1
|
Kahar G, Haxim Y, Zhang X, Liu X, Liu H, Wen X, Li X, Zhang D. Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Valsa mali. J Fungi (Basel) 2025; 11:290. [PMID: 40278111 PMCID: PMC12028287 DOI: 10.3390/jof11040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Chitinases are enzymes that catalyze the hydrolysis of chitin and play a significant biophysiological role in fungal growth, development, and pathogenesis. Valsa mali is a necrotrophic fungus that is a primary contributor to apple Valsa canker. Our study focused on the identification of chitinase gene families from V. mali and the analysis of their expression profiles during infection and nutritional growth. A phylogenetic analysis and conservation of catalytic domains were used to classify these genes into three classes, and their chromosome distribution was random. The qRT-PCR analysis identified five differentially expressed VmGH18 genes during infection and nutritional growth. GH18 chitinases use glutamate, whereas VmGH18-4 (VM1G_05900) and VmGH18-10 (VM1G_03597) use glutamine as the catalytic motif. To further test whether it can induce cell death in apple, the recombinant protein was produced in E. coli. It showed that the purified VmGH18-4 recombinant protein retained cell-death inducing activity, and it could also induce cell death in apple. But the enzyme activity shows that neither VmGH18-4 nor VmGH18-10 have chitinases enzyme activity. These results suggest that VmGH18-4 can elicit cell death in multiple plant species, while VmGH18-10 cannot.
Collapse
Affiliation(s)
- Gulnaz Kahar
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (G.K.); . (X.L.)
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Yakupjan Haxim
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (G.K.); . (X.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xuechun Zhang
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (G.K.); . (X.L.)
- School of Life Sciences, Xinjiang Normal University, Urumqi 830011, China
| | - Xiaojie Liu
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (G.K.); . (X.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China
| | - Huawei Liu
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (G.K.); . (X.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xuejing Wen
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (G.K.); . (X.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaoshuang Li
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (G.K.); . (X.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China
| | - Daoyuan Zhang
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (G.K.); . (X.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
2
|
Ye F, Kang Z, Kou H, Yang Y, Chen W, Wang S, Sun J, Liu F. G-Protein Coupled Receptor Gpr-1 Is Important for the Growth and Nutritional Metabolism of an Invasive Bark Beetle Symbiont Fungi Leptographium procerum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3354-3362. [PMID: 38230891 DOI: 10.1021/acs.jafc.3c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Leptographium procerum has been demonstrated to play important roles in the invasive success of red turpentine beetle (RTB), one of the most destructive invasive pests in China. Our previous studies found that bacterial volatile ammonia plays an important role in the maintenance of the RTB-L. procerum invasive complex. In this study, we found a GPCR gene Gpr-1 that was a response to ammonia but not involved in the ammonia-induced carbohydrate metabolism. Deletion of Gpr-1 significantly inhibited the growth and pathogenicity but thickened the cell wall of L. procerum, resulting in more resistance to cell wall-perturbing agents. Further analyses suggested that Gpr-1 deletion caused growth defects that might be due to the dysregulation of the amino acid and lipid metabolisms. The thicker cell wall in the ΔGpr-1 mutant was induced through the cell wall remodeling process. Our results indicated that Gpr-1 is essential for the growth of L. procerum by regulating the nutritional metabolism, which can be further explored for potential applications in the management of RTB.
Collapse
Affiliation(s)
- Fangyuan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Kang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hongru Kou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunwen Yang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wei Chen
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Saige Wang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fanghua Liu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Jiang L, Yan H. Cloning and biochemical characterization of a recombinant chitinase encoded by the CHT4 gene from Candida albicans. Protein Expr Purif 2023; 211:106343. [PMID: 37536579 DOI: 10.1016/j.pep.2023.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
As one of the major components in the fungal cell wall, chitin is a polymer of β-1,4-linked N-acetylglucosamine. Chitinases are hydrolytic enzymes that break down glycosidic bonds in the chitin. The human fungal pathogen Candida albicans has three chitinase-encoding genes, CaCHT1, CaCHT2 and CaCHT3. The CaCHT4 gene encodes a protein with the glycoside hydrolase family GH18 domain, Glyco_18, which suggests that CaCht4 might be a chitinase. In the present study, we have cloned, expressed and purified the N-terminally His6-tagged CaCht4 protein from bacterial cells. Further biochemical characterization has shown that this recombinant CaCht4 protein shows both exochitinase (chitobiosidase) and endochitinase activities, but has no N-acetylglucosaminase activity. The optimal temperature for the exochitinase activity of CaCht4 is 55 °C. Taken together, these data support that the CaCHT4 gene encodes a chitinase. Our finding provides a basis for us to understand the biological functions of the CaCHT4 gene in C. albicans.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China.
| | - Hongbo Yan
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
4
|
Jiang L, Yan H. Cloning, expression, purification and biochemical characterization of the recombinant chitinase enzyme encoded by CTS2 in the budding yeast. Protein Expr Purif 2023; 208-209:106294. [PMID: 37150231 DOI: 10.1016/j.pep.2023.106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Chitin is a polymer of β-1,4-linked N-acetylglucosamine (GlcNAc) and plays a central role in the assembly of the fungal cell wall. Chitinases are hydrolytic enzymes that break down glycosidic bonds in the chitin. Chitinases are classified into three categories, endochitinases, exochitinases and N-acetylglucosaminases, according to the manner in which the enzyme cleaves the chitin polymer. Saccharomyces cerevisiae has two chitinase-encoding genes, CTS1 and CTS2. However, whether Cts2p shows a chitinase activity remains unknown. In this study, we have cloned, expressed and purified the recombinant Cts2p protein from bacterial cells. We have demonstrated that Cts2p has a higher chitobiosidase (exochitinase) activity than endochitinase activity, but no N-acetylglucosaminase activity. The optimal temperature for the chitobiosidase activity of Cts2p is 37 °C.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China.
| | - Hongbo Yan
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
5
|
Pitangui NDS, Fernandes FF, Gonçales RA, Roque-Barreira MC. Virulence Vs. Immunomodulation: Roles of the Paracoccin Chitinase and Carbohydrate-Binding Sites in Paracoccidioides brasiliensis Infection. Front Mol Biosci 2021; 8:700797. [PMID: 34532342 PMCID: PMC8438136 DOI: 10.3389/fmolb.2021.700797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Paracoccin (PCN) is a bifunctional protein primarily present in the cell wall of Paracoccidioides brasiliensis, a human pathogenic dimorphic fungus. PCN has one chitinase region and four potential lectin sites and acts as both a fungal virulence factor and an immunomodulator of the host response. The PCN activity on fungal virulence, mediated by the chitinase site, was discovered by infecting mice with yeast overexpressing PCN (PCN-ov). PCN-ov are characterized by increased chitin hydrolysis, a narrow cell wall, and augmented resistance to phagocytes' fungicidal activity. Compared to wild-type (wt) yeast, infection with PCN-ov yeast causes a more severe disease, which is attributed to the increased PCN chitinase activity. In turn, immunomodulation of the host response was demonstrated by injecting, subcutaneously, recombinant PCN in mice infected with wt-P. brasiliensis. Through its carbohydrate binding site, the injected recombinant PCN interacts with Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) N-glycans on macrophages, triggers M1 polarization, and stimulates protective Th1 immunity against the fungus. The PCN-treatment of wt yeast-infected mice results in mild paracoccidioidomycosis. Therefore, PCN paradoxically influences the course of murine paracoccidioidomycosis. The disease is severe when caused by yeast that overexpress endogenous PCN, which exerts a robust local chitinase activity, followed by architectural changes of the cell wall and release of low size chito-oligomers. However, the disease is mild when exogenous PCN is injected, which recognizes N-glycans on systemic macrophages resulting in immunomodulation.
Collapse
Affiliation(s)
- Nayla de Souza Pitangui
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabrício Freitas Fernandes
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Relber Aguiar Gonçales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Cristina Roque-Barreira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Awad A, El Khoury P, Geukgeuzian G, Khalaf RA. Cell Wall Proteome Profiling of a Candida albicans Fluconazole-Resistant Strain from a Lebanese Hospital Patient Using Tandem Mass Spectrometry-A Pilot Study. Microorganisms 2021; 9:microorganisms9061161. [PMID: 34071222 PMCID: PMC8229660 DOI: 10.3390/microorganisms9061161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus responsible for high mortality rates in immunocompromised individuals. Azole drugs such as fluconazole are the first line of therapy in fungal infection treatment. However, resistance to azole treatment is on the rise. Here, we employ a tandem mass spectrometry approach coupled with a bioinformatics approach to identify cell wall proteins present in a fluconazole-resistant hospital isolate upon drug exposure. The isolate was previously shown to have an increase in cell membrane ergosterol and cell wall chitin, alongside an increase in adhesion, but slightly attenuated in virulence. We identified 50 cell wall proteins involved in ergosterol biosynthesis such as Erg11, and Erg6, efflux pumps such as Mdr1 and Cdr1, adhesion proteins such as Als1, and Pga60, chitin deposition such as Cht4, and Crh11, and virulence related genes including Sap5 and Lip9. Candidial proteins identified in this study go a long way in explaining the observed phenotypes. Our pilot study opens the way for a future large-scale analysis to identify novel proteins involved in drug-resistance mechanisms.
Collapse
|
7
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
8
|
Moniliophthora perniciosa development: key genes involved in stress-mediated cell wall organization and autophagy. Int J Biol Macromol 2020; 154:1022-1035. [PMID: 32194118 DOI: 10.1016/j.ijbiomac.2020.03.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Moniliophthora perniciosa is a basidiomycete responsible for the witches' broom disease in cacao (Theobroma cacao L.). Chitin synthase (CHS), chitinase (CHIT) and autophagy (ATG) genes have been associated to stress response preceding the formation of basidiocarp. An analysis of literature mining, interactomics and gene expression was developed to identify the main proteins related to development, cell wall organization and autophagy in M. perniciosa. TORC2 complex elements were identified and were involved in the response to the nutrient starvation during the fungus development stages preceding the basidiocarp formation. This complex interacted with target proteins related to cell wall synthesis and to polarization and cell division (FKS1, CHS, CDC42, ROM2). Autolysis and autophagy processes were associated to CHIT2, ATG8 and to the TORC1 complex (TOR1 and KOG1), which is central in the upstream signalization of the stress response due to nutrient starvation and growth regulation. Other important elements that participate to steps preceding basidiocarp formation were also identified (KOG1, SSZ1, GDI1, FKS1, CCD10, CKS1, CDC42, RHO1, AVO1, BAG7). Similar gene expression patterns during fungus reproductive structure formation and when treated by rapamycin (a nutritional related-autophagy stress agent) were observed: cell division related-genes were repressed while those related to autolysis/autophagy were overexpressed.
Collapse
|
9
|
A Potential Lock-Type Mechanism for Unconventional Secretion in Fungi. Int J Mol Sci 2019; 20:ijms20030460. [PMID: 30678160 PMCID: PMC6386918 DOI: 10.3390/ijms20030460] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Protein export in eukaryotes can either occur via the classical pathway traversing the endomembrane system or exploit alternative routes summarized as unconventional secretion. Besides multiple examples in higher eukaryotes, unconventional secretion has also been described for fungal proteins with diverse functions in important processes such as development or virulence. Accumulating molecular insights into the different export pathways suggest that unconventional secretion in fungal microorganisms does not follow a common scheme but has evolved multiple times independently. In this study, we review the most prominent examples with a focus on the chitinase Cts1 from the corn smut Ustilago maydis. Cts1 participates in cell separation during budding growth. Recent evidence indicates that the enzyme might be actively translocated into the fragmentation zone connecting dividing mother and daughter cells, where it supports cell division by the degradation of remnant chitin. Importantly, a functional fragmentation zone is prerequisite for Cts1 release. We summarize in detail what is currently known about this potential lock-type mechanism of Cts1 secretion and its connection to the complex regulation of fragmentation zone assembly and cell separation.
Collapse
|
10
|
Abstract
In many yeast and fungi, β-(1,3)-glucan and chitin are essential components of the cell wall, an important structure that surrounds cells and which is responsible for their mechanical protection and necessary for maintaining the cellular shape. In addition, the cell wall is a dynamic structure that needs to be remodelled along with the different phases of the fungal life cycle or in response to extracellular stimuli. Since β-(1,3)-glucan and chitin perform a central structural role in the assembly of the cell wall, it has been postulated that β-(1,3)-glucanases and chitinases should perform an important function in cell wall softening and remodelling. This review focusses on fungal glucanases and chitinases and their role during fungal morphogenesis.
Collapse
Affiliation(s)
- César Roncero
- Instituto de Biología Funcional Y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Carlos R Vázquez de Aldana
- Instituto de Biología Funcional Y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
11
|
Tóth R, Cabral V, Thuer E, Bohner F, Németh T, Papp C, Nimrichter L, Molnár G, Vágvölgyi C, Gabaldón T, Nosanchuk JD, Gácser A. Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction. Sci Rep 2018; 8:1346. [PMID: 29358719 PMCID: PMC5777994 DOI: 10.1038/s41598-018-19453-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
Abstract
Invasive candidiasis is among the most life-threatening infections in patients in intensive care units. Although Candida albicans is the leading cause of candidaemia, the incidence of Candida parapsilosis infections is also rising, particularly among the neonates. Due to differences in their biology, these species employ different antifungal resistance and virulence mechanisms and also induce dissimilar immune responses. Previously, it has been suggested that core virulence effecting transcription regulators could be attractive ligands for future antifungal drugs. Although the virulence regulatory mechanisms of C. albicans are well studied, less is known about similar mechanisms in C. parapsilosis. In order to search for potential targets for future antifungal drugs against this species, we analyzed the fungal transcriptome during host-pathogen interaction using an in vitro infection model. Selected genes with high expression levels were further examined through their respective null mutant strains, under conditions that mimic the host environment or influence pathogenicity. As a result, we identified several mutants with relevant pathogenicity affecting phenotypes. During the study we highlight three potentially tractable signaling regulators that influence C. parapsilosis pathogenicity in distinct mechanisms. During infection, CPAR2_100540 is responsible for nutrient acquisition, CPAR2_200390 for cell wall assembly and morphology switching and CPAR2_303700 for fungal viability.
Collapse
Affiliation(s)
- Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Vitor Cabral
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Ernst Thuer
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Flóra Bohner
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gergő Molnár
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary.
| |
Collapse
|
12
|
Wasserstrom L, Dünkler A, Walther A, Wendland J. The APSES protein Sok2 is a positive regulator of sporulation in Ashbya gossypii. Mol Microbiol 2017; 106:949-960. [PMID: 28985003 DOI: 10.1111/mmi.13859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/26/2023]
Abstract
Ashbya gossypii is a homothallic, flavinogenic, filamentous ascomycete that starts overproduction of riboflavin and fragments its mycelium quantitatively into spore producing sporangia at the end of a growth phase. Mating is not required for sporulation and the standard homothallic laboratory strain is a MATa strain. Here we show that ectopic expression of Saccharomyces cerevisiae MATα2 in A. gossypii completely suppresses sporulation, inhibits riboflavin overproduction and downregulates among others AgSOK2. AgSok2 belongs to a fungal-specific group of (APSES) transcription factors. Deletion of AgSOK2 strongly reduces riboflavin production and blocks sporulation. The initiator of meiosis, AgIME1, is a transcription factor essential for sporulation. We characterized the AgIME1 promoter region required for complementation of the Agime1 mutant. Reporter assays with AgIME1 promoter fragments fused to lacZ showed that AgSok2 does not control AgIME1 transcription. However, global transcriptome analysis identified two other essential regulators of sporulation, AgIME2 and AgNDT80, as potential targets of AgSok2. Our data suggest that sporulation and riboflavin production in A. gossypii are under mating type locus and nutritional control. Sok2, a target of the cAMP/protein kinase A pathway, serves as a central positive regulator to promote sporulation. This contrasts Saccharomyces cerevisiae where Sok2 is a repressor of IME1 transcription.
Collapse
Affiliation(s)
- Lisa Wasserstrom
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Alexander Dünkler
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Andrea Walther
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark.,Vrije Universiteit Brussel, Department of Bioengineering Sciences Research Group of Microbiology, Functional Yeast Genomics, BE-1050 Brussels, Belgium
| |
Collapse
|
13
|
Wang Z, Jin K, Xia Y. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients. BMC Genomics 2016; 17:586. [PMID: 27506833 PMCID: PMC4979188 DOI: 10.1186/s12864-016-2971-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Background Most fungi, including entomopathogenic fungi, have two different conidiation patterns, normal and microcycle conidiation, under different culture conditions, eg, in media containing different nutrients. However, the mechanisms underlying the conidiation pattern shift are poorly understood. Results In this study, Metarhizium acridum undergoing microcycle conidiation on sucrose yeast extract agar (SYA) medium shifted to normal conidiation when the medium was supplemented with sucrose, nitrate, or phosphate. By linking changes in nutrients with the conidiation pattern shift and transcriptional changes, we obtained conidiation pattern shift libraries by Solexa/Illumina deep-sequencing technology. A comparative analysis demonstrated that the expression of 137 genes was up-regulated during the shift to normal conidiation, while the expression of 436 genes was up-regulated at the microcycle conidiation stage. A comparison of subtractive libraries revealed that 83, 216, and 168 genes were related to sucrose-induced, nitrate-induced, and phosphate-induced conidiation pattern shifts, respectively. The expression of 217 genes whose expression was specific to microcycle conidiation was further analyzed by the gene expression profiling via multigene concatemers method using mRNA isolated from M. acridum grown on SYA and the four normal conidiation media. The expression of 142 genes was confirmed to be up-regulated on standard SYA medium. Of these 142 genes, 101 encode hypothetical proteins or proteins of unknown function, and only 41 genes encode proteins with putative functions. Of these 41 genes, 18 are related to cell growth, 10 are related to cell proliferation, three are related to the cell cycle, three are related to cell differentiation, two are related to cell wall synthesis, two are related to cell division, and seven have other functions. These results indicate that the conidiation pattern shift in M. acridum mainly results from changes in cell growth and proliferation. Conclusions The results indicate that M. acridum shifts conidiation pattern from microcycle conidiation to normal conidiation when there is increased sucrose, nitrate, or phosphate in the medium during microcycle conidiation. The regulation of conidiation patterning is a complex process involving the cell cycle and metabolism of M. acridum. This study provides essential information about the molecular mechanism of the induction of the conidiation pattern shift by single nutrients. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2971-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenglong Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
14
|
Langner T, Göhre V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 2015; 62:243-54. [PMID: 26527115 DOI: 10.1007/s00294-015-0530-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
In the past decades our knowledge about fungal cell wall architecture increased tremendously and led to the identification of many enzymes involved in polysaccharide synthesis and remodeling, which are also of biotechnological interest. Fungal cell walls play an important role in conferring mechanic stability during cell division and polar growth. Additionally, in phytopathogenic fungi the cell wall is the first structure that gets into intimate contact with the host plant. A major constituent of fungal cell walls is chitin, a homopolymer of N-acetylglucosamine units. To ensure plasticity, polymeric chitin needs continuous remodeling which is maintained by chitinolytic enzymes, including lytic polysaccharide monooxygenases N-acetylglucosaminidases, and chitinases. Depending on the species and lifestyle of fungi, there is great variation in the number of encoded chitinases and their function. Chitinases can have housekeeping function in plasticizing the cell wall or can act more specifically during cell separation, nutritional chitin acquisition, or competitive interaction with other fungi. Although chitinase research made huge progress in the last decades, our knowledge about their role in phytopathogenic fungi is still scarce. Recent findings in the dimorphic basidiomycete Ustilago maydis show that chitinases play different physiological functions throughout the life cycle and raise questions about their role during plant-fungus interactions. In this work we summarize these functions, mechanisms of chitinase regulation and their putative role during pathogen/host interactions.
Collapse
Affiliation(s)
- Thorsten Langner
- Institute for Microbiology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Vera Göhre
- Institute for Microbiology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
15
|
Chitinases Are Essential for Cell Separation in Ustilago maydis. EUKARYOTIC CELL 2015; 14:846-57. [PMID: 25934689 DOI: 10.1128/ec.00022-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
Chitin is an essential component of the fungal cell wall, providing rigidity and stability. Its degradation is mediated by chitinases and supposedly ensures the dynamic plasticity of the cell wall during growth and morphogenesis. Hence, chitinases should be particularly important for fungi with dramatic morphological changes, such as Ustilago maydis. This smut fungus switches from yeast to filamentous growth for plant infection, proliferates as a mycelium in planta, and forms teliospores for spreading. Here, we investigate the contribution of its four chitinolytic enzymes to the different morphological changes during the complete life cycle in a comprehensive study of deletion strains combined with biochemical and cell biological approaches. Interestingly, two chitinases act redundantly in cell separation during yeast growth. They mediate the degradation of remnant chitin in the fragmentation zone between mother and daughter cell. In contrast, even the complete lack of chitinolytic activity does not affect formation of the infectious filament, infection, biotrophic growth, or teliospore germination. Thus, unexpectedly we can exclude a major role for chitinolytic enzymes in morphogenesis or pathogenicity of U. maydis. Nevertheless, redundant activity of even two chitinases is essential for cell separation during saprophytic growth, possibly to improve nutrient access or spreading of yeast cells by wind or rain.
Collapse
|
16
|
Teparić R, Mrsa V. Proteins involved in building, maintaining and remodeling of yeast cell walls. Curr Genet 2014; 59:171-85. [PMID: 23959528 DOI: 10.1007/s00294-013-0403-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/27/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022]
Abstract
The cell wall defines the shape and provides osmotic stability to the yeast cell. It also serves to anchor proteins required for communication of the yeast cell with surrounding molecules and other cells. It is synthesized as a complex structure with β-1,3-glucan chains forming the basic network to which β-1,6-glucan, chitin and a number of mannoproteins are attached. Synthesis, maintaining and remodeling of this complex structure require a set of different synthases, hydrolases and transglycosidases whose concerted activities provide necessary firmness but at the same time flexibility of the wall moiety. The present state of comprehension of the interplay of these proteins in the yeast cell wall is the subject of this article.
Collapse
|
17
|
Functional characterization of extracellular chitinase encoded by the YlCTS1 gene in a dimorphic yeast Yarrowia lipolytica. J Microbiol 2014; 52:284-91. [PMID: 24682992 DOI: 10.1007/s12275-014-4070-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
The hemiascomycetes yeast Yarrowia lipolytica is a dimorphic yeast with alternating yeast and mycelia forms. Bioinformatic analysis revealed the presence of three putative chitinase genes, YlCTS1, YlCTS2, and YlCTS3, in the Y. lipolytica genome. Here, we demonstrated that the protein of YlCTS1 (YlCts1p), which contains an N-terminal secretion signal peptide, a long C-terminal Ser/Thr-rich domain, and a chitin-binding domain, is a homologue to Saccharomyces cerevisiae chitinase 1 (ScCts1p). Deletion of YlCTS1 remarkably reduced extracellular endochitinase activity in the culture supernatant of Y. lipolytica and enhanced cell aggregation, suggesting a role of YlCts1p in cell separation as ScCts1p does in S. cerevisiae. However, loss of YlCts1p function did not affect hyphal formation induced by fetal bovine serum addition. The mass of YlCts1p was dramatically decreased by jack bean α-mannosidase digestion but not by PNGase F treatment, indicating that YlCts1p is modified only by O-mannosylation without N-glycosylation. Moreover, the O-glycan profile of YlCts1p was identical to that of total cell wall mannoproteins, supporting the notion that YlCts1p can be used as a good model for studying O-glycosylation in this dimorphic yeast.
Collapse
|
18
|
Abstract
Regulation of development and entry into sporulation is critical for fungi to ensure survival of unfavorable environmental conditions. Here we present an analysis of gene sets regulating sporulation in the homothallic ascomycete Ashbya gossypii. Deletion of components of the conserved pheromone/starvation MAP kinase cascades, e.g., STE11 and STE7, results in increased sporulation. In kar3 mutants sporulation is severely reduced, while deletion of KAR4 as well as of homologs of central Saccharomyces cerevisiae regulators of sporulation, IME1, IME2, IME4, and NDT80, abolishes sporulation in A. gossypii. Comparison of RNAseq transcript profiles of sporulation-deficient mutants identified a set of 67 down-regulated genes, most of which were up-regulated in the oversporulating ste12 mutant. One of these differentially expressed genes is an endoglucanase encoded by ENG2. We found that Eng2p promotes hyphal fragmentation as part of the developmental program of sporulation, which generates single-celled sporangia. Sporulation-deficient strains are arrested in their development but form sporangia. Supply of new nutrients enabled sporangia to return to hyphal growth, indicating that these cells are not locked in meiosis. Double-strand break (DSB) formation by Spo11 is apparently not required for sporulation; however, the absence of DMC1, which repairs DSBs in S. cerevisiae, results in very poor sporulation in A. gossypii. We present a comprehensive analysis of the gene repertoire governing sporulation in A. gossypii and suggest an altered regulation of IME1 expression compared to S. cerevisiae.
Collapse
|
19
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
20
|
Global gene expression in Coprinopsis cinerea meiotic mutants reflects checkpoint arrest. G3-GENES GENOMES GENETICS 2012; 2:1213-21. [PMID: 23050232 PMCID: PMC3464114 DOI: 10.1534/g3.112.003046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022]
Abstract
The basidiomycete Coprinopsis cinerea is well-suited to studies of meiosis because meiosis progresses synchronously in 10 million cells within each mushroom cap. Approximately 20% of C. cinerea genes exhibit changing expression during meiosis, but meiosis and mushroom development happen concurrently and therefore differentially expressed genes might not be directly involved in meiotic processes. By using microarrays, we examined global gene expression across a meiotic time course in two mutants in which meiosis arrests but mushrooms develop normally. Genes differentially expressed in the mutants compared with the wild type are likely to be involved in meiosis and sporulation as opposed to mushroom development. In rad50-1, which arrests in late prophase, RNA abundance for a group of early meiotic genes remains high, whereas the expression of a group of late meiotic genes is never induced. In contrast, in msh5-22 (which fails to undergo premeiotic DNA replication), both early and late meiotic genes are underexpressed relative to wild type at late meiotic time points as the cells die. Genes that are differentially expressed relative to wild type in both mutants are particularly strong candidates for playing roles in meiosis and sporulation.
Collapse
|
21
|
Grünler A, Walther A, Lämmel J, Wendland J. Analysis of flocculins in Ashbya gossypii reveals FIG2 regulation by TEC1. Fungal Genet Biol 2010; 47:619-28. [PMID: 20380885 DOI: 10.1016/j.fgb.2010.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 01/09/2023]
Abstract
For 95% of the Ashbya gossypii protein-encoding genes there is a Saccharomyces cerevisiae homolog. Out of these 90% are arranged in a conserved, syntenic, gene order. Interestingly, A. gossypii adhesins, encoded by homologs of S. cerevisiae FLO-genes, are found in non-syntenic positions. A. gossypii contains only a small set of adhesins: two FLO5, a FLO11 and a FIG2 homolog, but no FLO1, FLO9, or FLO10 homolog. Here we present the functional analysis of the A. gossypii adhesins and their potential transcriptional regulators SFL1, FLO8, and TEC1. Deletion of individual classes of FLO-genes did not reveal any phenotype. Lack of SFL1 or FLO8 showed reduced growth. The expression of adhesins in different strain backgrounds was tested using promoter-lacZ-fusions. We found that SFL1 acts as a suppressor of one of the FLO5 genes and FLO8 but particularly of FIG2. Interestingly, FIG2 expression was abolished in a tec1 mutant. We identified three potential Tec1-binding sites in the FIG2-promoter by similarity to S. cerevisiae Tec1-binding sites. The AgCHT2 promoter, which regulates a sporulation specific chitinase, also harbours potential Tec1-binding sites. Consequently, expression of CHT2 was not detected in a tec1 strain. This suggests that Tec1- binding sites are conserved between A. gossypii and S. cerevisiae even though there are different Tec1 target genes in each of these organisms.
Collapse
Affiliation(s)
- Anke Grünler
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, Valby, Denmark
| | | | | | | |
Collapse
|