1
|
Sayed AE, Hafez A, Ateya A, Darwish A, Tahoun A. Single nucleotide polymorphisms, gene expression and evaluation of immunological, antioxidant, and pathological parameters associated with bacterial pneumonia in Barki sheep. Ir Vet J 2025; 78:11. [PMID: 40221769 PMCID: PMC11992743 DOI: 10.1186/s13620-025-00296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND In sheep, pneumonia is a major concern because of its high morbidity, mortality, and economic impact. It results from various infectious agents, including bacteria, viruses, and environmental stressors, that weaken the immune system. OBJECTIVE The objective of this study was to monitor nucleotide sequence variations, gene expression, and serum biomarkers of inflammation and oxidative stress in sheep with pneumonia. Additionally, this study aimed to identify various bacterial strains and virulent gene combinations in pneumonic sheep, as confirmed by PCR. METHODOLOGY The enrolled animals were categorized as follows: 50 apparently healthy ewes, considered the control group, and 150 infected ewes with pneumonia. The infected ewes included 100 sporadic cases from the Center for Sustainable Development of Matrouh Resources, Desert Research Center, Matrouh, Egypt, and 50 ewes from the slaughterhouse, all exhibiting respiratory symptoms such as coughing, serous to mucopurulent nasal discharge, fever, and abnormal lung sounds. Blood samples were collected to assess various biochemical parameters, detect SNPs, and analyse the expression of specific immunological and antioxidant-related genes. Nasopharyngeal and lung swabs were taken from the affected ewes for bacteriological analysis, and lung samples were collected for histological examination. RESULTS Phenotypic characterization and identification revealed the presence of Klebsiella pneumoniae, Pasteurella multocida, Mannheimia haemolytica, Pseudomonas spp., Mycoplasma, Streptococcus, and Escherichia coli, with frequencies of 40%, 28.6%, 34%, 18%, 44%, 29.3%, and 20%, respectively. Additionally, virulence genes for Klebsiella pneumoniae, iutA and fimH, were detected at rates of 39% and 68%, respectively, whereas the toxA gene for Pseudomonas spp. was present in 59.2% of the cases. Nucleotide sequence variations in immunity- and antioxidant-related genes were observed between healthy and pneumonic ewes. The genes encoding IL-1α, IL1B, IL6, TNF-α, LFA-1, CR2, IL17, IL13, DEFB123, SCART1, ICAM1, NOS, and HMOX1 were significantly upregulated in pneumonia-affected ewes compared with resistant ewes. Conversely, the genes encoding IL10, SOD1, CAT, GPX1, and NQO1 were downregulated. Further analysis of the serum profile revealed a significant (P < 0.05) increase in IL-1α, IL-1β, IL-6, TNF-α, NO and MDA along with a significant (P < 0.05) decrease in the serum levels of C3, C4, CAT, GPx, GR and IL-10 in diseased ewes compared with healthy ewes. Histopathological examination revealed that the infected sheep exhibited broncho-interstitial pneumonia and purulent to fibrino-purulent bronchopneumonia. CONCLUSIONS This study revealed the significant presence of various pathogens and virulence factors in infected sheep, along with distinct immunological and antioxidant gene expression patterns. The altered serum profile and gene regulation in pneumonia-affected ewes underscore the complex immune response and potential biomarkers for disease susceptibility and resistance.
Collapse
Affiliation(s)
- Ahmed El Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt.
| | - Amani Hafez
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ahmed Ateya
- Department of Development of Animal, of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Asmaa Darwish
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Amin Tahoun
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelshkh University, Kafr El Sheikh, 33516, Egypt
- Departments of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Shen X, Guan L, Zhang J, Xue Y, Si L, Zhao Z. Study in the iron uptake mechanism of Pasteurella multocida. Vet Res 2025; 56:41. [PMID: 39948631 PMCID: PMC11827447 DOI: 10.1186/s13567-025-01469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/28/2024] [Indexed: 02/16/2025] Open
Abstract
Pasteurella multocida infects a wide range of animals, causing hemorrhagic septicemia or infectious pneumonia. Iron is an essential nutrient for growth, colonization, and proliferation of P. multocida during infection of the host, and competition for iron ions in the host is a critical link in the pathogenesis of this pathogen. In recent years, there has been significant progress in the study of the iron uptake system of P. multocida, including its occurrence and regulatory mechanisms. In order to provide a systematic theoretical basis for the study of the molecular pathogenesis of the P. multocida iron uptake system, and generate new ideas for the investigation and development of molecular-targeted drugs and subunit vaccines against P. multocida, the mechanisms of iron uptake by transferrin receptors, heme receptors, and siderophores, and the mechanism of expression and regulation of the P. multocida iron uptake system are all described.
Collapse
Affiliation(s)
- Xiangxiang Shen
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lijun Guan
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Junfeng Zhang
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yun Xue
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lifang Si
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhanqin Zhao
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
3
|
Agrawal A, Varshney R, Gattani A, Kirthika P, Gupta R, Kumar D, Singh RP, Singh P. SLAM (CD150) receptor homologous peptides block the peste des petits ruminants virus entry into B95a cells. Proteins 2024; 92:356-369. [PMID: 37881117 DOI: 10.1002/prot.26595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023]
Abstract
The fusion of haemagglutinin-neuraminidase (HN) protein of peste des petits ruminant (PPR) virus with signaling lymphocyte activation molecules (SLAM) host cell receptor consequences the virus entry and multiplication inside the host cell. The use of synthetic SLAM homologous peptides (i.e., molecular decoy for HN protein of PPR virus) may check PPR infection at the preliminary stage. Hence, the predicted SLAM homologous peptides using bioinformatics tools were synthesized by solid phase chemistry with standard Merrifield's 9-fluorenylmethoxycarbonyl (Fmoc) chemistry and were purified by reverse phase high performance liquid chromatography. The secondary structures of synthesized peptides were elucidated by circular dichroism spectroscopy. The in vitro interactions of these peptides were studied through indirect Enzyme Linked Immuno Sorbent Assay (ELISA) and visual surface plasmon UV-visible spectroscopy. The SLAM homologous peptides were able to interact with the peste des petits ruminant virus (PPRV) with varying binding efficiency. The interaction of SLAM homologous peptide with the PPR virus was ascertained by the change in the plasmon color from red wine to purple during visual detection and also by bathochromic shift in absorbance spectra under UV-visible spectrophotometry. The cytotoxic and anti-PPRV effect of these peptides were also evaluated in B95a cell line using PPR virus (Sungri/96). The cytotoxic concentration 50 (CC50 ) value of each peptide was greater than 1000 μg mL-1 . The anti-PPRV efficiency of SLAM-22 was relatively high among SLAM homologous peptides, SLAM-22 at 25 μg mL-1 concentration showed a reduction of more than log10 3 virus titer by priming of B95a cell line while the use of SLAM-15 and Muco-17 at the same concentration dropped virus titer from log10 4.8 to log10 2.5 and log10 3.1 respectively. The concentration of SLAM homologous peptide (25 μg mL-1 ) to exert its anti-PPRV effect was much less than its CC50 level (>1000 μg mL-1 ). Therefore, the synthetic SLAM homologous peptides may prove to be better agents to target PPRV.
Collapse
Affiliation(s)
- Aditya Agrawal
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, Madhya Pradesh, India
| | - Rajat Varshney
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
- Division of Bacteriology and Mycology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | - Anil Gattani
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Biochemistry, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Perumalraja Kirthika
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohini Gupta
- Department of Veterinary Medicine, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | | | - Praveen Singh
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Biophysics Section, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| |
Collapse
|
4
|
Wang J, Liu H, Raheem A, Ma Q, Liang X, Guo Y, Lu D. Exploring Mycoplasma ovipneumoniae NXNK2203 infection in sheep: insights from histopathology and whole genome sequencing. BMC Vet Res 2024; 20:20. [PMID: 38200549 PMCID: PMC10777581 DOI: 10.1186/s12917-023-03866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Mycoplasma ovipneumoniae (M. ovipneumoniae) is a significant pathogen causing respiratory infections in goats and sheep. This study focuses on investigating vulnerability of Hu sheep to M. ovipneumoniae infection in the context of late spring's cold weather conditions through detailed autopsy of a severely affected Hu sheep and whole genome sequencing of M. ovipneumoniae. RESULTS The autopsy findings of the deceased sheep revealed severe pulmonary damage with concentrated tracheal and lung lesions. Histopathological analysis showed tissue degeneration, mucus accumulation, alveolar septum thickening, and cellular necrosis. Immunohistochemistry analysis indicated that M. ovipneumoniae was more in the bronchi compared to the trachea. Genome analysis of M. ovipneumoniae identified a 1,014,835 bp with 686 coding sequences, 3 rRNAs, 30 tRNAs, 6 CRISPRs, 11 genomic islands, 4 prophages, 73 virulence factors, and 20 secreted proteins. CONCLUSION This study investigates the vulnerability of Hu sheep to M. ovipneumoniae infection during late spring's cold weather conditions. Autopsy findings showed severe pulmonary injury in affected sheep, and whole genome sequencing identified genetic elements associated with pathogenicity and virulence factors of M. ovipneumoniae.
Collapse
Affiliation(s)
- Jiandong Wang
- NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, China
| | - Hongyan Liu
- NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, China
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Abdul Raheem
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Ma
- NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, China
| | - Xiaojun Liang
- NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, China
| | - Yanan Guo
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Sahoo PR, Singh P, Biswas S. Development and evaluation of gold nanoprobe based lateral flow device for rapid and sensitive serodetection of Bluetongue in sheep. Anim Biotechnol 2023; 34:4968-4977. [PMID: 37222605 DOI: 10.1080/10495398.2023.2214604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bluetongue (BT) disease is a viral, insect borne, noncontagious illness of small ruminants caused by Orbivirus, impacting huge economic loss worldwide. The existing BT diagnostic techniques are costly, time-consuming and require both specialized equipment and also skilled personnel. So there is need to develop a rapid, sensitive, on site detection assay for diagnosis of BT. This study utilized secondary antibody derivatized Gold nanoprobes for rapid and sensitive detection of BT over lateral flow device (LFD). The detection limit for this assay was found 1.875 µg of BT IgG/ml and a comparison between LFD and indirect ELISA was performed and the sensitivity and specificity was found at 96% and 99.23%, respectively, with observed kappa value of 0.952. This developed LFD may therefore offer a quick, affordable and accurate diagnosis of BT disease at the field level.
Collapse
Affiliation(s)
- Pravas Ranjan Sahoo
- Biochemistry Division, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Praveen Singh
- Biochemistry Division, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
- Biophysics and Electron Microscopy Section, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sanchay Biswas
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
6
|
Agrawal A, Varshney R, Gattani A, Hira Khan M, Gupta R, Solanki KS, Patel SK, Singh RP, Singh P. Development of Hemagglutinin-Neuraminidase Homologous Peptides as Novel Promising Therapeutic Agents Against Peste des Petits Ruminants Virus. Protein J 2023; 42:685-697. [PMID: 37421558 DOI: 10.1007/s10930-023-10134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
The lack of specific antiviral therapy and complications associated with the existing peste des petits ruminants (PPR) vaccines accentuates the search of novel antiviral blocking agents in order to curtail the PPR infection at initial level. The synthetic hemagglutinin-neuraminidase (HN) homologous peptides may compete with the natural HN protein of PPR virus for binding to signaling lymphocytic activation molecule (SLAM) receptor, consequently, may disrupt peste des petits ruminants virus (PPRV) at entry level. Therefore, insilico analysis, synthesis, purification and subsequent characterization of HN homologous peptides were conducted in this study. The HN homologous peptides were synthesized by means of solid phase chemistry and were purified by reversed-phase-high performance liquid chromatography. The mass as well as sequence of HN homologous peptides were assessed by mass spectroscopy while its secondary structure was elucidated by circular dichroism spectroscopy. The binding (interaction) efficacy of HN homologous peptides with PPRV antibodies was assessed via indirect enzyme linked immunosorbent assay, visual detection test (red wine to purple), bathochromic shift under UV-Vis spectrophotometry and lateral flow immunochromatographic strip test. The antiviral properties and cytotoxicity of these peptides were also assessed in B95a cell line with changes in cytopathic effect and titer of PPRV (Sungri/96). The presence of green fluorescein isothiocyanate over the B95a cell surface pointed towards the binding of HN homologous peptides with surface SLAM receptor. Moreover, the intact beta sheet configuration in water and lower cytotoxicity [cytotoxic concentration 50 (CC50) > 1000 µg/ml] of these peptides signifies its in vivo use. Among HN homologous peptides, the binding efficacy and antiviral properties of pep A was relatively high in comparison to pep B and Pep ppr peptides. The prerequisite concentration of HN homologous peptides (pep A = 12.5 µg/ml; pep B = 25 µg/ml; pep ppr = 25 µg/ml) to exemplify its antiviral effect was much lower than its CC50 level. Hence, this study signifies the therapeutic potential of synthetic HN homologous peptides.
Collapse
Affiliation(s)
- Aditya Agrawal
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India.
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal husbandry, NDVSU, Rewa, Jabalpur, 486001, India.
| | - Rajat Varshney
- Department of Veterinary Microbiology, BHU, Mirzapur, U.P., 231001, India
- Division of Bacteriology and Mycology, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| | - Anil Gattani
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal husbandry, NDVSU, Jabalpur, 486001, India
| | - Mahvash Hira Khan
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal husbandry, NDVSU, Jabalpur, 486001, India
| | - Rohini Gupta
- Department of Veterinary Medicine, College of Veterinary Science and Animal husbandry, NDVSU, Jabalpur, 486001, India
| | - Khushal Singh Solanki
- Division of Veterinary Biotechnology, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| | - Shailesh Kumar Patel
- Department of Veterinary Pathology, College of Veterinary Science and Animal husbandry, NDVSU, Rewa, Jabalpur, 486001, India
| | - R P Singh
- Division of Bacteriology and Mycology, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| | - Praveen Singh
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| |
Collapse
|
7
|
Singh R, Sharma R, Varshney R, Mal G, Ghosh M, Singh B. Evaluation of immunological adjuvant activities of saponin rich fraction from the fruits of Asparagus adscendens Roxb. with less adverse reactions. Drug Chem Toxicol 2023; 46:557-565. [PMID: 35484852 DOI: 10.1080/01480545.2022.2067170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hemolytic activity, in vitro as well as in vivo toxicity, and immunomodulatory potential of saponins-rich fraction of Asparagus adscendens Roxb. fruit (AA-SRF) have been assessed in this study in order to explore AA-SRF as an alternative safer adjuvant to standard Quil-A saponin. The AA-SRF showed lower hemolytic activity (HD50 = 301.01 ± 1.63 µg/ml) than Quil-A (HD50 = 17.15 ± 2.12 µg/ml). The sulforhodamine B assay also revealed that AA-SRF was less toxic to VERO cells (IC50≥200 ± 4.32 µg/ml) than Quil-A (IC50 = 60 ± 2.78 µg/ml). The AA-SRF did not lead to mortality in mice up to 1.6 mg and was much safer than Quil-A for in vivo use. Conversely, mice were subcutaneously immunized with OVA 100 μg alone or along with Alum (200 μg) or Quil-A (10 μg) or AA-SRF (50 μg/100 μg/200 μg) on days 0 and 14. The AA-SRF at 100 μg dose best supported the LPS/Con A primed splenocyte proliferation activity, elevated the serum OVA-specific total IgG antibody, IL-12, CD4 titer and upsurged CD3/CD19 expression in spleen as well as lymph node sections which in turn advocated its adjuvant potential. Thus, AA-SRF can be further studied for use as a safe alternative adjuvant in vaccines.
Collapse
Affiliation(s)
- Rahul Singh
- Animal Experimental Pathology, Central Ayurvedic Research Institute for Drug Development, CCRAS, Ministry of Ayush, Kolkata, India
| | - Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Rajat Varshney
- Department of Veterinary Microbiology, FVAS, IAS, RGSC, Banaras Hindu University, Mirzapur, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, FVAS, IAS, RGSC, Banaras Hindu University, Mirzapur, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| |
Collapse
|
8
|
Guan LJ, Yang JQ, Xu QY, Feng YF, Zhang XC, Tang B, Zhao ZQ. Immunogenicity and efficacy of serogroup A and D bacterins against Pasteurella multocida in mice. Front Vet Sci 2023; 10:1132536. [PMID: 36937018 PMCID: PMC10014835 DOI: 10.3389/fvets.2023.1132536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Pasteurella multocida is a widespread respiratory pathogen in pigs, causing swine pneumonia and atrophic rhinitis, and the capsular serogroups A and D are the main epidemic serogroups in infected animals. This study investigated the protective effects of serogroup A and D bacterins against current circulating P. multocida strains, to better understand the immunity generated by bacterins. Method 13 serogroup A (seven A: L3 and six A: L6 strains) and 13 serogroup D (all D: L6 strains) P. multocida strains were isolated, and used as inactivated whole cell antigen to prepare P. multocida bacterins. Mice were immunized with these bacterins at 21-day interval and intraperitoneally challenged with the homologous and heterologous P. multocida strains, respectively. The antibody titer levels and immunization protective efficacy of vaccines were evaluated. Results All of the bacterins tested induced high titer levels of immunoglobulin G antibodies against the parental bacterial antigen in mice. Vaccination with the six A: L6 bacterins provided no protection against the parent strain, but some strains did provide heterologous protection against A: L3 strains. Vaccination with the seven A: L3 bacterins provided 50%-100% protection against the parent strain, but none gave heterologous protection against the A:L6 strains. Immunization with the thirteen D: L6 bacterins offered 60%-100% protection against the parent strain, and almost all D: L6 strains gave cross-protection. Discussion This study found that the cross-protectivity of serogroup A strains was poor, while serogroup D strains was effective, which provided some insights for P. multocida vaccine development.
Collapse
Affiliation(s)
- Li-jun Guan
- College of Veterinary Medicine, Jilin University, Changchun, China
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jin-qian Yang
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qing-yuan Xu
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi-fan Feng
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xi-chen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, China
- Bo Tang
| | - Zhan-qin Zhao
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Zhan-qin Zhao
| |
Collapse
|
9
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
10
|
Solanki KS, Varshney R, Qureshi S, Thomas P, Singh R, Agrawal A, Chaudhuri P. Non-infectious outer membrane vesicles derived from Brucella abortus S19Δper as an alternative acellular vaccine protects mice against virulent challenge. Int Immunopharmacol 2020; 90:107148. [PMID: 33189614 DOI: 10.1016/j.intimp.2020.107148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
The prime human and animal safety issues accentuate the search of promising newer alternative vaccine candidates to resolve complications associated with the live attenuated Brucella abortus strain19 (S19) vaccine. Outer membrane vesicles (OMVs S19 Δper) extracted from Brucella abortus S19Δper (S19Δper) as an alternative subunit vaccine candidate has been explored in the present study as OMVs are endowed with immunogenic molecules, including LPS and outer membrane proteins (OMPs) and do not cause infection by virtue of being an acellular entity. The LPS defective S19Δper released a higher amount of OMVs than its parent strain S19. Under transmission electron microscopy (TEM), OMVs were seen as nano-sized outward bulge from the surface of Brucella. Dynamic light scattering analysis of OMVs revealed that OMVs S19Δper showed the less polydispersity index (PDI) than OMVs S19 pointing towards relatively more homogenous OMVs populations. Both OMVs S19Δper and OMVs S19 with or without booster dose and S19 vaccine were used for immunization of mice and subsequently challenged with 2 × 105 CFU virulent Brucella abortus strain 544 (S544) to assess protective efficacy of vaccines. The less splenic weight index and less S544 count in OMVs immunized mice in comparison to unimmunized mice after S544 challenge clearly indicated good protective efficacy of OMVs. OMVs S19 Δper induced relatively high titer of IgG than OMVs S19 but conferred nearly equal protection against brucellosis. An ELISA based determination of IgG and its isotype response, Cytometric Bead Array (CBA) based quantitation of serum cytokines and FACS based enumeration of CD4+ and CD8+ T cells revealed high titer of IgG, production of both Th1 (IgG2a) and Th2 (IgG1) related antibodies, stimulation of IL-2, TNF (Th1) and IL-4, IL-6, IL-10 (Th2) cytokines, and induced T cell response suggested that OMVs S19Δper elicited Th1 and Th2 type immune response and ensured protection against S544 challenge in murine model.
Collapse
Affiliation(s)
- Khushal Singh Solanki
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Rajat Varshney
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Department of Veterinary Microbiology, FVAS, IAS, RGSC, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh 231001, India.
| | - Salauddin Qureshi
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Department of Veterinary Pathology, Khalsa College of Veterinary & Animal Sciences, Amritsar, Punjab 143001, India.
| | - Aditya Agrawal
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
11
|
Agrawal A, Varshney R, Gattani A, Kirthika P, Khan MH, Singh R, Kodape S, Patel SK, Singh P. Gold nanoparticle based immunochromatographic biosensor for rapid diagnosis of Mycobacterium avium subspecies paratuberculosis infection using recombinant protein. J Microbiol Methods 2020; 177:106024. [PMID: 32795639 DOI: 10.1016/j.mimet.2020.106024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023]
Abstract
Highly infectious and obvious withstand ability of Mycobacterium avium subspecies paratuberculosis (MAP) to environment as well as lack of on-site field diagnostic methods notably hampers the paratuberculosis (PTB) control. The existing intricacy, time-consuming and complicated diagnostic methods of PTB accentuate the development of novel and easy-to-perform on-site test. A gold nanoparticle (GNP) based lateral-flow assay (LFA) using MAP recombinant protein (44 kDa) has been developed for sensitive and specific detection of PTB in field conditions. The diagnostic sensitivity and specificity of the LFA for MAP specific antibodies was found approximately 84.2% and 83.3% in comparison to indirect enzyme-linked immunosorbent assay. Consequently, the newly developed GNP based LFA offers on-site and cost-effective method for the prompt diagnosis of PTB and precludes the time-consuming laboratory screening.
Collapse
Affiliation(s)
- Aditya Agrawal
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P. 243122, India.
| | - Rajat Varshney
- Division of Bacteriology and Mycology, IVRI, Izatnagar, Bareilly, U.P. 243122, India; Department of Veterinary Microbiology, FVAS, IAS, RGSC, BHU, Barkachha, Mirzapur UP-231001, India.
| | - Anil Gattani
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P. 243122, India; Department of Veterinary biochemistry, Bihar veterinary college, Patna 800014, India.
| | - P Kirthika
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P. 243122, India.
| | - Mahvash Hira Khan
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P. 243122, India.
| | - Rahul Singh
- Division of Pathology, IVRI, Izatnagar, Bareilly, U.P. 243122, India.
| | - Shantanu Kodape
- Division of Veterinary Biotechnology, IVRI, Izatnagar, Bareilly, U.P. 243122, India.
| | | | - Praveen Singh
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P. 243122, India.
| |
Collapse
|