Wang S, Zhang H, Zhu X, Hao Z, Dawood A, Chen Y, Schieck E, Hu C, Chen X, Yang L, Guo A. Novel mycoplasma nucleomodulin MbovP475 decreased cell viability by regulating expression of CRYAB and MCF2L2. Virulence 2022; 13:1590-1613. [PMID: 36121023 PMCID: PMC9487752 DOI: 10.1080/21505594.2022.2117762] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleomodulins are secreted bacterial proteins whose molecular targets are located in host cell nuclei. They are gaining attention as critical virulence factors that either modify the epigenetics of host cells or directly regulate host gene expression. Mycoplasma bovis is a major veterinary pathogen that secretes several potential virulence factors. The aim of this study was to determine whether any of their secreted proteins might function as nucleomodulins. After an initial in silico screening, the nuclear localization of the secreted putative lipoprotein MbovP475 of M. bovis was demonstrated in bovine macrophage cell line (BoMac) experimentally infected with M. bovis. Through combined application of ChIP-seq, Electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR) analysis, MbovP475 was determined to bind the promoter regions of the cell cycle central regulatory genes CRYAB and MCF2L2. MbovP475 has similar secondary structures with the transcription activator-like effectors (TALEs). Screening of various mutants affecting the potential DNA binding sites indicated that the residues 242NI243 within MbovP475 loop region of the helix-loop-helix domain were essential to its DNA binding activity, thereby contributing to decrease in BoMac cell viability. In conclusion, this is the first report to confirm M. bovis secretes a conserved TALE-like nucleomodulin that binds the promoters of CRYAB and MCF2L2 genes, and subsequently down-regulates their expression and decreases BoMac cell viability. Therefore, this study offers a new understanding of mycoplasma pathogenesis.
Collapse
Affiliation(s)
- Gang Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Animal Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shujuan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xifang Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ali Dawood
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China.,International Livestock Research Institute, Nairobi, Kenya
| | - Elise Schieck
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- College of Animal Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Kumari K, Sharma PK, Aggarwal Y, Singh RP. Secretome analysis of an environmental isolate Enterobacter sp. S-33 identifies proteins related to pathogenicity. Arch Microbiol 2022; 204:662. [PMID: 36198868 DOI: 10.1007/s00203-022-03277-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
Enterobacter species are responsible for causing infections of the lower respiratory tract, urinary tract, meninges, etc. Proteins secreted by these species may act as determinants of host-pathogen interaction and play a role in virulence. Among the secreted proteins, the Type VI secretion system (T6SS) acts as a molecular nanomachine to deliver many effector proteins directly into prey cells in a contact-dependent manner. The secreted proteins may provide an idea for the interaction of bacteria to their environment and an understanding of the role of these proteins for their role in bacterial physiology and behaviour. Therefore, aim of this study was to characterize the secreted proteins in the culture supernatant by a T6SS bacterium Enterobacter sp. S-33 using nano-LC-MS/MS tool. Using a combined mass spectrometry and bioinformatics approach, we identified a total of 736 proteins in the secretome. Bioinformatics analysis predicting subcellular localization identified 110 of the secreted proteins possessed signal sequences. By gene ontology analysis, more than 80 proteins of the secretome were classified into biological or molecular functions. More than 20 percent of secretome proteins were virulence proteins including T6SS proteins, proteins involved in adherence and fimbriae formation, molecular chaperones, outer membrane proteins, serine proteases, antimicrobial, biofilm, exotoxins, etc. In summary, the results of the present study of the S-33 secretome provide a basis for understanding the possible pathogenic mechanisms and future investigation by detailed experimental approach will provide a confirmation of secreted virulence proteins in the exact role of virulence using the in vivo model.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, BIT Mesra, Ranchi, Jharkhand, 835215, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD-20742, USA
| | - Yogender Aggarwal
- Department of Bioengineering and Biotechnology, BIT Mesra, Ranchi, Jharkhand, 835215, India
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, BIT Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
11
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Gaurivaud P, Tardy F. The Mycoplasma spp. ‘Releasome’: A New Concept for a Long-Known Phenomenon. Front Microbiol 2022; 13:853440. [PMID: 35495700 PMCID: PMC9051441 DOI: 10.3389/fmicb.2022.853440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterial secretome comprises polypeptides expressed at the cell surface or released into the extracellular environment as well as the corresponding secretion machineries. Despite their reduced coding capacities, Mycoplasma spp. are able to produce and release several components into their environment, including polypeptides, exopolysaccharides and extracellular vesicles. Technical difficulties in purifying these elements from the complex broth media used to grow mycoplasmas have recently been overcome by optimizing growth conditions and switching to chemically defined culture media. However, the secretion pathways responsible for the release of these structurally varied elements are still poorly described in mycoplasmas. We propose the use of the term ‘releasome,’ instead of secretome, to refer to molecules released by mycoplasmas into their environment. The aim of this review is to more precisely delineate the elements that should be considered part of the mycoplasmal releasome and their role in the interplay of mycoplasmas with host cells and tissues.
Collapse
|
13
|
Dai W, Li J, Li Q, Cai J, Su J, Stubenrauch C, Wang J. PncsHub: a platform for annotating and analyzing non-classically secreted proteins in Gram-positive bacteria. Nucleic Acids Res 2022; 50:D848-D857. [PMID: 34551435 PMCID: PMC8728121 DOI: 10.1093/nar/gkab814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
From industry to food to health, bacteria play an important role in all facets of life. Some of the most important bacteria have been purposely engineered to produce commercial quantities of antibiotics and therapeutics, and non-classical secretion systems are at the forefront of these technologies. Unlike the classical Sec or Tat pathways, non-classically secreted proteins share few common characteristics and use much more diverse secretion pathways for protein transport. Systematically categorizing and investigating the non-classically secreted proteins will enable a deeper understanding of their associated secretion mechanisms and provide a landscape of the Gram-positive secretion pathway distribution. We therefore developed PncsHub (https://pncshub.erc.monash.edu/), the first universal platform for comprehensively annotating and analyzing Gram-positive bacterial non-classically secreted proteins. PncsHub catalogs 4,914 non-classically secreted proteins, which are delicately categorized into 8 subtypes (including the 'unknown' subtype) and annotated with data compiled from up to 26 resources and visualisation tools. It incorporates state-of-the-art predictors to identify new and homologous non-classically secreted proteins and includes three analytical modules to visualise the relationships between known and putative non-classically secreted proteins. As such, PncsHub aims to provide integrated services for investigating, predicting and identifying non-classically secreted proteins to promote hypothesis-driven laboratory-based experiments.
Collapse
Affiliation(s)
- Wei Dai
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC 3800, Australia
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Jiahui Li
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qi Li
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jiasheng Cai
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jianzhong Su
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Christopher Stubenrauch
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC 3800, Australia
- Centre to Impact AMR, Monash University, VIC 3800, Australia
| | - Jiawei Wang
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC 3800, Australia
- Centre to Impact AMR, Monash University, VIC 3800, Australia
| |
Collapse
|
14
|
Zhang H, Hu G, Lu D, Zhao G, Zhang Y, Zubair M, Chen Y, Hu C, Chen X, Chen J, Chen H, Yang L, Guo A. Comparative Secretome Analyses of Mycoplasma bovis Virulent and Attenuated Strains Revealed MbovP0145 as a Promising Diagnostic Biomarker. Front Vet Sci 2021; 8:666769. [PMID: 34222397 PMCID: PMC8249566 DOI: 10.3389/fvets.2021.666769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mycoplasmas are successful pathogens both in humans as well as in animals. In cattle, Mycoplasma bovis (M. bovis) is known to be responsible for serious health complications, including pneumonia, mastitis, and arthritis. However, M. bovis pathogenesis remains unclear. Secreted proteins of M. bovis could influence infection and modify host defense signaling pathways after they enter their extracellular space in the host micro-environment. Therefore, this study was aimed to compare the secretomes of M. bovis HB0801 virulent (P1) and attenuated (P150) strains and identify potential pathogenesis-related secreted proteins and biomarkers. The cells of P1 and P150 strains were grown in pleuropneumonia-like organism medium to log phase and then transferred to phosphate-buffered saline for 2 h. Then, the supernatant was analyzed by using label-free quantitative proteomics, and 477 potential secreted proteins were identified. Combined with the bioinformatics prediction, we found that 178 proteins were commonly secreted by the P1 and P150 strains, and 49 of them were encoded by mycoplasmal core genes. Additionally, 79 proteins were found to have a different abundance between the P1 and P150 strains. Among these proteins, 34 were more abundant and uniquely expressed in P1, indicating a possible association with the virulence of M. bovis. Three differentially secreted proteins, MbovP0145, MbovP0725, and MbovP0174, as well as one equally secreted protein, MbovP0481, as positive control and one protein of inner membrane, MbovP0310, as negative control were, respectively, cloned, expressed, and evaluated for antigenicity, subcellular location, and the secretion nature with their mouse antisera by western blotting and colony immunoblotting assay. Among them, MbovP0145 was confirmed to be more secreted by P1 than P150 strain, highly reactive with the antisera from naturally infected and P1 experimentally infected cattle but not with the P150 vaccinated calves, indicating its potential as a diagnostic antigen. In conclusion, these findings may represent the most extensive compilation of potentially secreted proteins in mycoplasma species and the largest number of differentially secreted proteins between the virulent and attenuated M. bovis strains to date and provide new insights into M. bovis pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guyue Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yiqiu Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Zubair
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of China Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of China Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Dudek K, Szacawa E, Nicholas RAJ. Recent Developments in Vaccines for Bovine Mycoplasmoses Caused by Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides. Vaccines (Basel) 2021; 9:549. [PMID: 34073966 PMCID: PMC8225212 DOI: 10.3390/vaccines9060549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Two of the most important diseases of cattle are caused by mycoplasmas. Mycoplasma bovis is a world-wide bovine pathogen that can cause pneumonia, mastitis and arthritis. It has now spread to most, if not all, cattle-rearing countries. Due to its increasing resistance to antimicrobial therapy, vaccination is the principal focus of the control of infection, but effective vaccines are currently lacking. Despite being eradicated from most parts of the world, Mycoplasma mycoides subsp. mycoides, the cause of contagious bovine pleuropneumonia (CBPP), continues to plague sub-Saharan Africa, affecting at least 25 countries. Numerous new experimental vaccines have been developed over the last 20 years to improve on protection afforded by the T1/44, a live vaccine in continuous use in Africa for over 60 years, but none so far have succeeded; indeed, many have exacerbated the disease. Tools for diagnosis and control are adequate for eradication but what is necessary are resources to improve vaccine coverage to levels last seen in the 1970s, when CBPP was restricted to a few countries in Africa. This paper summarizes the results of the main studies in the field of experimental mycoplasma vaccines, reviews data on commercially available bacterin vaccines and addresses issues relating to the search for new candidates for effective vaccines to reduce economic losses in the cattle industry caused by these two mycoplasmas.
Collapse
Affiliation(s)
- Katarzyna Dudek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24100 Pulawy, Poland;
| | - Ewelina Szacawa
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24100 Pulawy, Poland;
| | | |
Collapse
|
16
|
Shirani I, Zhang H, Zhao G, Lu S, Marawan MA, Dawood A, Chen Y, Chen X, Chen J, Hu C, Chen H, Guo A. In Silico Identification of Novel Immunogenic Secreted Proteins of Mycoplasma bovis from Secretome Data and Experimental Verification. Pathogens 2020; 9:pathogens9090770. [PMID: 32967149 PMCID: PMC7559824 DOI: 10.3390/pathogens9090770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 01/09/2023] Open
Abstract
Mycoplasma bovis is a major pathogen, responsible for bovine respiratory diseases worldwide. The present lack of effective control measures leaves cattle owners at considerable perpetual risk of M. bovis outbreaks. In this study, we identified M. bovis secreted immunogenic proteins in silico as potential candidates for novel diagnostic agents and vaccines. We used immunoinformatics to analyze 438 M. bovis proteins previously identified with a label-free proteomics analysis of virulent M. bovis HB0801 (P1) and its attenuated P150 strains. The subcellular localization of these proteins was preliminarily screened and 59 proteins were found to be secreted extracellular proteins. Twenty-seven of these proteins contained a large number of predictive T-cell epitopes presented by major histocompatibility complex (MHC) class I and II molecules. Twenty-two of these 27 proteins had a high number of conformational B-cell epitopes, predicted from the corresponding 3D structural templates, including one unique to P1, two unique to P150, and 19 common to both strains. Five proteins were selected for further validation, and two of these, MbovP274 and MbovP570, were successfully expressed and purified. Both were confirmed to be secretory and highly immunogenic proteins that induced a mouse antibody response, reacted with cattle serum positive for M. bovis infection, and significantly increased the production of interleukin 8 (IL-8), IL-12 and interferon γ (IFN-γ) during the secretion of these three cytokines by both M. bovis mutants of these genes. These results should be useful in the development of novel immunological agents against M. bovis infection.
Collapse
Affiliation(s)
- Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
- Para-Clinic Department, Faculty of Veterinary Medicine, Nangarhar University, Jalalabad 2601, Afghanistan
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
| | - Siyi Lu
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
- Infectious diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Qualyobia 13511, Egypt
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
- Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32511, Egypt
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
| | - Jianguo Chen
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (I.S.); (H.Z.); (G.Z.); (S.L.); (M.A.M.); (A.D.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.C.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87286861
| |
Collapse
|