1
|
Rafiee Z, Jalili Tabaii M, Moradi M, Harirchi S. Unveiling Antibacterial Potential and Physiological Characteristics of Thermophilic Bacteria Isolated from a Hot Spring in Iran. Microorganisms 2024; 12:834. [PMID: 38674778 PMCID: PMC11051818 DOI: 10.3390/microorganisms12040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing worldwide demand for antimicrobial agents has significantly contributed to the alarming rise of antimicrobial resistance, posing a grave threat to human life. Consequently, there is a pressing need to explore uncharted environments, seeking out novel antimicrobial compounds that display exceptionally efficient capabilities. Hot springs harbor microorganisms possessing remarkable properties, rendering them an invaluable resource for uncovering groundbreaking antimicrobial compounds. In this study, thermophilic bacteria were isolated from Mahallat Hot Spring, Iran. Out of the 30 isolates examined, 3 strains exhibited the most significant antibacterial activities against Escherichia coli and Staphylococcus aureus. Furthermore, the supernatants of the isolated strains exhibited remarkable antibacterial activity, displaying notable resistance to temperatures as high as 75 °C for 30 min. It was determined that the two strains showed high similarity to the Bacillus genus, while strain Kh3 was classified as Saccharomonospora azurea. All three strains exhibited tolerance to NaCl. Bacillus strains demonstrated optimal growth at pH 5 and 40 °C, whereas S. azurea exhibited optimal growth at pH 9 and 45 °C. Accordingly, hot springs present promising natural reservoirs for the isolation of resilient strains possessing antibacterial properties, which can be utilized in disease treatment or within the food industry.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan 81799-49999, Iran; (Z.R.); (M.M.)
| | - Maryam Jalili Tabaii
- Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan 81799-49999, Iran; (Z.R.); (M.M.)
| | - Maryam Moradi
- Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan 81799-49999, Iran; (Z.R.); (M.M.)
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran P.O. Box 3353-5111, Iran
| |
Collapse
|
2
|
Kim J, Kim J, Yun H, Ganbaatar B, Tahmasebi A, Seo SI, Kim PI, Lee CW. New strain Brevibacillus laterosporus TSA31-5 produces both brevicidine and brevibacillin, exhibiting distinct antibacterial modes of action against Gram-negative and Gram-positive bacteria. PLoS One 2024; 19:e0294474. [PMID: 38558002 PMCID: PMC10984550 DOI: 10.1371/journal.pone.0294474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 04/04/2024] Open
Abstract
The growing prevalence of antibiotic resistance has made it imperative to search for new antimicrobial compounds derived from natural products. In the present study, Brevibacillus laterosporus TSA31-5, isolated from red clay soil, was chosen as the subject for conducting additional antibacterial investigations. The fractions exhibiting the highest antibacterial activity (30% acetonitrile eluent from solid phase extraction) were purified through RP-HPLC. Notably, two compounds (A and B) displayed the most potent antibacterial activity against both Escherichia coli and Staphylococcus aureus. ESI-MS/MS spectroscopy and NMR analysis confirmed that compound A corresponds to brevicidine and compound B to brevibacillin. Particularly, brevicidine displayed notable antibacterial activity against Gram-negative bacteria, with a minimum inhibitory concentration (MIC) range of 1-8 μg/mL. On the other hand, brevibacillin exhibited robust antimicrobial effectiveness against both Gram-positive bacterial strains (MIC range of 2-4 μg/mL) and Gram-negative bacteria (MIC range of 4-64 μg/mL). Scanning electron microscopy analysis and fluorescence assays uncovered distinctive morphological alterations in bacterial cell membranes induced by brevicidine and brevibacillin. These observations imply distinct mechanisms of antibacterial activity exhibited by the peptides. Brevicidine exhibited no hemolysis or cytotoxicity up to 512 μg/mL, comparable to the negative control. This suggests its promising therapeutic potential in treating infectious diseases. Conversely, brevibacillin demonstrated elevated cytotoxicity in in vitro assays. Nonetheless, owing to its noteworthy antimicrobial activity against pathogenic bacteria, brevibacillin could still be explored as a promising antimicrobial agent.
Collapse
Affiliation(s)
- Jeongeun Kim
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jueun Kim
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
- Research Center, DAESANG InnoPark, Gangseo-gu, Seoul, Republic of Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | | | - Aminallah Tahmasebi
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Sun Il Seo
- Center for Industrialization of Agricultural and Livestock Microorganism, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Pyoung Il Kim
- Center for Industrialization of Agricultural and Livestock Microorganism, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Świątczak J, Kalwasińska A, Wojciechowska A, Brzezinska MS. Physiological properties and genomic insights into the plant growth-promoting rhizobacterium Brevibacillus laterosporus K75 isolated from maize rhizosphere. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1432-1441. [PMID: 36181696 DOI: 10.1002/jsfa.12238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/20/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND When looking for a safer alternative to pesticides that are potentially harmful to living organisms, one of the directions worth looking at are plant growth-promoting rhizobacteria. The purpose of the research was a comprehensive characterization of Brevibacillus laterosporus K75, a strain isolated from maize rhizosphere. Many studies have proved B. laterosporus to be a biocontrol agent; however, little is known about B. laterosporus as a plant growth-promoting rhizobacterium. RESULTS Ninety strains were screened for plant growth-promoting activities. Four strains with the best plant growth-promoting traits (Rhodococcus qingshengii K8, Bacillus subtilis subsp. stercoris K73, Brevibacillus laterosporus K75, and Brevibacillus laterosporus K89) were used to research their effect on maize growth. Under sterile conditions, B. laterosporus K75 showed the best stimulatory effect, significantly improving the weight of roots, shoots and leaves, and considerably increasing content of chlorophyll. In unsterilized soil, B. laterosporus K75 significantly improved length of roots and weight of leaves compared to the K73, K89, and untreated control. Moreover, B. laterosporus K75 significantly increased specific leaf area compared to the untreated control and to other inoculant treatments. The genome of B. laterosporus K75 was compared to the recently published B. laterosporus MG64. Genome-mining displayed differences in identified plant growth-promoting genes and biosynthetic gene clusters of secondary metabolites. The B. laterosporus K75 genome possessed additional genes involved in indole-3-acetic acid production and phosphate solubilization that could be attributed to its ability to enhance maize growth. CONCLUSION Our study demonstrated that B. laterosporus K75 is a promising candidate for use in inoculant formulation, effectively facilitating maize growth. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Anna Wojciechowska
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
4
|
Verma J, Sourirajan A, Dev K. Bacterial diversity in 110 thermal hot springs of Indian Himalayan Region (IHR). 3 Biotech 2022; 12:238. [PMID: 36003895 PMCID: PMC9393120 DOI: 10.1007/s13205-022-03270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Thermal hot springs are present throughout the world and constitute a unique habitat for microbial diversity. The current investigation is conducted to study the bacterial diversity of thermophilic microorganisms in thermal hot springs of the Indian Himalayan Region (IHR). As of today, 110 geothermal hot springs have been explored for microbial diversity. In this study, we observed that the growth of thermophilic bacteria isolated from thermal hot springs of IHR ranges between 40 and 100 °C, and pH of 3.5-8 have been reported in the literature. The major bacterial species reported from the thermal hot springs of IHR are Bacillus spp., Geobacillus spp., Paenibacillus spp., Pseudomonas spp., Anoxybacillus, Paenibacillus, Brevibacillus, Aneurinibacillus, Thermus aquaticus, Aquimonas, Flavobacterium, etc. Furthermore, bacterial isolates from thermal hot springs of IHR have been reported to produce various enzymes and metabolites such as amylase, β-galactosidase, cellulase, nitrate reductase, acetoin, caffeine degradation enzymes, lipase, urease, and laccase. Metagenomic study and the entire genomic shotgun project have established the impact of physicochemical parameters (temperature and pH) on developing the microbiome. We have discussed the discoveries of microbiological data on the hot springs of IHR until the end of year 2021. As a whole, the microbiome adapts themselves as successful inhabitants to extreme environmental conditions and also serves as a diverse resource for potential applications in health, food, and environment.
Collapse
Affiliation(s)
- Jagdish Verma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| |
Collapse
|
5
|
Chen Z, Wang X, Han P, Liu Y, Hong D, Li S, Ma A, Jia Y. Discovery of novel antimicrobial peptides, Brevilaterin V, from Brevibacillus laterosporus S62-9 after regulated by exogenously-added L-valine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Liu Y, Chen Z, Liu L, Han P, Wang X, Li S, Ma A, Jia Y. Broad-spectrum antifungal activity of lipopeptide brevilaterin B and its inhibition effects against Fusarium oxysporum and Penicillium chrysogenum. J Appl Microbiol 2021; 132:1330-1342. [PMID: 34480826 DOI: 10.1111/jam.15285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/25/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023]
Abstract
AIMS Brevilaterin B is a natural antimicrobial lipopeptide produced by Brevibacillus laterosporus S62-9. However, its antifungal spectrum and modes of action are still unclear. Herein, we investigated the detailed antifungal activity of brevilaterin B against 33 pathogenic fungi and the antifungal effects against two sensitive fungi in vitro and in vivo. METHODS AND RESULTS Brevilaterin B exhibited inhibitory activity against 33 pathogenic fungi involved in plant disease and food spoilage at the minimum inhibitory concentrations (MICs) range of 16-128 μg ml-1 . The antifungal effects were further studied by Fusarium oxysporum and Penicillium chrysogenum. Both spore germination and mycelium growth were inhibited by brevilaterin B at sub-MIC. Transmission electron microscopy and fluorescent dye staining assays indicated brevilaterin B damaged cell integrity and induced apoptosis. In vivo tests, brevilaterin B inhibited the infection of F. oxysporum to Dendrobium officinale and P. chrysogenum to mandarin (Citrus reticulata) at 500 μg ml-1 , respectively. CONCLUSIONS Brevilaterin B showed broad-spectrum antifungal activity against 33 pathogenic fungi. And its antifungal modes of action were proposed as damaging cell integrity and inducing cell apoptosis. The lipopeptide is promising to control F. oxysporum in the D. officinale and P. chrysogenum in the mandarin. SIGNIFICANCE AND IMPACT OF STUDY The research provided insights into antifungal modes of action of brevilaterin B. The lipopeptide brevilaterin B is potential to be developed as a broad-spectrum antifungal agent for agricultural biocontrol and postharvest storage.
Collapse
Affiliation(s)
- Yangliu Liu
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Lu Liu
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Panpan Han
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xingxing Wang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Chen Z, Zhao L, Dong Y, Chen W, Li C, Gao X, Chen R, Li L, Xu Z. The antagonistic mechanism of Bacillus velezensis ZW10 against rice blast disease: Evaluation of ZW10 as a potential biopesticide. PLoS One 2021; 16:e0256807. [PMID: 34449822 PMCID: PMC8396770 DOI: 10.1371/journal.pone.0256807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the three major diseases affecting rice production and quality; it reduces rice grain yield by nearly 30%. In the early stage of this study, a strain of Bacillus velezensis with strong inhibition of M. oryzae was isolated and named ZW10. In vitro assays indicated prolonged germination time of conidia of M. oryzae treated with the antifungal substances of ZW10, 78% of the conidia could not form appressorium, and the conidial tubes expanded to form vacuolar structure and then shrank. The results of FDA-PI composite dyes showed that the antifungal substances of ZW10 inhibited the normal activity of M. oryzae hyphae that were rarely able to infect the epidermal cells of rice leaf sheath in vivo tests. In addition, rice treated with the antifungal substances of ZW10 showed a variety of defense responses, including activation of defense-related enzymes, increased expression of the salicylic acid pathway genes, and accumulation of hydrogen peroxide (H2O2), which might function directly or indirectly in resistance to pathogen attack. The field experiment with rice blast infection in different periods showed that the antifungal substances of ZW10 had the same control effect as carbendazim. The significant biological control activity of ZW10 and its capacity to stimulate host defenses suggest that this B. velezensis strain has the potential to be developed into a biopesticide for the biocontrol of rice blast.
Collapse
Affiliation(s)
- Zuo Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Lu Zhao
- Department of Bioengineering, Microbiology Laboratory of Sichuan Water Conservancy Vocational College, Dujiangyan, China
| | - Yilun Dong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Wenqian Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunliu Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaoling Gao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Rongjun Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Lihua Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
8
|
Li Z, Chakraborty P, de Vries RH, Song C, Zhao X, Roelfes G, Scheffers DJ, Kuipers OP. Characterization of two relacidines belonging to a novel class of circular lipopeptides that act against Gram-negative bacterial pathogens. Environ Microbiol 2020; 22:5125-5136. [PMID: 32608161 PMCID: PMC7818431 DOI: 10.1111/1462-2920.15145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
The development of sustainable agriculture and the increasing antibiotic resistance of human pathogens call for novel antimicrobial compounds. Here, we describe the extraction and characterization of a class of cationic circular lipopeptides, for which we propose the name relacidines, from the soil bacterium Brevibacillus laterosporus MG64. Relacidines are composed of a fatty acid side chain (4‐methylhexanoic acid) and 13 amino acid residues. A lactone ring is formed by the last five amino acid residues and three positively charged ornithines are located in the linear fragment. Relacidines selectively combat Gram‐negative pathogens, including phytopathogens and human pathogens. Further investigation of the mode of action revealed that relacidine B binds to the lipopolysaccharides but does not form pores in the cell membrane. We also provide proof to show that relacidine B does not affect the biosynthesis of the cell wall and RNA. Instead, it affects the oxidative phosphorylation process of cells and diminishes the biosynthesis of ATP. Transcription of relacidines is induced by plant pathogens, which strengthens the potential of B. laterosporus MG64 to be used as a biocontrol agent. Thus, we identified a new group of potent antibiotic compounds for combating Gram‐negative pathogens of plants or animals.
Collapse
Affiliation(s)
- Zhibo Li
- Department of Molecular Genetics, University of Groningen, Groningen, the Netherlands
| | - Parichita Chakraborty
- Department of Molecular Microbiology, University of Groningen, Groningen, the Netherlands
| | - Reinder H de Vries
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Chunxu Song
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interaction, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinghong Zhao
- Department of Molecular Genetics, University of Groningen, Groningen, the Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, University of Groningen, Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Wu Y, Zhou L, Lu F, Bie X, Zhao H, Zhang C, Lu Z, Lu Y. Discovery of a Novel Antimicrobial Lipopeptide, Brevibacillin V, from Brevibacillus laterosporus fmb70 and Its Application on the Preservation of Skim Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12452-12460. [PMID: 31674183 DOI: 10.1021/acs.jafc.9b04113] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing cases of infections by foodborne pathogenic bacteria resulted in a great demand to find safe and novel antimicrobial compounds that can be used in the food industry. The isolation and application of antimicrobial peptides including lipopeptides has been increasing tremendously in the past years. In this study, a new bacterial strain called Brevibacillus laterosporus fmb70 (fmb70) was isolated and exhibited strong antimicrobial activities against Gram-positive, Gram-negative bacteria, and fungi. Two major antimicrobial components produced by fmb70 were respectively identified as lipopeptide: brevibacillin V (MW: 1570.12 Da) and brevibacillin (MW: 1583.75 Da), of which brevibacillin V was a new compound. Both of them consisted of 13 amino acids and C6 fatty acyl (FA) chain. Brevibacillin V and brevibacillin showed significant antimicrobial activities against most foodborne pathogenic bacteria and phytopathogenic fungi. They stayed activity at 100 °C and remained 50% of their antimicrobial activities at pH 3 for 22 h. Hemolytic activities of them were lower than 8%. They effectively eliminated the S. aureus GIM 1.142 and L. monocytogenes ATCC 21633 in skim milk. In conclusion, the Brevibacillus laterosporus fmb70 and its major antimicrobial components has remarkable potentials in the food industry.
Collapse
Affiliation(s)
- Yubo Wu
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu Province 210095 , China
| | - Libang Zhou
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu Province 210095 , China
| | - Fengxia Lu
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu Province 210095 , China
| | - Xiaomei Bie
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu Province 210095 , China
| | - Haizhen Zhao
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu Province 210095 , China
| | - Chong Zhang
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu Province 210095 , China
| | - Zhaoxin Lu
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu Province 210095 , China
| | - Yingjian Lu
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing , Jiangsu Province 210023 , China
| |
Collapse
|
10
|
Jatoi GH, Lihua G, Xiufen Y, Gadhi MA, Keerio AU, Abdulle YA, Qiu D. A Novel Protein Elicitor PeBL2, from Brevibacillus laterosporus A60, Induces Systemic Resistance against Botrytis cinerea in Tobacco Plant. THE PLANT PATHOLOGY JOURNAL 2019; 35:208-218. [PMID: 31244567 PMCID: PMC6586191 DOI: 10.5423/ppj.oa.11.2018.0276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Here, we reported a novel secreted protein elicitor PeBL2 from Brevibacillus laterosporus A60, which can induce hypersensitive response in tobacco (Nicotiana benthamiana). The ion-exchange chromatography, high-performance liquid chromatography (HPLC) and mass spectrometry were performed for identification of protein elicitor. The 471 bp PeBL2 gene produces a 17.22 kDa protein with 156 amino acids containing an 84-residue signal peptide. Consistent with endogenous protein, the recombinant protein expressed in Escherichia coli induced the typical hypersensitive response (HR) and necrosis in tobacco leaves. Additionally, PeBL2 also triggered early defensive response of generation of reactive oxygen species (H2O2 and O2 -) and systemic resistance against of B. cinerea. Our findings shed new light on a novel strategy for biocontrol using B. laterosporus A60.
Collapse
Affiliation(s)
- Ghulam Hussain Jatoi
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
- Department of Plant Pathology Sindh Agriculture University Tandojam, Sindh,
Pakistan
| | - Guo Lihua
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Yang Xiufen
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Muswar Ali Gadhi
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Azhar Uddin Keerio
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Yusuf Ali Abdulle
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Dewen Qiu
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| |
Collapse
|
11
|
Brady TS, Fajardo CP, Merrill BD, Hilton JA, Graves KA, Eggett DL, Hope S. Bystander Phage Therapy: Inducing Host-Associated Bacteria to Produce Antimicrobial Toxins against the Pathogen Using Phages. Antibiotics (Basel) 2018; 7:E105. [PMID: 30518109 PMCID: PMC6315864 DOI: 10.3390/antibiotics7040105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 01/31/2023] Open
Abstract
Brevibacillus laterosporus is often present in beehives, including presence in hives infected with the causative agent of American Foulbrood (AFB), Paenibacillus larvae. In this work, 12 B. laterosporus bacteriophages induced bactericidal products in their host. Results demonstrate that P. larvae is susceptible to antimicrobials induced from field isolates of the bystander, B. laterosporus. Bystander antimicrobial activity was specific against the pathogen and not other bacterial species, indicating that the production was likely due to natural competition between the two bacteria. Three B. laterosporus phages were combined in a cocktail to treat AFB. Healthy hives treated with B. laterosporus phages experienced no difference in brood generation compared to control hives over 8 weeks. Phage presence in bee larvae after treatment rose to 60.8 ± 3.6% and dropped to 0 ± 0.8% after 72 h. In infected hives the recovery rate was 75% when treated, however AFB spores were not susceptible to the antimicrobials as evidenced by recurrence of AFB. We posit that the effectiveness of this treatment is due to the production of the bactericidal products of B. laterosporus when infected with phages resulting in bystander-killing of P. larvae. Bystander phage therapy may provide a new avenue for antibacterial production and treatment of disease.
Collapse
Affiliation(s)
- T Scott Brady
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Christopher P Fajardo
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Bryan D Merrill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jared A Hilton
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Kiel A Graves
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Dennis L Eggett
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA.
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
12
|
Khaled JM, Al-Mekhlafi FA, Mothana RA, Alharbi NS, Alzaharni KE, Sharafaddin AH, Kadaikunnan S, Alobaidi AS, Bayaqoob NI, Govindarajan M, Benelli G. Brevibacillus laterosporus isolated from the digestive tract of honeybees has high antimicrobial activity and promotes growth and productivity of honeybee's colonies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10447-10455. [PMID: 28889361 DOI: 10.1007/s11356-017-0071-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
The development of novel antimicrobial drugs, as well as the discovery of novel compounds able to promote honeybee's growth, represents major challenges for modern entomology. The main aim of this study was to investigate whether Brevibacillus laterosporus isolated from the digestive tract of Saudi honeybees, Apis mellifera, was able to stimulate colony strength parameters of honeybees and to evaluate its ability to produce antimicrobial agents. Honeybees were collected in Dirab, Riyadh Region, Saudi Arabia, and microorganisms were isolated and identified by 16S ribosomal RNA analysis. Microscopic identification of the microorganism in its native state was facilitated by atomic force microscopy at high-resolution imaging. Active biological compounds were produced by submerged fermentation with B. laterosporus. The fermented broth was subjected to extraction and purification, and then semi-pure compounds were analyzed by gas chromatography-mass spectrometry. The effectiveness of the crude extract and semi-pure compounds as antimicrobial agents was evaluated by susceptibility assays. More than 22% of the microorganisms isolated from the digestive tract of healthy honeybees have been identified as B. laterosporus, this kind of species has a unique shape and morphological structure. The cyclic dipeptide cyclo(Leu-Pro) produced by B. laterosporus showed biological activity against several pathogenic microorganisms. Furthermore, the total counts of workers, closed brood, and open brood, as well as the production of bee pollen and honey, were better in honeybees treated with a B. laterosporus suspension. The data indicated that the B. laterosporus strain isolated from a healthy honeybee might be a novel probiotic and a producer of important biological compounds.
Collapse
Affiliation(s)
- Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Biotechnology and Food Technology, Thamar University, Thamar, Yemen.
| | - Fahd A Al-Mekhlafi
- Bioproducts Research, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Agricultural Production, College of Agriculture and Veterinary Medicine, Thamar University, Thamar, Yemen
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid E Alzaharni
- Department of Physics and Astronomy, King Saud University, Riyadh, 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anwar H Sharafaddin
- Department of Plant Protection, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Ahmed S Alobaidi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Noofal I Bayaqoob
- Department of Plant Protection, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| |
Collapse
|
13
|
Poddar A, Das SK. Microbiological studies of hot springs in India: a review. Arch Microbiol 2017; 200:1-18. [PMID: 28887679 DOI: 10.1007/s00203-017-1429-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
The earliest microbiological studies on hot springs in India date from 2003, a much later date compared to global attention in this striking field of study. As of today, 28 out of 400 geothermal springs have been explored following both culturable and non-culturable approaches. The temperatures and pH of the springs are 37-99 °C and 6.8-10, respectively. Several studies have been performed on the description of novel genera and species, characterization of different bio-resources, metagenomics of hot spring microbiome and whole genome analysis of few isolates. 17 strains representing novel species and many thermostable enzymes, including lipase, protease, chitinase, amylase, etc. with potential biotechnological applications have been reported by several authors. Influence of physico-chemical conditions, especially that of temperature, on shaping the hot spring microbiome has been established by metagenomic investigations. Bacteria are the predominant life forms in all the springs with an abundance of phyla Firmicutes, Proteobacteria, Actinobacteria, Thermi, Bacteroidetes, Deinococcus-Thermus and Chloroflexi. In this review, we have discussed the findings on all microbiological studies that have been carried out to date, on the 28 hot springs. Further, the possibilities of extrapolating these studies for practical applications and environmental impact assessment towards protection of natural ecosystem of hot springs have also been discussed.
Collapse
Affiliation(s)
- Abhijit Poddar
- Biosafety Support Unit, Regional Centre for Biotechnology, NPC Building, 5-6 Institutional Area, Lodhi Road, New Delhi, 110003, India.
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| |
Collapse
|
14
|
Sources of antibiotics: Hot springs. Biochem Pharmacol 2017; 134:35-41. [DOI: 10.1016/j.bcp.2016.11.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022]
|
15
|
Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling. C R Biol 2017; 340:244-249. [PMID: 28343941 DOI: 10.1016/j.crvi.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/26/2017] [Accepted: 02/26/2017] [Indexed: 11/22/2022]
Abstract
To elucidate the functional diversity of hot spring bacteria, 123 bacteria were isolated and screened for evaluating their multifunctional plant growth promoting (PGP) properties. The antagonistic activity against different phytopathogens showed the presence of a high amount of biocontrol bacteria in the hot springs. During screening for PGP properties, 61.0% isolates showed production of indole acetic acid and 23.6% showed inorganic phosphate solubilization qualitatively. For production of extracellular enzymes, it was found that 61.0% isolates produced lipase, 56.9% produced protease, and 43.9% produced cellulase. In extreme properties, half of the isolates showed tolerance to 5% NaCl (w/v) and 48.8% isolates survived heat shock at 70°C. The identification of 12 multipotential bacteria based on 16S rRNA gene sequencing revealed that the bacteria belonged to Aneurinibacillus aneurinilyticus and Bacillus spp. Bacterization of tomato seeds showed that the hot spring bacteria promoted shoot height, fresh shoot weight, root length, and fresh root weight of tomato seedlings, with values ranging from 3.12% to 74.37%, 33.33% to 350.0%, 16.06% to 130.41%, and 36.36% to 318.18%, respectively, over the control. This research shows that multifunctional bacteria could be isolated from the hot springs. The outcome of this research may have a potential effect on crop production methodologies used in saline and arid environments.
Collapse
|
16
|
Yang X, Huang E, Yuan C, Zhang L, Yousef AE. Isolation and Structural Elucidation of Brevibacillin, an Antimicrobial Lipopeptide from Brevibacillus laterosporus That Combats Drug-Resistant Gram-Positive Bacteria. Appl Environ Microbiol 2016; 82:2763-2772. [PMID: 26921428 PMCID: PMC4836408 DOI: 10.1128/aem.00315-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
A new environmental bacterial strain exhibited strong antimicrobial characteristics against methicillin-resistant Staphylococcus aureus, vancomycin-resistant strains of Enterococcus faecalis and Lactobacillus plantarum, and other Gram-positive bacteria. The producer strain, designated OSY-I1, was determined to be Brevibacillus laterosporusvia morphological, biochemical, and genetic analyses. The antimicrobial agent was extracted from cells of OSY-I1 with isopropanol, purified by high-performance liquid chromatography, and structurally analyzed using mass spectrometry (MS) and nuclear magnetic resonance (NMR). The MS and NMR results, taken together, uncovered a linear lipopeptide consisting of 13 amino acids and an N-terminal C6 fatty acid (FA) chain, 2-hydroxy-3-methylpentanoic acid. The lipopeptide (FA-Dhb-Leu-Orn-Ile-Ile-Val-Lys-Val-Val-Lys-Tyr-Leu-valinol, where Dhb is α,β-didehydrobutyric acid and valinol is 2-amino-3-methyl-1-butanol) has a molecular mass of 1,583.0794 Da and contains three modified amino acid residues: α,β-didehydrobutyric acid, ornithine, and valinol. The compound, designated brevibacillin, was determined to be a member of a cationic lipopeptide antibiotic family. In addition to its potency against drug-resistant bacteria, brevibacillin also exhibited low MICs (1 to 8 μg/ml) against selected foodborne pathogenic and spoilage bacteria, such as Listeria monocytogenes,Bacillus cereus, and Alicyclobacillus acidoterrestris Purified brevibacillin showed no sign of degradation when it was held at 80 °C for 60 min, and it retained at least 50% of its antimicrobial activity when it was held for 22 h under acidic or alkaline conditions. On the basis of these findings, brevibacillin is a potent antimicrobial lipopeptide which is potentially useful to combat drug-resistant bacterial pathogens and foodborne pathogenic and spoilage bacteria.
Collapse
Affiliation(s)
- Xu Yang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - En Huang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Chunhua Yuan
- Nuclear Magnetic Resonance Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio, USA
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Jain S, Mishra D, Khare P, Yadav V, Deshmukh Y, Meena A. Impact of biochar amendment on enzymatic resilience properties of mine spoils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:410-421. [PMID: 26657386 DOI: 10.1016/j.scitotenv.2015.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Soil enzymes are crucial for soil nutrient cycling function. Understanding of the factors that control their response to major disturbances such as dumping of environmentally toxic acidic waste remains limited. We evaluated the effect of dumping of overburden (OB) and their amendments using biochar, on the resistance and resilience of soil enzyme activities involved in phosphorus, nitrogen, sulphur and carbon cycling (acid & alkaline phosphatase, urease, arylsulphatase, dehydrogenase, phenol oxidases, cellulase and β-glucosidase). For investigation the soils treated with OB and with the mixture of OB and biochar were used for the cultivation of bacopa were used. We assessed 0 day, 45 day and 90 days activities of the target soil enzymes, available phosphorus, nitrogen, sulphur, soil organic carbon and microbial identification. The resilience and resistance index of all the treatments were calculated. We found that phyto-remediated OB-contaminated soil has its own resilience power. However, biochar addition enhanced the enzyme resistance and resilience of OB contaminated soil. In silico study indicates that biochar-Fe complex play a significant role in enzymatic activities. Overall, the results indicate a significant influence of phytoremediation and biochar addition on soil enzymatic activity that is extremely resistant to OB. This study provides insight on how biochar addition modulates soil biochemical and microbiological response to OB affected soils.
Collapse
Affiliation(s)
- Shilpi Jain
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Disha Mishra
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Puja Khare
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India.
| | - Vineet Yadav
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Y Deshmukh
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Abha Meena
- Bioinformatic Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| |
Collapse
|
18
|
Jiang H, Wang X, Xiao C, Wang W, Zhao X, Sui J, Sa R, Guo TL, Liu X. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World J Microbiol Biotechnol 2015; 31:1605-18. [PMID: 26265360 DOI: 10.1007/s11274-015-1912-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
The establishment of safe and effective methods for controlling fungal disease is an urgent issue in agriculture and forestry. Microbiological control of plant disease is expected to achieve better results than use of chemically derived fungicides. This study aimed to establish Brevibacillus laterosporus JX-5 as a potential microbiological control agent of poplar canker. The bacterium was isolated from the poplar rhizosphere and demonstrated significant growth inhibition of several pathogenic fungi in vitro. The antifungal components of Br. laterosporus JX-5 were isolated and identified. The fermentation broth of Br. laterosporus JX-5 and its main antifungal component, designated as component B, reduced Botryosphaeria dothidea associated canker of the excised poplar branch by 70 and 90%, respectively. Component B is considerably heat-stable, adaptable to a broad pH range, and UV-resistant. It could inhibit Bo. dothidea by permeating the fungal membrane, fracturing the nuclei, damaging the cell wall, and eventually killing the pathogenic fungus. The antifungal activity exhibited by Br. laterosporus JX-5 and its bioactive metabolic products indicate its feasibility as a potential biocontrol agent for plant diseases.
Collapse
Affiliation(s)
- Hongxia Jiang
- College of Life Science, Shandong Agricultural University, Taian, 271018, China. .,School of Life Science, Taishan Medical University, Taian, 271018, China.
| | - Xiaohui Wang
- College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Chengze Xiao
- College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Weiyan Wang
- College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Xu Zhao
- College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Junkang Sui
- College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Rongbo Sa
- College of Life Science, Shandong Agricultural University, Taian, 271018, China.,School of Life Science, Taishan Medical University, Taian, 271018, China
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602-7382, USA.
| | - Xunli Liu
- College of Forestry, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
19
|
Li G, Xu J, Wu L, Ren D, Ye W, Dong G, Zhu L, Zeng D, Guo L. Full genome sequence of Brevibacillus laterosporus strain B9, a biological control strain isolated from Zhejiang, China. J Biotechnol 2015; 207:77-8. [PMID: 26022423 DOI: 10.1016/j.jbiotec.2015.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Brevibacillus laterosporus was newly classified from Bacillus laterosporus, which has ability to be used as a biological control agent in crop field. B. laterosporus strain B9 is an aerobic, motile, Gram-positive, spore-forming rod that was isolated from a field of Oryza sativa in Zhejiang, China in 2011. This bacterium has been confirmed to be a strong antagonist against bacterial brown strip of rice caused by Acidovorex avenae subsp. avenae. Here we describe the features of B. laterosporus strain B9, together with the complete genome sequence and its annotation. The 5,272,435bp genome contains 4804 protein-coding genes and 227 RNA-only encoding genes with 2 plasmids.
Collapse
Affiliation(s)
- Gengmi Li
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China; Center of Laboratory Medicine, Chengdu Military General Hospital, Key Laboratory of High Humidity Medicine PLA, Chengdu 610083, China
| | - Jie Xu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liwen Wu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Deyong Ren
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Weijun Ye
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Guojun Dong
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Li Zhu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Dali Zeng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
20
|
Jianmei C, Bo L, Zheng C, Huai S, Guohong L, Cibin G. Identification of ethylparaben as the antimicrobial substance produced by Brevibacillus brevis FJAT-0809-GLX. Microbiol Res 2014; 172:48-56. [PMID: 25542595 DOI: 10.1016/j.micres.2014.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
In this study, crude antimicrobial extract from the culture supernatant of Brevibacillus brevis FJAT-0809-GLX was extracted, and its antimicrobial activity was investigated with the agar diffusion method. The results showed that the antimicrobial activity of the culture supernatant of B. brevis FJAT-0809-GLX increased with the extension of the incubation time of B. brevis FJAT-0809-GLX. The antimicrobial spectrum assays showed that this crude antimicrobial extract from culture supernatant of B. brevis FJAT-0809-GLX could inhibit the growth of both bacteria and fungi. A heat stability test was performed, and different temperatures (30°C, 50°C and 70°C) did not affect the antibiotic activity of this crude antimicrobial extract. The crude antimicrobial extract was also tolerable to changes in pH levels. Its antibiotic activity against Escherichia coli was stable at pH 1 to pH 11, with zone sizes ranging from 18.46mm to 22.19mm. Almost all of the crude extracts extracted using different solvents showed variable degrees of inhibition zones against E. coli, with zone sizes ranging from 17.29mm to 19.62mm, except petroleum ether and butanol extracts, which were found to be completely inactive. Purification of the antimicrobial components was carried out using a column chromatographic technique with column chromatography grade silica gel and analyzed by an Agilent 7890A Network GC system. The separated compound was identified as ethylparaben, with a retention time of 21.980min and a relative amount of 95.50%. The antimicrobial activity of ethylparaben on different types of bacteria and fungi was investigated, and ethylparaben was shown to inhibit different types of microbes to different extents. To the best of our knowledge, this is the first report demonstrating that the bacterium B. brevis could produce ethylparaben.
Collapse
Affiliation(s)
- Che Jianmei
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou 350003, Fujian, People's Republic of China
| | - Liu Bo
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou 350003, Fujian, People's Republic of China.
| | - Chen Zheng
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou 350003, Fujian, People's Republic of China
| | - Shi Huai
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou 350003, Fujian, People's Republic of China
| | - Liu Guohong
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou 350003, Fujian, People's Republic of China
| | - Ge Cibin
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou 350003, Fujian, People's Republic of China
| |
Collapse
|
21
|
Sarma RK, Gogoi A, Dehury B, Debnath R, Bora TC, Saikia R. Community profiling of culturable fluorescent pseudomonads in the rhizosphere of green gram (Vigna radiata L.). PLoS One 2014; 9:e108378. [PMID: 25279790 PMCID: PMC4184808 DOI: 10.1371/journal.pone.0108378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022] Open
Abstract
Study on microbial diversity in the unexplored rhizosphere is important to understand their community structure, biology and ecological interaction with the host plant. This research assessed the genetic and functional diversity of fluorescent pseudomonads [FP] in the green gram rhizophere. One hundred and twenty types of morphologically distinct fluorescent pseudomonads were isolated during vegetative as well as reproductive growth phase of green gram. Rep PCR, ARDRA and RISA revealed two distinct clusters in each case at 75, 61 and 70% similarity coefficient index respectively. 16S rRNA partial sequencing analysis of 85 distantly related fluorescent pseudomonads depicted Pseudomonas aeruginosa as the dominant group. Out of 120 isolates, 23 (19%) showed antagonistic activity towards phytopathogenic fungi. These bacterial isolates showed varied production of salicylic acid, HCN and chitinase, 2, 4-diacetylphloroglucinol (DAPG), phenazine-1-carboxylic acid (PCA) and pyoluteorin (PLT). Production efficiency of inherent level of plant growth promoting (PGP) traits among the 120 isolates demonstrated that 10 (8%) solubilised inorganic phosphates, 25 (20%) produced indoles and 5 (4%) retained ACC deaminase activity. Pseudomonas aeruginosa GGRJ21 showed the highest production of all antagonistic and plant growth promoting (PGP) traits. In a greenhouse experiment, GGRJ21 suppressed root rot disease of green gram by 28-93% (p = 0.05). Consistent up regulation of three important stress responsive genes, i.e., acdS, KatA and gbsA and elevated production efficiency of different PGP traits could promote GGRJ21 as a potent plant growth regulator.
Collapse
Affiliation(s)
- Rupak K Sarma
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Animesh Gogoi
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Budheswar Dehury
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Rajal Debnath
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Tarun C Bora
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Ratul Saikia
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
22
|
Amaresan N, Kumar K, Sureshbabu K, Madhuri K. Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India. Lett Appl Microbiol 2013; 58:130-7. [DOI: 10.1111/lam.12165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 11/27/2022]
Affiliation(s)
- N. Amaresan
- Division of Field Crops; Central Agricultural Research Institute; Port Blair India
| | - K. Kumar
- Division of Field Crops; Central Agricultural Research Institute; Port Blair India
| | - K. Sureshbabu
- Department of Biotechnology; Bharathiar University; Coimbatore India
| | - K. Madhuri
- Division of Field Crops; Central Agricultural Research Institute; Port Blair India
| |
Collapse
|
23
|
Mathioni SM, Patel N, Riddick B, Sweigard JA, Czymmek KJ, Caplan JL, Kunjeti SG, Kunjeti S, Raman V, Hillman BI, Kobayashi DY, Donofrio NM. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS One 2013; 8:e76487. [PMID: 24098512 PMCID: PMC3789685 DOI: 10.1371/journal.pone.0076487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/28/2013] [Indexed: 12/15/2022] Open
Abstract
Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.
Collapse
Affiliation(s)
- Sandra M. Mathioni
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Nrupali Patel
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Bianca Riddick
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - James A. Sweigard
- DuPont Stine Haskell Research Center, Newark, Delaware, United States of America
| | - Kirk J. Czymmek
- Delaware Biotechnology Institute BioImaging Center, University of Delaware, Newark, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Jeffrey L. Caplan
- Delaware Biotechnology Institute BioImaging Center, University of Delaware, Newark, Delaware, United States of America
| | - Sridhara G. Kunjeti
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Saritha Kunjeti
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Vidhyavathi Raman
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Bradley I. Hillman
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Donald Y. Kobayashi
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nicole M. Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
24
|
Ruiu L. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species. INSECTS 2013; 4:476-92. [PMID: 26462431 PMCID: PMC4553477 DOI: 10.3390/insects4030476] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/30/2022]
Abstract
Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity.
Collapse
Affiliation(s)
- Luca Ruiu
- Dipartimento di Agraria, University of Sassari, Via E. De Nicola, 07100 Sassari, Italy.
| |
Collapse
|
25
|
Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol 2013; 30:469-78. [PMID: 23990042 DOI: 10.1007/s11274-013-1469-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/20/2013] [Indexed: 12/23/2022]
Abstract
Biological control efficacy of Brevibacillus laterosporus B4 associated with rice rhizosphere was assessed against bacterial brown stripe of rice caused by Acidovorex avenae subsp. avenae. A biochemical bactericide (chitosan) was used as positive control in this experiment. Result of in vitro analysis indicated that B. laterosporus B4 and its culture filtrates (70%; v/v) exhibited low inhibitory effects than chitosan (5 mg/ml). However, culture suspension of B. laterosporus B4 prepared in 1% saline solution presented significant ability to control bacterial brown stripe in vivo. Bacterization of rice seeds for 24 h yielded a greater response (71.9%) for controlling brown stripe in vivo than chitosan (56%). Studies on mechanisms revealed that B. laterosporus B4 suppressed the biofilm formation and severely disrupted cell membrane integrity of A. avenae subsp. avenae, causing the leakage of intracellular substances. In addition, the expression level of virulence-related genes in pathogen recovered from biocontrol-agent-treated plants showed that the genes responsible for biofilm formation, motility, niche adaptation, membrane functionality and virulence of A. avenae subsp. avenae were down-regulated by B. laterosporus B4 treatment. The biocontrol activity of B. laterosporus B4 was attributed to a substance with protein nature. This protein nature was shown by using ammonium sulfate precipitation and subsequent treatment with protease. The results obtained from this study showed the potential effectiveness of B. laterosporus B4 as biocontrol agent in control of bacterial brown stripe of rice.
Collapse
|
26
|
Wang Y, Liu S, Mao X, Zhang Z, Jiang H, Chai R, Qiu H, Wang J, Du X, Li B, Sun G. Identification and characterization of rhizosphere fungal strain MF-91 antagonistic to rice blast and sheath blight pathogens. J Appl Microbiol 2013; 114:1480-90. [DOI: 10.1111/jam.12153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 01/13/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Y.L. Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - S.Y. Liu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - X.Q. Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - Z. Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - H. Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - R.Y. Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - H.P. Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - J.Y. Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - X.F. Du
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - B. Li
- State Key Laboratory of Rice Biology; Institute of Biotechnology; Zhejiang University; Hangzhou China
| | - G.C. Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| |
Collapse
|
27
|
Sarma RK, Debnath R, Saikia R, Handique PJ, Bora TC. Phylogenetic analysis of alkaline proteinase producing fluorescent pseudomonads associated with green gram (Vigna radiata L.) rhizosphere. Folia Microbiol (Praha) 2012; 57:129-37. [PMID: 22374358 DOI: 10.1007/s12223-012-0097-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/11/2012] [Indexed: 12/01/2022]
Abstract
Fifty fluorescent pseudomonads were isolated from rhizospheric soil of green gram from nearby area of Kaziranga, Assam, India and assayed for their extracellular proteinase production. Out of these isolates, 20 were found to be prominent in proteinase production. Genetic diversity of the 20 isolates were analyzed through BOX-PCR fingerprinting and 16S rDNA-RFLP along with three reference strains, viz., Pseudomonas fluorescens (NCIM2099(T)), Pseudomonas aureofaciens (NCIM2026(T)), and Pseudomonas aeruginosa (MTCC2582(T)). BOX-PCR produced two distinct clusters at 56% similarity coefficient and seven distinct BOX profiles. 16S rDNA-RFLP with three tetra-cutters restriction enzymes (HaeIII, AluI, and MspI) revealed two major clusters A and B; cluster A contained only single isolate FPS9 while the rest of 22 isolates belonged to the cluster B. Based on phenotypic characters and 16S rDNA sequence similarity, all the eight highly proteinase-producing strains were affiliated with P. aeruginosa. The proteinase was extracted from two most prominent strains (KFP1 and KFP2), purified by a three-step process involving (NH(4))(2)SO(4) precipitation, gel filtration, and ion exchange chromatography. The enzyme had an optimal pH of 8.0 and exhibit highest activity at 60°C and 37°C by KFP1 and KFP2 respectively. The specific activities were recorded as 75,050 (for KFP1) and 81,320 U/mg (for KFP2). The purified enzyme was migrated as a single band on native and SDS-PAGE with a molecular mass of 32 kDa. Zn(2+), Cu(2+), and Ni(2+) ion inhibited the enzyme activity. Enzyme activity was also inhibited by EDTA established as their metallo-proteinase nature.
Collapse
Affiliation(s)
- Rupak K Sarma
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | | | | | | | | |
Collapse
|