1
|
Li W, Gao M, Yu J. Rising prevalence and drug resistance of Corynebacterium striatum in lower respiratory tract infections. Front Cell Infect Microbiol 2025; 14:1526312. [PMID: 39839260 PMCID: PMC11747479 DOI: 10.3389/fcimb.2024.1526312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Corynebacterium striatum (C. striatum) is a Gram-positive bacterium commonly colonizing the skin and mucosa in healthy individuals and hospitalized patients. Traditionally regarded as a contaminant, C. striatum is now increasingly recognized as a potential cause of clinical infections, especially after the coronavirus disease pandemic. It has emerged as a pathogen implicated in severe infections, including pneumonia, bacteremia, meningitis, artificial joint infections, abdominal infections, and endocarditis. C. striatum has been reported in lower respiratory tract infections, mostly as a conditioned pathogen in immunocompromised individuals, particularly in those with chronic structural lung diseases, such as chronic obstructive pulmonary disease, leading to severe pneumonia or exacerbation of the existing disease and high mortality. Additionally, C striatum has been implicated in the community-acquired pneumonia among immunocompetent individuals and nosocomial lung infections, with evidence of person-to-person transmission through caregivers. C. striatum may exhibit multidrug resistance. Vancomycin, alone or in combination, is currently considered the most effective treatment for C. striatum. This review highlights the epidemiological characteristics, drug resistance mechanisms, diagnostics approaches, and treatment options for C. striatum lower respiratory tract infections to enhance clinician awareness and improve patient management strategies.
Collapse
Affiliation(s)
- Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Mingyue Gao
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinyan Yu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Kramer A, Lexow F, Bludau A, Köster AM, Misailovski M, Seifert U, Eggers M, Rutala W, Dancer SJ, Scheithauer S. How long do bacteria, fungi, protozoa, and viruses retain their replication capacity on inanimate surfaces? A systematic review examining environmental resilience versus healthcare-associated infection risk by "fomite-borne risk assessment". Clin Microbiol Rev 2024; 37:e0018623. [PMID: 39388143 PMCID: PMC11640306 DOI: 10.1128/cmr.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYIn healthcare settings, contaminated surfaces play an important role in the transmission of nosocomial pathogens potentially resulting in healthcare-associated infections (HAI). Pathogens can be transmitted directly from frequent hand-touch surfaces close to patients or indirectly by staff and visitors. HAI risk depends on exposure, extent of contamination, infectious dose (ID), virulence, hygiene practices, and patient vulnerability. This review attempts to close a gap in previous reviews on persistence/tenacity by only including articles (n = 171) providing quantitative data on re-cultivable pathogens from fomites for a better translation into clinical settings. We have therefore introduced the new term "replication capacity" (RC). The RC is affected by the degree of contamination, surface material, temperature, relative humidity, protein load, organic soil, UV-light (sunlight) exposure, and pH value. In general, investigations into surface RC are mainly performed in vitro using reference strains with high inocula. In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4 protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the upper bounds of risks when using such data for clinical decision-making. Information on RC after surface contamination could be seen as an opportunity to choose the most appropriate infection prevention and control (IPC) strategies. To help with decision-making, pathogens characterized by an increased nosocomial risk for transmission from inanimate surfaces ("fomite-borne") are presented and discussed in this systematic review. Thus, the review offers a theoretical basis to support local risk assessments and IPC recommendations.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene
and Environmental Medicine, University Medicine
Greifswald, Greifswald,
Germany
| | - Franziska Lexow
- Department for
Infectious Diseases, Unit 14: Hospital Hygiene, Infection Prevention and
Control, Robert Koch Institute,
Berlin, Germany
| | - Anna Bludau
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Antonia Milena Köster
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Martin Misailovski
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
- Department of
Geriatrics, University of Göttingen Medical
Center, Göttingen,
Germany
| | - Ulrike Seifert
- Friedrich
Loeffler-Institute of Medical Microbiology – Virology, University
Medicine Greifswald,
Greifswald, Germany
| | - Maren Eggers
- Labor Prof. Dr. G.
Enders MVZ GbR, Stuttgart,
Germany
| | - William Rutala
- Division of Infectious
Diseases, University of North Carolina School of
Medicine, Chapel Hill,
North Carolina, USA
| | - Stephanie J. Dancer
- Department of
Microbiology, University Hospital
Hairmyres, Glasgow,
United Kingdom
- School of Applied
Sciences, Edinburgh Napier University,
Edinburgh, United Kingdom
| | - Simone Scheithauer
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| |
Collapse
|
3
|
Sangal V, Marrs ECL, Nelson A, Perry JD. Phylogenomic analyses of multidrug resistant Corynebacterium striatum strains isolated from patients in a tertiary care hospital in the UK. Eur J Clin Microbiol Infect Dis 2024; 43:1495-1501. [PMID: 38801486 PMCID: PMC11271431 DOI: 10.1007/s10096-024-04857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Corynebacterium striatum is an emerging nosocomial pathogen. This is the first report showing the presence of three distinct multidrug resistant lineages of C. striatum among patients in a UK hospital. The presence of ErmX, Tet(W), Bla and AmpC proteins, and mutations in gyrA gene are associated with the resistance to clindamycin, doxycycline, penicillin and moxifloxacin, respectively. These strains are equipped with several corynebacterial virulence genes including two SpaDEF-type and a novel pilus gene cluster, which needs further molecular characterisation. This study highlights a need of developing an active surveillance strategy for routine monitoring and preventing potential cross-transmission among susceptible patients.
Collapse
Affiliation(s)
- Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
| | - Emma C L Marrs
- Microbiology Research Department, Freeman Hospital, Newcastle upon Tyne, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - John D Perry
- Microbiology Research Department, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Wang J, Zhang M, Pei J, Yi W, Fan L, Wang C, Xiao X. Isolation and identification of a novel phage targeting clinical multidrug-resistant Corynebacterium striatum isolates. Front Cell Infect Microbiol 2024; 14:1361045. [PMID: 38572320 PMCID: PMC10987712 DOI: 10.3389/fcimb.2024.1361045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Over the past decade, Corynebacterium striatum (C. striatum), an emerging multidrug-resistant (MDR) pathogen, has significantly challenged healthcare settings, especially those involving individuals with weakened immune systems. The rise of these superbugs necessitates innovative solutions. Methods This study aimed to isolate and characterize bacteriophages targeting MDR-C. striatum. Utilizing 54 MDR-C. striatum isolates from a local hospital as target strains, samples were collected from restroom puddles for phage screening. Dot Plaque and Double-layer plate Assays were employed for screening. Results A novel temperate bacteriophage, named CSP1, was identified through a series of procedures, including purification, genome extraction, sequencing, and one-step growth curves. CSP1 possesses a 39,752 base pair circular double-stranded DNA genome with HK97-like structural proteins and potential for site-specific recombination. It represents a new species within the unclassified Caudoviricetes class, as supported by transmission electron microscopy, genomic evolutionary analysis, and collinearity studies. Notably, CSP1 infected and lysed 21 clinical MDR-C. striatum isolates, demonstrating a wide host range. The phage remained stable in conditions ranging from -40 to 55°C, pH 4 to 12, and in 0.9% NaCl buffer, showing no cytotoxicity. Discussion The identification of CSP1 as the first phage targeting clinical C. striatum strains opens new possibilities in bacteriophage therapy research, and the development of diagnostic and therapeutic tools against pathogenic bacteria.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Meng Zhang
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Pei
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wei Yi
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Li Fan
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Chunhua Wang
- Department of Clinical Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiao Xiao
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
5
|
Nageeb WM, Hetta HF. Pangenome analysis of Corynebacterium striatum: insights into a neglected multidrug-resistant pathogen. BMC Microbiol 2023; 23:252. [PMID: 37684624 PMCID: PMC10486106 DOI: 10.1186/s12866-023-02996-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Over the past two decades, Corynebacterium striatum has been increasingly isolated from clinical cultures with most isolates showing increased antimicrobial resistance (AMR) to last resort agents. Advances in the field of pan genomics would facilitate the understanding of the clinical significance of such bacterial species previously thought to be among commensals paving the way for identifying new drug targets and control strategies. METHODS We constructed a pan-genome using 310 genome sequences of C. striatum. Pan-genome analysis was performed using three tools including Roary, PIRATE, and PEPPAN. AMR genes and virulence factors have been studied in relation to core genome phylogeny. Genomic Islands (GIs), Integrons, and Prophage regions have been explored in detail. RESULTS The pan-genome ranges between a total of 5253-5857 genes with 2070 - 1899 core gene clusters. Some antimicrobial resistance genes have been identified in the core genome portion, but most of them were located in the dispensable genome. In addition, some well-known virulence factors described in pathogenic Corynebacterium species were located in the dispensable genome. A total of 115 phage species have been identified with only 44 intact prophage regions. CONCLUSION This study presents a detailed comparative pangenome report of C. striatum. The species show a very slowly growing pangenome with relatively high number of genes in the core genome contributing to lower genomic variation. Prophage elements carrying AMR and virulence elements appear to be infrequent in the species. GIs appear to offer a prominent role in mobilizing antibiotic resistance genes in the species and integrons occur at a frequency of 50% in the species. Control strategies should be directed against virulence and resistance determinants carried on the core genome and those frequently occurring in the accessory genome.
Collapse
Affiliation(s)
- Wedad M Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, 41111, Egypt.
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
6
|
Qiu J, Shi Y, Zhao F, Xu Y, Xu H, Dai Y, Cao Y. The Pan-Genomic Analysis of Corynebacterium striatum Revealed its Genetic Characteristics as an Emerging Multidrug-Resistant Pathogen. Evol Bioinform Online 2023; 19:11769343231191481. [PMID: 37576785 PMCID: PMC10422898 DOI: 10.1177/11769343231191481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Corynebacterium striatum is a Gram-positive bacterium that is straight or slightly curved and non-spore-forming. Although it was originally believed to be a part of the normal microbiome of human skin, a growing number of studies have identified it as a cause of various chronic diseases, bacteremia, and respiratory infections. However, despite its increasing importance as a pathogen, the genetic characteristics of the pathogen population, such as genomic characteristics and differences, the types of resistance genes and virulence factors carried by the pathogen and their distribution in the population are poorly understood. To address these knowledge gaps, we conducted a pan-genomic analysis of 314 strains of C. striatum isolated from various tissues and geographic locations. Our analysis revealed that C. striatum has an open pan-genome, comprising 5692 gene families, including 1845 core gene families, 2362 accessory gene families, and 1485 unique gene families. We also found that C. striatum exhibits a high degree of diversity across different sources, but strains isolated from skin tissue are more conserved. Furthermore, we identified 53 drug resistance genes and 42 virulence factors by comparing the strains to the drug resistance gene database (CARD) and the pathogen virulence factor database (VFDB), respectively. We found that these genes and factors are widely distributed among C. striatum, with 77.7% of strains carrying 2 or more resistance genes and displaying primary resistance to aminoglycosides, tetracyclines, lincomycin, macrolides, and streptomycin. The virulence factors are primarily associated with pathogen survival within the host, iron uptake, pili, and early biofilm formation. In summary, our study provides insights into the population diversity, resistance genes, and virulence factors ofC. striatum from different sources. Our findings could inform future research and clinical practices in the diagnosis, prevention, and treatment of C. striatum-associated diseases.
Collapse
Affiliation(s)
- Junhui Qiu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Yulan Shi
- Wound Treatment Center of West China Hospital of Sichuan University, West China College of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Fei Zhao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Yan Dai
- Wound Treatment Center of West China Hospital of Sichuan University, West China College of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Provence, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Orosz L, Lengyel G, Makai K, Burián K. Prescription of Rifampicin for Staphylococcus aureus Infections Increased the Incidence of Corynebacterium striatum with Decreased Susceptibility to Rifampicin in a Hungarian Clinical Center. Pathogens 2023; 12:pathogens12030481. [PMID: 36986404 PMCID: PMC10058903 DOI: 10.3390/pathogens12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have suggested a role for Corynebacterium striatum as an opportunistic pathogen. The authors have conducted a retrospective study at the Clinical Center of the University of Szeged, Hungary, between 2012 and 2021 that revealed significantly increased rifampicin resistance in this species. This work aimed to investigate the reasons behind this phenomenon. The data were collected corresponding to the period between 1 January 2012 and 31 December 2021 at the Department of Medical Microbiology, University of Szeged. To characterize the resistance trends, the antibiotic resistance index was calculated for each antibiotic in use. Fourteen strains with different resistance patterns were further analyzed with Fourier-transform infrared spectroscopy using the IR Biotyper®. The decline in C. striatum sensitivity to rifampicin seen during the COVID-19 pandemic may have been attributable to the use of Rifadin® to treat concomitant Staphylococcus aureus infections. The fact that the IR Biotyper® typing method revealed that the rifampicin-resistant C. striatum strains were closely related supports this hypothesis. The IR Biotyper® infrared spectroscopy proved to be a modern and fast method to support effective antimicrobial stewardship programs.
Collapse
Affiliation(s)
- László Orosz
- Department of Medical Microbiology, University of Szeged, H-6725 Szeged, Hungary
| | - György Lengyel
- Infection Control Department, Semmelweis University, H-1085 Budapest, Hungary
| | - Klára Makai
- Central Pharmacy of Albert Szent-Györgyi Health Center, University of Szeged, H-6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
8
|
Kang Y, Chen S, Zheng B, Du X, Li Z, Tan Z, Zhou H, Huang J, Tian L, Zhong J, Ma X, Li F, Yao J, Wang Y, Zheng M, Li Z. Epidemiological Investigation of Hospital Transmission of Corynebacterium striatum Infection by Core Genome Multilocus Sequence Typing Approach. Microbiol Spectr 2023; 11:e0149022. [PMID: 36537812 PMCID: PMC9927548 DOI: 10.1128/spectrum.01490-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Corynebacterium striatum has recently received increasing attention due to its multiple antimicrobial resistances and its role as an invasive infection/outbreak agent. Recently, whole-genome sequencing (WGS)-based core genome multilocus sequence typing (cgMLST) has been used in epidemiological studies of specific human pathogens. However, this method has not been reported in studies of C. striatum. In this work, we aim to propose a cgMLST scheme for C. striatum. All publicly available C. striatum genomes, 30 C. striatum strains isolated from the same hospital, and 1 epidemiologically unrelated outgroup C. striatum strain were used to establish a cgMLST scheme targeting 1,795 genes (hereinafter referred to as 1,795-cgMLST). The genotyping results of cgMLST showed good congruence with core genome-based single-nucleotide polymorphism typing in terms of tree topology. In addition, the cgMLST provided a greater discrimination than the MLST method based on 6 housekeeping genes (gyrA, gyrB, hsp65, rpoB, secA1, and sodA). We established a clonal group (CG) threshold based on 104 allelic differences; a total of 56 CGs were identified from among 263 C. striatum strains. We also defined an outbreak threshold based on seven allelic differences that is capable of identifying closely related isolates that could give clues on hospital transmission. According to the results of analysis of drug-resistant genes and virulence genes, we identified CG4, CG5, CG26, CG28, and CG55 as potentially hypervirulent and multidrug-resistant CGs of C. striatum. This study provides valuable genomic epidemiological data on the diversity, resistance, and virulence profiles of this potentially pathogenic microorganism. IMPORTANCE Recently, WGS of many human and animal pathogens has been successfully used to investigate microbial outbreaks. The cgMLST schema are powerful genotyping tools that can be used to investigate potential epidemics and provide classification of the strains precise and reliable. In this study, we proposed the development of a cgMLST typing scheme for C. striatum, and then we evaluated this scheme for its applicability to hospital transmission investigations. This report describes the first cgMLST schema for C. striatum. The analysis of hospital transmission of C. striatum based on cgMLST methods has important clinical epidemiological significance for improving nosocomial infection monitoring of C. striatum and in-depth understanding of its nosocomial transmission routes.
Collapse
Affiliation(s)
- Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shenglin Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Beijia Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xiaoli Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhizhou Tan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia Huang
- Institute for the Prevention and Control of Infectious Diseases, Xinjiang Center for Disease Control and Prevention, Urumqi, Xinjiang, China
| | - Leihao Tian
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Jiaxin Zhong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueli Ma
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Fang Li
- Department of Medicine, Tibet University, Lhasa, Tibet, China
| | - Jiang Yao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Wang
- Department of Clinical Laboratory Medicine, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meiqin Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Jesus HNR, Ramos JN, Rocha DJPG, Alves DA, Silva CS, Cruz JVO, Vieira VV, Souza C, Santos LS, Navas J, Ramos RTJ, Azevedo V, Aguiar ERGR, Mattos-Guaraldi AL, Pacheco LGC. The pan-genome of the emerging multidrug-resistant pathogen Corynebacterium striatum. Funct Integr Genomics 2022; 23:5. [PMID: 36534203 DOI: 10.1007/s10142-022-00932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Corynebacterium striatum, a common constituent of the human skin microbiome, is now considered an emerging multidrug-resistant pathogen of immunocompromised and chronically ill patients. However, little is known about the molecular mechanisms in the transition from colonization to the multidrug-resistant (MDR) invasive phenotype in clinical isolates. This study performed a comprehensive pan-genomic analysis of C. striatum, including isolates from "normal skin microbiome" and from MDR infections, to gain insights into genetic factors contributing to pathogenicity and multidrug resistance in this species. For this, three novel genome sequences were obtained from clinical isolates of C. striatum of patients from Brazil, and other 24 complete or draft C. striatum genomes were retrieved from GenBank, including the ATCC6940 isolate from the Human Microbiome Project. Analysis of C. striatum strains demonstrated the presence of an open pan-genome (α = 0.852803) containing 3816 gene families, including 15 antimicrobial resistance (AMR) genes and 32 putative virulence factors. The core and accessory genomes included 1297 and 1307 genes, respectively. The identified AMR genes are primarily associated with resistance to aminoglycosides and tetracyclines. Of these, 66.6% are present in genomic islands, and four AMR genes, including aac(6')-ib7, are located in a class 1-integron. In conclusion, our data indicated that C. striatum possesses genomic characteristics favorable to the invasive phenotype, with high genomic plasticity, a robust genetic arsenal for iron acquisition, and important virulence determinants and AMR genes present in mobile genetic elements.
Collapse
Affiliation(s)
- Hendor N R Jesus
- Multicenter Post-Graduate Program in Biochemistry and Molecular Biology (PMBqBM), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Juliana N Ramos
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Danilo J P G Rocha
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Daniele A Alves
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina S Silva
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - João V O Cruz
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Verônica V Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brazil
| | - Cassius Souza
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Louisy S Santos
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Jesus Navas
- Cantabria University, Instituto de Investigación Valdecilla (IDIVAL), Santander, Spain
| | - Rommel T J Ramos
- Institute of Biological Sciences, Federal University of Para, Belem, PA, Brazil.,Biological Engineering Laboratory, Science and Technology Park Guama, Belem, PA, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eric R G R Aguiar
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, BA, Brazil
| | - Ana L Mattos-Guaraldi
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Luis G C Pacheco
- Multicenter Post-Graduate Program in Biochemistry and Molecular Biology (PMBqBM), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil. .,Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
10
|
Wen J, Wang Z, Du X, Liu R, Wang J. Antibioflm effects of extracellular matrix degradative agents on the biofilm of different strains of multi-drug resistant Corynebacterium striatum. Ann Clin Microbiol Antimicrob 2022; 21:53. [PMID: 36434697 PMCID: PMC9700914 DOI: 10.1186/s12941-022-00546-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Corynebacterium striatum is a microorganism with an excellent capacity for biofilm production and thus has been correlated with nosocomial transmission and invasive infections. However, little is known about the mechanism of biofilm formation of this commensal pathogen. In this study, we aimed to investigate the biofilm formation abilities of multidrug-resistant Corynebacterium striatum clinical isolates and the roles of extracellular proteins, exopolysaccharides and extracellular DNA in mediating more robust biofilm formation by the isolates of C. striatum. METHODS C. striatum isolates were identified using VITEK-2 ANC card, matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 16S rRNA sequencing. The antibiotic susceptibility test was performed using the broth microdilution method. The distribution of spaDEF genes among C. striatum isolates was detected by polymerase chain reaction, and pulsed-field gel electrophoresis typing was employed to analyze the genotypes of the isolates. Crystal violet staining and scanning electron microscopy techniques were used to detect biofilm production by C. striatum isolates. Biofilm degradation assay was performed to observe the effects of extracellular matrix degradative agents (proteinase K, dispersin B, and DNase I) on C. striatum biofilms. RESULTS Twenty-seven C. striatum isolates were enrolled in the study, and the resistance rates were the highest (100%, 27/27) against penicillin and ceftriaxone. Approximately 96.3% (26/27) C. striatum isolates were resistant to at least three different types of antimicrobial agents tested. All isolates were confirmed to be biofilm producers, and 74.07% (20/27) isolates presented moderate to strong biofilm production abilities. P7 genotype (44.4%, 12/27) was identified to as the predominant genotype, and all of isolates belonging to this genotype were multidrug-resistant and had stronger biofilm-forming abilities. Most C. striatum isolates (74.07%, 20/27) carry spaD, spaE, and spaF genes, which encode spa-type pili. However, the correlation between the expression of spa-type genes and the biofilm production abilities of the C. striatum isolates was not found. The biofilms of 80% (8/10), 90% (9/10), and 100% (10/10) C. striatum isolates with moderate to strong biofilm production abilities were significantly eliminated upon the treatment of dispersin B (20 μg/mL), DNase I (20 μg/mL), and proteinase K (20 μg/mL) (p < 0.05), respectively. For the combination groups with two kinds of biofilm-degradative agents, the combination of 20 μg/mL proteinase K/dispersin B showed the strongest biofilm-eliminating effects, when the biofilms of 90% (9/10) C. striatum isolates degraded more than 50%. CONCLUSIONS The C. striatum isolates that belonged to the predominant genotype showed a multidrug resistance (MDR) phenotype and strong biofilm formation abilities. Extracellular matrix seems to be an essential determinant in mediating biofilm formation of MDR C. striatum, since extracellular matrix degradative agents (proteinase K, dispersin B and DNase I) showed strong biofilm-eliminating effects toward multidrug-resistant C. striatum isolates. The findings of this study highlight new ideas/directions to explore the whole nature of biofilm formation of C. striatum and the function of extracellular matrix in this process.
Collapse
Affiliation(s)
- Juan Wen
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050 People’s Republic of China
| | - Zhaohui Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolian Medical University, 010050 Hohhot, People’s Republic of China
| | - Xiaoli Du
- grid.508381.70000 0004 0647 272XNational Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 People’s Republic of China
| | - Roushan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050 People’s Republic of China
| | - Junrui Wang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050 People’s Republic of China
| |
Collapse
|
11
|
Wang J, Pei J, Liu M, Huang R, Li J, Liao S, Liang J. Identification and Evolutionary Relationship of Corynebacterium striatum Clinical Isolates. Pathogens 2022; 11:pathogens11091012. [PMID: 36145444 PMCID: PMC9501166 DOI: 10.3390/pathogens11091012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Corynebacterium striatum has developed into a new community-acquired and hospital-acquired multi-drug resistance (MDR) bacterium, and is a potential target pathogen for infection control and antibacterial management projects. In this study, non-duplicate samples of inpatients were collected from a local central hospital. Mass spectrometry showed that 54 C. striatum isolates mainly appeared in secretion and sputum from 14 departments. Protein fingerprint cluster analysis showed that the isolates were divided into four groups, most of which appeared in summer. The drug resistance test showed that all strains had multi-drug resistance, with high resistance rates to lincosamides, quinolones and tetracycline detected. Further analysis of the phylogenetic tree of C. striatum was conducted by cloning the 16S rRNA gene. It was found that isolates in the same department had high homology and tended to be located in the same branch or to be crossed in the same main branch. The strains in the same evolutionary branch group had the same drug resistance. Screening of site-specific recombinant elements revealed that 18 strains had integrase genes with the same sequence. This study shows that there may be mobile genetic elements in clinical isolates that drive gene exchange among strains, thus causing the cross-infection, spread and evolution of pathogenic bacteria in the hospital.
Collapse
Affiliation(s)
- Jiao Wang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
- Correspondence: (J.W.); (J.P.)
| | - Jiao Pei
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
- Correspondence: (J.W.); (J.P.)
| | - Mingming Liu
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Rui Huang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Jiqiang Li
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Shiying Liao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Jian Liang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| |
Collapse
|
12
|
Antibacterial Effect and Mode of Action of Secondary Metabolites from Fungal Endophyte Associated with Aloe ferox Mill. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The constant increase in drug resistance, occurrence of incurable diseases and high medical costs, have necessitated bio-prospecting of fungi as alternative sources of therapeutic compounds. This study aimed at assessing the antibacterial effect and mode of action of secondary metabolites from fungal endophyte associated with Aloe ferox Mill. Endophytic fungus was isolated from the gel of A. ferox and identified by internal transcribed spacer (ITS) rRNA gene sequence analysis. The targets of antibacterial activity were assessed based on minimum inhibitory concentration (MIC) and the effect of the extract on respiratory chain dehydrogenase (RCD) and membrane integrity. Fourier transform-infrared spectrophotometer (FTIR) was employed to ascertain functional groups. The fungus with the most promising antibiotic-production was identified as Aspergillus welwitschiae MK450668.1. Its extract exhibited antibacterial activity with the MIC values of 0.5 and 1 mg/mL against Staphylococcus aureus (ATCC 25925) and Escherichia coli (ATCC 25922). It demonstrated the inhibitory effect on the RCD activity and destruction of membrane integrity on the test bacteria. FTIR spectrum revealed hydroxyl, amine and alkene groups. A. welwitschiae MK450668.1 serves as a potential source of effective compounds to combat the challenge of drug resistance.
Collapse
|
13
|
Menberu MA, Cooksley C, Ramezanpour M, Bouras G, Wormald PJ, Psaltis AJ, Vreugde S. In vitro and in vivo evaluation of probiotic properties of Corynebacterium accolens isolated from the human nasal cavity. Microbiol Res 2021; 255:126927. [PMID: 34875424 DOI: 10.1016/j.micres.2021.126927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Corynebacterium accolens strains are increasingly recognized as beneficial bacteria that can confer a health benefit on the host. In the current study, the probiotic potential of three C. accolens strains, C779, C781 and C787 derived from a healthy human nasal cavity were investigated. These strains were examined for their adhesion to HNECs, competition with Staphylococcus aureus for adhesion, toxicity, induction of IL-6, antibiotic susceptibility and the presence of antibiotic resistance and virulence genes. Furthermore, the safety and efficacy of strains were evaluated in vivo using Caenorhabditis elegans. The adhesion capacity of C. accolens to HNECs was strain-dependent. Highest adhesion was observed for strain C781. None of the C. accolens strains tested caused cell lysis. All strains were able to outcompete S. aureus for cell adhesion and caused a significant decrease of IL-6 production by HNECs co-exposed to S. aureus when compared to the control groups. All strains were sensitive or showed intermediate sensitivity to 10 different antibiotics. Whole Genome Sequence analysis showed C. accolens C781 and C787 did not possess antibiotic resistance genes whereas strain C779 harboured 5 genes associated with resistance to Aminoglycoside, Chloramphenicol and Erythromycin. In addition, no virulence genes were detected in any of the 3 strains. Moreover, the tested strains had no detrimental effect on worm survival and induced protection from S. aureus-mediated infection. Taken all together, C. accolens strains, C781 and C787 displayed probiotic potential and hold promise for use in clinical applications for combating dysbiosis in chronic rhinosinusitis.
Collapse
Affiliation(s)
- Martha Alemayehu Menberu
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA, Australia; Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | - Clare Cooksley
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA, Australia
| | - George Bouras
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA, Australia
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA, Australia.
| |
Collapse
|
14
|
Leyton B, Ramos JN, Baio PVP, Veras JFC, Souza C, Burkovski A, Mattos-Guaraldi AL, Vieira VV, Abanto Marin M. Treat Me Well or Will Resist: Uptake of Mobile Genetic Elements Determine the Resistome of Corynebacterium striatum. Int J Mol Sci 2021; 22:7499. [PMID: 34299116 PMCID: PMC8304765 DOI: 10.3390/ijms22147499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Corynebacterium striatum, a bacterium that is part of the normal skin microbiota, is also an opportunistic pathogen. In recent years, reports of infections and in-hospital and nosocomial outbreaks caused by antimicrobial multidrug-resistant C. striatum strains have been increasing worldwide. However, there are no studies about the genomic determinants related to antimicrobial resistance in C. striatum. This review updates global information related to antimicrobial resistance found in C. striatum and highlights the essential genomic aspects in its persistence and dissemination. The resistome of C. striatum comprises chromosomal and acquired elements. Resistance to fluoroquinolones and daptomycin are due to mutations in chromosomal genes. Conversely, resistance to macrolides, tetracyclines, phenicols, beta-lactams, and aminoglycosides are associated with mobile genomic elements such as plasmids and transposons. The presence and diversity of insertion sequences suggest an essential role in the expression of antimicrobial resistance genes (ARGs) in genomic rearrangements and their potential to transfer these elements to other pathogens. The present study underlines that the resistome of C. striatum is dynamic; it is in evident expansion and could be acting as a reservoir for ARGs.
Collapse
Affiliation(s)
- Benjamin Leyton
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
- Carrera de Bioquímica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Juliana Nunes Ramos
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-361, Brazil; (J.N.R.); (P.V.P.B.); (J.F.C.V.); (V.V.V.)
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro—LDCIC/FCM/UERJ, Rio de Janeiro 20550-170, Brazil; (C.S.); (A.L.M.-G.)
| | - Paulo Victor Pereira Baio
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-361, Brazil; (J.N.R.); (P.V.P.B.); (J.F.C.V.); (V.V.V.)
| | - João Flávio Carneiro Veras
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-361, Brazil; (J.N.R.); (P.V.P.B.); (J.F.C.V.); (V.V.V.)
| | - Cassius Souza
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro—LDCIC/FCM/UERJ, Rio de Janeiro 20550-170, Brazil; (C.S.); (A.L.M.-G.)
| | - Andreas Burkovski
- Department of Biology, Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany;
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro—LDCIC/FCM/UERJ, Rio de Janeiro 20550-170, Brazil; (C.S.); (A.L.M.-G.)
| | - Verônica Viana Vieira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-361, Brazil; (J.N.R.); (P.V.P.B.); (J.F.C.V.); (V.V.V.)
| | - Michel Abanto Marin
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| |
Collapse
|