1
|
Wang D, Shi Y, Cheng Z, Luo L, Cheng K, Gan S, Liu C, Chen Z, Yang B. A Toxoplasma gondii thioredoxin with cell adhesion and antioxidant function. Front Cell Infect Microbiol 2024; 14:1404120. [PMID: 39211799 PMCID: PMC11358088 DOI: 10.3389/fcimb.2024.1404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Toxoplasma gondii (T. gondii) is a widespread, zoonotic protozoan intracellular parasite with a complex life cycle, which can cause toxoplasmosis, a potentially serious disease. During the invasion process, T. gondii proteins first bind to the relevant host cell receptors, such as glycosaminoglycan molecule (GAG-binding motif), which is one of the main receptors for parasites or virus to infect host cells. However, research on TGME49_216510 (T. gondii Trx21), a protein from Toxoplasma gondii, is limited. Methods Bioinformatics analysis of the Trx21 protein was performed firstly. And specific primers were then designed using the conserved domain and GAG-binding motif to amplify, express, and purify a fragment of the Trx21 protein. The purified Trx21-GST protein was used for antioxidant and cell adhesion experiments. Simultaneously, mice were immunized with Trx21-His to generate specific polyclonal antibodies for subcellular localization analysis. Results The Trx21 protein, consisting of 774 amino acids, included a transmembrane region, three GAG-binding motifs, and a Thioredoxin-like domain. The recombinant Trx21-His protein had a molecular mass of about 31 kDa, while the Trx21-GST protein had a molecular mass of about 55 kDa, which was analyzed by SDS-PAGE and Western blot. Subcellular localization analysis by IFA revealed that Trx21 is predominantly distributed in the cytoplasm of T. gondii. Furthermore, Trx21 exhibited a protective effect on supercoiled DNA against metal-catalyzed oxidation (MCO) and demonstrated adhesion abilities to Vero cells. Conclusions These results indicate that Trx21 plays an important role in host cell interaction and oxidative damage.
Collapse
Affiliation(s)
- Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuyi Shi
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ziwen Cheng
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Like Luo
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Kuo Cheng
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shengqi Gan
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Che Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zeliang Chen
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Baoling Yang
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
2
|
The Prevalence of Trichinella spiralis in Domestic Pigs in China: A Systematic Review and Meta-Analysis. Animals (Basel) 2022; 12:ani12243553. [PMID: 36552472 PMCID: PMC9774926 DOI: 10.3390/ani12243553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The meta-analysis was performed to assess the prevalence of T. spiralis in domestic pigs in China. The potential studies from seven databases (Pubmed, Web of science, Scopus, Google Scholar, CNKI, Wanfang, CBM) were searched. I2, Cochran's Q statistic and the funnel plot and Egger's test were used to assess heterogeneity and publication bias, respectively. In this study, a total of 179 articles were captured in the initially screened. Of these, we finally obtained 39 significant articles (including 43 studies involving in 551,097 pigs) for the final analysis. We calculated using a random-effects model, and we found the overall infection rate was 0.04 (95% CI 0.03-0.06). The highest prevalence region was Guangxi. The funnel plot and Egger's test showed no publication bias in our meta-analysis. In addition, this high heterogeneity index was suggestive of potential variations which could be due to regions, quality scores, detection methods, publication years, or samplings. These results indicated that T. spiralis were still prevalent in some areas in China. This highlights the need for an increased focus on implementing affordable, appropriate control programs to reduce economic losses and T. spiralis infection in domestic pigs in China.
Collapse
|
3
|
Yue C, Yang W, Fan X, Lan J, Huang W, Zhang D, Li Y, Liao L, Ayala JE, Wu K, Liu Y, Zheng W, Li L, Zhang H, Su X, Yan X, Hou R, Liu S. Seroprevalence and risk factors of Toxoplasma gondii infection in captive giant panda ( Ailuropoda melanoleuca). Front Cell Infect Microbiol 2022; 12:1071988. [PMID: 36519136 PMCID: PMC9742358 DOI: 10.3389/fcimb.2022.1071988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Toxoplasma gondii, a globally zoonotic protozoan parasite, infects most warm-blooded animals including the giant panda, and poses a serious threat to the giant panda conservation. However, the seroprevalence and the risk factors for toxoplasmosis in giant pandas are unknown. Here we aimed to determine the seroprevalence of T. gondii in the captive population of giant pandas and analyze the factors associated with the increased risk of infection. Methods A total of 203 serum samples were collected from 157 (95 females and 62 males) captive giant pandas from 2007 to 2022, antibodies against T. gondii were screened using commercial ELISA and MAT kits. Results The results showed 56 (35.67%) giant pandas were seropositive, age and transfer history between institutions were identifified as risk factors for T. gondii infection. It is suggested that age-related seroprevalence was the main factor, and housing multiple species in the same environment may increase the chance of cross-infection of T. gondii. Discussion This study can provide research data for developing policies for the prevention and control of T. gondii and protecting the health of captive giant pandas and other wildlife.
Collapse
Affiliation(s)
- Chanjuan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Wanjing Yang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xueyang Fan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Jingchao Lan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Wenjun Huang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Dongsheng Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Yunli Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Lihui Liao
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - James Edward Ayala
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Kongju Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Yiyan Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weichao Zheng
- Rare and Endangered Species Reintroduction and Species Monitoring Research Center, Schuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Lin Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Hongwen Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xia Yan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China,*Correspondence: Songrui Liu, ; Rong Hou,
| | - Songrui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China,*Correspondence: Songrui Liu, ; Rong Hou,
| |
Collapse
|
4
|
Li XM, Geng HL, Wei YJ, Yan WL, Liu J, Wei XY, Zhang M, Wang XY, Zhang XX, Liu G. Global prevalence and risk factors of Cryptosporidium infection in Equus: A systematic review and meta-analysis. Front Cell Infect Microbiol 2022; 12:1072385. [PMID: 36506009 PMCID: PMC9732577 DOI: 10.3389/fcimb.2022.1072385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Intoduction Cryptosporidiosis is a zoonotic disease caused by Cryptosporidium infection with the main symptom of diarrhea. The present study performed a metaanalysis to determine the global prevalence of Cryptosporidium in Equus animals. Methods Data collection was carried out using Chinese National Knowledge Infrastructure (CNKI), VIP Chinese journal database (VIP), WanFang Data, PubMed, and ScienceDirect databases, with 35 articles published before 2021 being included in this systematic analysis. This study analyzed the research data through subgroup analysis and univariate regression analysis to reveal the factors leading to high prevalence. We applied a random effects model (REM) to the metadata. Results The total prevalence rate of Cryptosporidium in Equus was estimated to be 7.59% from the selected articles. The prevalence of Cryptosporidium in female Equus was 2.60%. The prevalence of Cryptosporidium in Equus under 1-year-old was 11.06%, which was higher than that of Equus over 1-year-old (2.52%). In the experimental method groups, the positive rate detected by microscopy was the highest (10.52%). The highest Cryptosporidium prevalence was found in scale breeding Equus (7.86%). The horses had the lowest Cryptosporidium prevalence (7.32%) among host groups. C. muris was the most frequently detected genotype in the samples (53.55%). In the groups of geographical factors, the prevalence rate of Cryptosporidium in Equus was higher in regions with low altitude (6.88%), rainy (15.63%), humid (22.69%), and tropical climates (16.46%). Discussion The search strategy use of five databases might have caused the omission of some researches. This metaanalysis systematically presented the global prevalence and potential risk factors of Cryptosporidium infection in Equus. The farmers should strengthen the management of young and female Equus animals, improve water filtration systems, reduce stocking densities, and harmless treatment of livestock manure.
Collapse
Affiliation(s)
- Xiao-Man Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei-Lan Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jing Liu
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin, China
| | - Xin-Yu Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Miao Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiang-Yu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Wei XY, An Q, Xue NY, Chen Y, Chen YY, Zhang Y, Zhao Q, Wang CR. Seroprevalence and risk factors of Neospora caninum infection in cattle in China from 2011 to 2020: A systematic review and meta-analysis. Prev Vet Med 2022; 203:105620. [DOI: 10.1016/j.prevetmed.2022.105620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022]
|
6
|
Toxoplasma gondii Infections in Animals and Humans in Southern Africa: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11020183. [PMID: 35215126 PMCID: PMC8880191 DOI: 10.3390/pathogens11020183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Toxoplasma gondii is an apicomplexan parasite with zoonotic importance worldwide especially in pregnant women and immunocompromised people. This study is set to review the literature on T. gondii infections in humans and animals in southern Africa. Methods: We extracted data regarding T. gondii infections from published articles from southern Africa from 1955 to 2020 from four databases, namely Google Scholar, PubMed, EBSCO Host, and Science Direct. Forty articles from eight southern African countries were found eligible for the study. Results: This review revealed a paucity of information on T. gondii infection in southern African countries, with an overall prevalence of 17% (95% CI: 7–29%). Domestic felids had a prevalence of 29% (95% CI: 7–54%), wild felids 79% (95% CI: 60–94), canids (domestic and wild) 69% (95% CI: 38–96%), cattle 20% (95% CI: 5–39%), pigs 13% (95% CI: 1–29%), small ruminants (goats and sheep) 11% (95% CI: 0–31%), chicken and birds 22% (95% CI: 0–84%), and humans 14% (95% CI: 5–25%). Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence antibody test (IFAT) constituted the most frequently used diagnostic tests for T. gondii. Conclusions: We recommend more focused studies be conducted on the epidemiology of T. gondii in the environment, food animals and human population, most especially the at-risk populations.
Collapse
|
7
|
SEROSURVEY FOR SELECTED PARASITIC AND BACTERIAL PATHOGENS IN DARWIN'S FOX (LYCALOPEX FULVIPES): NOT ONLY DOG DISEASES ARE A THREAT. J Wildl Dis 2021; 58:76-85. [PMID: 34714909 DOI: 10.7589/jwd-d-21-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022]
Abstract
The Darwin's fox (Lycalopex fulvipes) is one of the most endangered carnivores worldwide, with the risk of disease spillover from domestic dogs being a major conservation threat. However, lack of epidemiologic information about generalist, non-dog-transmission-dependent protozoal and bacterial pathogens may be a barrier for disease prevention and management. To determine the exposure of some of these agents in Darwin's fox populations, 54 serum samples were collected from 47 Darwin's foxes in Southern Chile during 2013-18 and assessed for the presence of antibodies against Brucella abortus, Brucella canis, Coxiella burnetii, pathogenic Leptospira (serovars Grippotyphosa, Pomona, Canicola, Hardjo, and Copehageni), Toxoplasma gondii, and Neospora caninum. The highest seroprevalence was detected for T. gondii (78%), followed by pathogenic Leptospira (14%). All the studied Leptospira serovars were confirmed in at least one animal. Two foxes seroconverted to Leptospira and one to T. gondii during the study period. No seroconversions were observed for the other pathogens. No risk factors, either intrinsic (sex, age) or extrinsic (season, year, and degree of landscape anthropization), were associated with the probability of being exposed to T. gondii. Our results indicate that T. gondii exposure is widespread in the Darwin's fox population, including in areas with minimal anthropization, and that T. gondii and pathogenic Leptospira might be neglected threats to the species. Further studies identifying the causes of morbidity and mortality in Darwin's fox are needed to determine if these or other pathogens are having individual or population-wide effects in this species.
Collapse
|
8
|
Meng XZ, Li MY, Lyu C, Qin YF, Zhao ZY, Yang XB, Ma N, Zhang Y, Zhao Q. The global prevalence and risk factors of Cryptosporidium infection among cats during 1988-2021: A systematic review and meta-analysis. Microb Pathog 2021; 158:105096. [PMID: 34273476 DOI: 10.1016/j.micpath.2021.105096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/15/2022]
Abstract
Cryptosporidiosis is an important zoonosis caused by Cryptosporidium. This disease causes a global public health problem. The cat is considered to be one of the potential hosts for transmitting Cryptosporidium to humans. In this study, a global meta-analysis for Cryptosporidium infection in cats was performed. The articles related to Cryptosporidium infection in cats were systematically searched in databases China National Knowledge Infrastructure (CNKI), Wanfang data, VIP Chinese Journal Database, PubMed, and ScienceDirect. Finally, 92 articles published from 1988 to 2021, which met the criteria of systematic review and meta-analysis, were collected. During the selected period, the overall prevalence of Cryptosporidium among cats was identified to be 6.0%. The prevalence of Cryptosporidium detected by microscopy, coproantigens, and molecular biology methods were 4.2%, 8.2%, and 5.0%, respectively. Among 9 species/genotypes (C. felis, C. parvum, C. muris, Cryptosporidium rat genotype IV, C. baileyi, C. ryanae, C. hominis, Cryptosporidium sp. rat genotype III and most closely related to Cryptosporidium sp. rat genotype III), the prevalence of C. parvum (4.2%) was significantly higher than that of other species/genotypes. Among five continents, the prevalence of Cryptosporidium in Africa (30.5%) was significantly higher than in other continents. We also analyzed the effects of different geographical factors (longitude, latitude, altitude, mean temperature, precipitation, and humidity) on Cryptosporidium infection among cats. The results showed that cryptosporidiosis was common in cats all over the world. This systematic review and meta-analysis has systematically introduced the global epidemiology of Cryptosporidium in cats and correlated risk factors. Health authorities, doctors, veterinarians and cat owners' awareness of the prevalence, risk factors and complications of Cryptosporidium are important for the development of effective prevention strategies for cryptosporidiosis.
Collapse
Affiliation(s)
- Xiang-Zhu Meng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China; College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, PR China
| | - Man-Yao Li
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China
| | - Chuang Lyu
- Shandong New Hope Liuhe Group Co., Ltd, Qingdao, 266100, PR China; Qingdao Jiazhi Biotechnology Co., Ltd, Qingdao, 266100, PR China
| | - Yi-Feng Qin
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Xin-Bo Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Ning Ma
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Yuan Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China.
| | - Quan Zhao
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, PR China.
| |
Collapse
|
9
|
Lv XQ, Qin SY, Lyu C, Leng X, Zhang JF, Gong QL. A systematic review and meta-analysis of Cryptosporidium prevalence in deer worldwide. Microb Pathog 2021; 157:105009. [PMID: 34051327 DOI: 10.1016/j.micpath.2021.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Xiao-Qin Lv
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Si-Yuan Qin
- General Monitoring Station for Wildlife-Borne Infectious Diseases, State Forestry and Grass Administration, Shenyang, Liaoning Province 110034, PR China
| | - Chuang Lyu
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao 266100, PR China; Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, PR China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Ji-Fa Zhang
- Changbai Customs, Baishan, Jilin Province 13440, PR China
| | - Qing-Long Gong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China.
| |
Collapse
|