1
|
Yang Z, Guo Z, Qin B, Zhang H, Chen J, Zheng G, Zou S. Establishment of the Tgf2-based anti-hemorrhagic disease system THVS and analysis of its disease resistance effects in Gobiocypris rarus. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110206. [PMID: 39978561 DOI: 10.1016/j.fsi.2025.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Grass carp reovirus (GCRV) belongs to the family of reoviridae, which mainly causes hemorrhagic disease in grass carp, with high morbidity and mortality rate, which seriously affects the efficiency of grass carp aquaculture, and at present, there is no effective treatment and new varieties of disease-resistant species. Capsid-targeted viral inactivation (CTVI) is a potent antiviral strategy based on the formation of fusion proteins between viral coat proteins and exogenous proteins, whereby the fusion proteins are integrated into the virus upon viral invasion and assembly, and the exogenous proteins directly disrupt and degrade the viral DNA/RNA to provide antiviral efficacy. The aim of this paper was to explore the potential application of CTVI in rare minnow infested with GCRV, to provide a theoretical basis for the breeding of new varieties of grass carp resistant to hemorrhagic disease. We used heat shock protein 70 (HSP70) as promoter, combined with Tgf2 transposon, assembled GCRV outer capsid protein VP3 and Staphylococcus aureus nucleases (SN) to form a fusion protein VP3-SN, constructed a Tgf2-based anti-hemorrhagic disease system (THVS) and a transgenic model of rare minnow, and investigated the apoptotic and immune responses of transgenic rare minnow in resistance to GCRV infection by HE and TUNEL staining, CAT and NO detection, and qPCR. Apoptosis, inflammation and immune responses in transgenic rare minnow against GCRV infection. The results showed that the transgenic rare minnow would limit GCRV amplification during GCRV infection, further affect oxidative stress and reduce the expression of TLR4-MYD88-NF-kB pathway, apoptosis-related genes (BCL2, Caspae3) and inflammation-related genes (IL-1β, TNFα), showing strong GCRV resistance. This experiment provides a theoretical basis and rationale for breeding new grass carp varieties resistant to hemorrhagic disease.
Collapse
Affiliation(s)
- Ziquan Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zaozao Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bo Qin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huimei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jie Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guodong Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shuming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Liu J, Zhu J, Hao H, Bi J, Hou H, Zhang G. Transcriptomic and Molecular Docking Analysis Reveal Virulence Gene Regulation-Mediated Antibacterial Effects of Benzyl Isothiocyanate Against Staphylococcus aureus. Appl Biochem Biotechnol 2024; 196:8239-8253. [PMID: 38709426 DOI: 10.1007/s12010-024-04938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that can cause many serious infections. Thus, efficient and practical techniques to fight S. aureus are required. In this study, transcriptomics was used to evaluate changes in S. aureus following treatment with benzyl isothiocyanate (BITC) to determine its antibacterial action. The results revealed that the BITC at subinhibitory concentrations (1/8th MIC) treated group had 94 differentially expressed genes compared to the control group, with 52 downregulated genes. Moreover, STRING analyses were used to reveal the protein interactions encoded by 36 genes. Then, we verified three significant virulence genes by qRT-PCR, including capsular polysaccharide synthesis enzyme (cp8F), capsular polysaccharide biosynthesis protein (cp5D), and thermonuclease (nuc). Furthermore, molecular docking analysis was performed to investigate the action site of BITC with the encoded proteins of cp8F, cp5D, and nuc. The results showed that the docking fraction of BITC with selected proteins ranged from - 6.00 to - 6.60 kcal/mol, predicting the stability of these complexes. BITC forms hydrophobic, hydrogen-bonded, π-π conjugated interactions with amino acids TRP (130), GLY (10), ILE (406), LYS (368), TYR (192), and ARG (114) of these proteins. These findings will aid future research into the antibacterial effects of BITC against S. aureus.
Collapse
Affiliation(s)
- Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Junya Zhu
- Jinkui Food Science and Technology (Dalian) Co., Ltd, Dalian, 116000, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
3
|
Boodoo C, Dester E, David J, Patel V, Kc R, Alocilja EC. Multi-Probe Nano-Genomic Biosensor to Detect S. aureus from Magnetically-Extracted Food Samples. BIOSENSORS 2023; 13:608. [PMID: 37366975 DOI: 10.3390/bios13060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
One of the most prevalent causes of foodborne illnesses worldwide is staphylococcal food poisoning. This study aimed to provide a robust method to extract the bacteria Staphylococcus aureus from food samples using glycan-coated magnetic nanoparticles (MNPs). Then, a cost-effective multi-probe genomic biosensor was designed to detect the nuc gene of S. aureus rapidly in different food matrices. This biosensor utilized gold nanoparticles and two DNA oligonucleotide probes combined to produce a plasmonic/colorimetric response to inform users if the sample was positive for S. aureus. In addition, the specificity and sensitivity of the biosensor were determined. For the specificity trials, the S. aureus biosensor was compared with the extracted DNA of Escherichia coli, Salmonella enterica serovar Enteritidis (SE), and Bacillus cereus. The sensitivity tests showed that the biosensor could detect as low as 2.5 ng/µL of the target DNA with a linear range of up to 20 ng/µL of DNA. With further research, this simple and cost-effective biosensor can rapidly identify foodborne pathogens from large-volume samples.
Collapse
Affiliation(s)
- Chelsie Boodoo
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Emma Dester
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Jeswin David
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Human Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Vedi Patel
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Rabin Kc
- Statistical Consulting Center, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C Alocilja
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Ali S, Rivera M, Ward J, Keshavarz-Moore E, Mason C, Nesbeth DN. Serum-free lentiviral vector production is compatible with medium-resident nuclease activity arising from adherent HEK293T host cells engineered with a nuclease-encoding transgene. Heliyon 2023; 9:e17067. [PMID: 37484388 PMCID: PMC10361239 DOI: 10.1016/j.heliyon.2023.e17067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
At present lentiviral vector production for cell and gene therapy commonly involves transient plasmid transfection of mammalian cells cultivated in serum-containing media and addition of exogenous nuclease to reduce host cell and plasmid DNA impurities. Switching from serum-containing media to chemically-defined, serum free media, and minimising the number of process additions, are both increasingly regarded as necessary steps for simplifying and potentially automating lentiviral vector bioprocessing in future. Here we adapted human embryonic kidney 293T (HEK293T) cells to grow in serum-free media and also modified these cells with transgenes designed to encode a secreted nuclease activity. Stable transfection of HEK293T cells with transgenes encoding the Staphylococcus aureus nuclease B (NucB) open reading frame with either its native secretion signal peptide, the murine Igκ chain leader sequence or a novel viral transport fusion protein, all resulted in qualitatively detectable nuclease activity in serum-free media. Serum-free transient transfection of human embryonic kidney HEK293T cells stably harbouring the transgene for NucB with its native secretion signal produced active lentivirus in the presence of medium-resident nuclease activity. This lentivirus material was able to transduce the AGF-T immortal T cell line with a green fluorescent protein reporter payload at a level of 2.05 × 105 TU/mL (±3.34 × 104 TU/mL). Sufficient nuclease activity was present in 10 μL of this unconcentrated lentivirus material to degrade 1.5 μg DNA within 2 h at 37 °C, without agitation - conditions compatible with lentivirus production. These observations demonstrate that lentiviral vector production, by transient transfection, is compatible with host cells harbouring a nuclease transgene and evidencing nuclease activity in their surrounding growth media. This work provides a solid basis for future investigations, beyond the scope of this present study, in which commercial and academic groups can apply this approach to therapeutic payloads and potentially omit exogenous nuclease bioprocess additions.
Collapse
|
5
|
Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress. Antioxidants (Basel) 2022; 12:antiox12010096. [PMID: 36670957 PMCID: PMC9854524 DOI: 10.3390/antiox12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Short linear motifs (SLiMs) are evolutionarily conserved functional modules of proteins composed of 3 to 10 residues and involved in multiple cellular functions. Here, we performed a search for SLiMs that exert sequence similarity to two segments of alpha-fetoprotein (AFP), a major mammalian embryonic and cancer-associated protein. Biological activities of the peptides, LDSYQCT (AFP14-20) and EMTPVNPGV (GIP-9), have been previously confirmed under in vitro and in vivo conditions. In our study, we retrieved a vast array of proteins that contain SLiMs of interest from both prokaryotic and eukaryotic species, including viruses, bacteria, archaea, invertebrates, and vertebrates. Comprehensive Gene Ontology enrichment analysis showed that proteins from multiple functional classes, including enzymes, transcription factors, as well as those involved in signaling, cell cycle, and quality control, and ribosomal proteins were implicated in cellular adaptation to environmental stress conditions. These include response to oxidative and metabolic stress, hypoxia, DNA and RNA damage, protein degradation, as well as antimicrobial, antiviral, and immune response. Thus, our data enabled insights into the common functions of SLiMs evolutionary conserved across all taxonomic categories. These SLiMs can serve as important players in cellular adaptation to stress, which is crucial for cell functioning.
Collapse
|
6
|
Wei Y, Sandhu E, Yang X, Yang J, Ren Y, Gao X. Bidirectional Functional Effects of Staphylococcus on Carcinogenesis. Microorganisms 2022; 10:microorganisms10122353. [PMID: 36557606 PMCID: PMC9783839 DOI: 10.3390/microorganisms10122353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
As a Gram-positive cocci existing in nature, Staphylococcus has a variety of species, such as Staphylococcus aureus and Staphylococcus epidermidis, etc. Growing evidence reveals that Staphylococcus is closely related to the occurrence and development of various cancers. On the one hand, cancer patients are more likely to suffer from bacterial infection and antibiotic-resistant strain infection compared to healthy controls. On the other hand, there exists an association between staphylococcal infection and carcinogenesis. Staphylococcus often plays a pathogenic role and evades the host immune system through surface adhesion molecules, α-hemolysin, PVL (Panton-Valentine leukocidin), SEs (staphylococcal enterotoxins), SpA (staphylococcal protein A), TSST-1 (Toxic shock syndrom toxin-1) and other factors. Staphylococcal nucleases (SNases) are extracellular nucleases that serve as genomic markers for Staphylococcus aureus. Interestingly, a human homologue of SNases, SND1 (staphylococcal nuclease and Tudor domain-containing 1), has been recognized as an oncoprotein. This review is the first to summarize the reported basic and clinical evidence on staphylococci and neoplasms. Investigations on the correlation between Staphylococcus and the occurrence, development, diagnosis and treatment of breast, skin, oral, colon and other cancers, are made from the perspectives of various virulence factors and SND1.
Collapse
Affiliation(s)
- Yuannan Wei
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Esha Sandhu
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| |
Collapse
|
7
|
Optimization of Signal Peptide via Site-Directed Mutagenesis for Enhanced Secretion of Heterologous Proteins in Lactococcus lactis. Int J Mol Sci 2022; 23:ijms231710044. [PMID: 36077441 PMCID: PMC9456127 DOI: 10.3390/ijms231710044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Secretion efficiency of heterologous proteins in the Generally Regarded As Safe (GRAS) Lactococcus lactis is often reported to be insufficiently low due to limitations such as poor targeting and translocation by the signal peptide or degradation by the host proteases. In this study, the secretion efficiency in the host was enhanced through the utilization of a heterologous signal peptide (SP) SPK1 of Pediococcus pentosaceus. The SPK1 was subjected to site-directed mutations targeting its tripartite N-, H-, and C-domains, and the effect on secretion efficiency as compared to the wild-type SPK1 and native lactococcal USP45 was determined on a reporter nuclease (NUC) of Staphylococcus aureus. A Fluorescence Resonance Energy Transfer (FRET) analysis indicated that four out of eight SPK1 variants successfully enhanced the secretion of NUC, with the best mutant, SPKM19, showing elevated secretion efficiency up to 88% (or by 1.4-fold) and an improved secretion activity yield of 0.292 ± 0.122 U/mL (or by 1.7-fold) compared to the wild-type SPK1. Modifications of the SPK1 at the cleavage site C-domain region had successfully augmented the secretion efficiency. Meanwhile, mutations in the H-domain region had resulted in a detrimental effect on the NUC secretion. The development of heterologous SPs with better efficacy than the USP45 has been demonstrated in this study for enhanced secretion of heterologous production and mucosal delivery applications in the lactococcal host.
Collapse
|
8
|
Huma ZI, Sharma N, Kour S, Lee SJ. Phenotypic and Molecular Characterization of Bovine Mastitis Milk Origin Bacteria and Linkage of Intramammary Infection With Milk Quality. Front Vet Sci 2022; 9:885134. [PMID: 35720844 PMCID: PMC9202522 DOI: 10.3389/fvets.2022.885134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mastitis is a multi-etiological complex disease of dairy cows and negatively affects the quality and quantity of milk. Milk is a nutritious food for human being; milk quality is negatively affected by intramammary infection of dairy cows. A total of 300 milk samples were collected from mastitis dairy cows irrespective of parity and stage of lactation, 235 (78.33%) samples were culturally positive and yielded 1,100 bacterial isolates. Staphylococcus aureus was found to be the prime etiological agent involved in the mastitis of dairy cows, followed by Escherichia coli and other environmental pathogens. On the molecular characterization of isolates obtained from the milk culture, various toxic genes such as nuc, seb, hla, stx1, stx2, hly, and Sagl were found on different isolated bacteria. Milk somatic cell counts (SCC) were found to be directly related to the severity of mastitis. On drawing the SCC correlation with milk components, it was found that SCC had a significant negative correlation with fat, lactose, solid not fat (SNF), and ash. It was concluded that mastitis-affected milk contains numerous pathogenic bacteria, toxins, and reduced milk quality, which is unfit for human consumption.
Collapse
Affiliation(s)
- Zul I. Huma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu, India
- *Correspondence: Neelesh Sharma
| | - Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu, India
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon-si, South Korea
- Sung Jin Lee
| |
Collapse
|
9
|
Naclerio GA, Abutaleb NS, Onyedibe KI, Karanja C, Eldesouky HE, Liang HW, Dieterly A, Aryal UK, Lyle T, Seleem MN, Sintim HO. Mechanistic Studies and In Vivo Efficacy of an Oxadiazole-Containing Antibiotic. J Med Chem 2022; 65:6612-6630. [PMID: 35482444 PMCID: PMC9124606 DOI: 10.1021/acs.jmedchem.1c02034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are still difficult to treat, despite the availability of many FDA-approved antibiotics. Thus, new compound scaffolds are still needed to treat MRSA. The oxadiazole-containing compound, HSGN-94, has been shown to reduce lipoteichoic acid (LTA) in S. aureus, but the mechanism that accounts for LTA biosynthesis inhibition remains uncharacterized. Herein, we report the elucidation of the mechanism by which HSGN-94 inhibits LTA biosynthesis via utilization of global proteomics, activity-based protein profiling, and lipid analysis via multiple reaction monitoring (MRM). Our data suggest that HSGN-94 inhibits LTA biosynthesis via direct binding to PgcA and downregulation of PgsA. We further show that HSGN-94 reduces the MRSA load in skin infection (mouse) and decreases pro-inflammatory cytokines in MRSA-infected wounds. Collectively, HSGN-94 merits further consideration as a potential drug for staphylococcal infections.
Collapse
Affiliation(s)
- George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kenneth I Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Caroline Karanja
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hassan E Eldesouky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hsin-Wen Liang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Alexandra Dieterly
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tiffany Lyle
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Comparative Translational Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
The Q225P Mutation in SigB Promotes Membrane Vesicle Formation in Staphylococcus aureus. Curr Microbiol 2022; 79:81. [PMID: 35103842 PMCID: PMC8804369 DOI: 10.1007/s00284-022-02772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
Both Gram-positive and Gram-negative bacteria release nano-sized lipid bilayered particles, known as membrane vesicles (MVs), into external environments. Although MVs play a variety of roles in bacterial physiology and pathogenesis, the mechanisms underlying MV formation in Gram-positive microorganisms such as Staphylococcus aureus remain obscure. Bacterial MV production can be induced in response to stress conditions, and the alternative sigma factor B (SigB) functions as a central regulator of the stress response in Gram-positive bacteria. In a previous study, we demonstrated that the SigB(Q225P) substitution mutation in S. aureus promotes biofilm formation. Here, we report that the SigB(Q225P) mutation also increases MV production in this important pathogen. LacZ reporter assays and electrophoretic mobility shift assays showed that the Q225P substitution reduces SigB binding to the promoter region of the thermonuclease gene (nuc), resulting in a significant reduction in Nuc expression. Deletion of nuc markedly enhances S. aureus MV generation, possibly due to the accumulation of nucleic acids. These results are not only important for understanding MV biogenesis in S. aureus, but also useful for the development of a S. aureus MV-based platform for MV application.
Collapse
|
11
|
Characterization of the Inclusion Complexes of Isothiocyanates with γ-Cyclodextrin for Improvement of Antibacterial Activities against Staphylococcus aureus. Foods 2021; 11:foods11010060. [PMID: 35010184 PMCID: PMC8750663 DOI: 10.3390/foods11010060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to develop inclusions formed by γ-cyclodextrin (γ-CD) and three isothiocyanates (ITCs), including benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), and 3-methylthiopropyl isothiocyanate (MTPITC) to improve their controlled release for the inhibition of Staphylococcus aureus (S. aureus). These inclusion complexes were characterized using X-ray diffraction, Fourier-transform infrared, thermogravimetry, and scanning electron microscopy (SEM), providing appropriate evidence to confirm the formation of inclusion complexes. Preliminary evaluation of the antimicrobial activity of the different inclusion complexes, carried out in vitro by agar diffusion, showed that such activity lasted 5–7 days longer in γ-CD-BITC, in comparison with γ-CD-PEITC and γ-CD-MTPITC. The biofilm formation was less in S. aureus treated with γ-CD-BITC than that of BITC by using crystal violet quantification assay and SEM. The expression of virulence genes, including sarA, agr, cp5D, cp8F, clf, nuc, and spa, showed sustained downregulation in S. aureus treated with γ-CD-BITC for 24 h by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, the growth of S. aureus in cooked chicken breast treated with γ-CD-BITC and BITC was predicted by the Gompertz model. The lag time of γ-CD-BITC was 1.3–2.4 times longer than that of BITC, and correlation coefficient (R2) of the secondary models was 0.94–0.99, respectively. These results suggest that BITC has a more durable antibacterial effect against S. aureus after encapsulation by γ-CD.
Collapse
|
12
|
Virulence Factors in Staphylococcus Associated with Small Ruminant Mastitis: Biofilm Production and Antimicrobial Resistance Genes. Antibiotics (Basel) 2021; 10:antibiotics10060633. [PMID: 34070557 PMCID: PMC8228312 DOI: 10.3390/antibiotics10060633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Small ruminant mastitis is a serious problem, mainly caused by Staphylococcus spp. Different virulence factors affect mastitis pathogenesis. The aim of this study was to investigate virulence factors genes for biofilm production and antimicrobial resistance to β-lactams and tetracyclines in 137 staphylococcal isolates from goats (86) and sheep (51). The presence of coa, nuc, bap, icaA, icaD, blaZ, mecA, mecC, tetK, and tetM genes was investigated. The nuc gene was detected in all S. aureus isolates and in some coagulase-negative staphylococci (CNS). None of the S. aureus isolates carried the bap gene, while 8 out of 18 CNS harbored this gene. The icaA gene was detected in S. aureus and S. warneri, while icaD only in S. aureus. None of the isolates carrying the bap gene harbored the ica genes. None of the biofilm-associated genes were detected in 14 isolates (six S. aureus and eight CNS). An association was found between Staphylococcus species and resistance to some antibiotics and between antimicrobial resistance and animal species. Nine penicillin-susceptible isolates exhibited the blaZ gene, questioning the reliability of susceptibility testing. Most S. aureus isolates were susceptible to tetracycline, and no cefazolin or gentamycin resistance was detected. These should replace other currently used antimicrobials.
Collapse
|
13
|
López-Álvarez M, Heuker M, Schoenmakers JWA, van Dam GM, McNamara JO, van Dijl JM, van Oosten M. The smart activatable P2&3TT probe allows accurate, fast, and highly sensitive detection of Staphylococcus aureus in clinical blood culture samples. Sci Rep 2020; 10:19216. [PMID: 33154413 PMCID: PMC7645595 DOI: 10.1038/s41598-020-76254-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus bacteraemia (SAB) is associated with high mortality and morbidity rates. Yet, there is currently no adequate diagnostic test for early and rapid diagnosis of SAB. Therefore, this study was aimed at exploring the potential for clinical implementation of a nuclease-activatable fluorescent probe for early diagnosis of SAB. To this end, clinical blood culture samples from patients with bloodstream infections were incubated for 1 h with the "smart" activatable P2&3TT probe, the total assay time being less than 2 h. Cleavage of this probe by the secreted S. aureus enzyme micrococcal nuclease results in emission of a readily detectable fluorescence signal. Incubation of S. aureus-positive blood culture samples with the P2&3TT probe resulted in 50-fold higher fluorescence intensity levels than incubation with culture-negative samples. Moreover, incubation of the probe with non-S. aureus-positive blood cultures yielded essentially background fluorescence intensity levels for cultures with Gram-negative bacteria, and only ~ 3.5-fold increased fluorescence intensity levels over background for cultures with non-S. aureus Gram-positive bacteria. Importantly, the measured fluorescence intensities were dose-dependent, and a positive signal was clearly detectable for S. aureus-positive blood cultures with bacterial loads as low as ~ 7,000 colony-forming units/mL. Thus, the nuclease-activatable P2&3TT probe distinguishes clinical S. aureus-positive blood cultures from non-S. aureus-positive blood cultures and culture-negative blood, accurately, rapidly and with high sensitivity. We conclude that this probe may enhance the diagnosis of SAB.
Collapse
Affiliation(s)
- Marina López-Álvarez
- Department of Medical Microbiology, University Medical Center Groningen, Hanzeplein 1, PO BOX 30001, 9700 RB, Groningen, The Netherlands
| | - Marjolein Heuker
- Department of Medical Microbiology, University Medical Center Groningen, Hanzeplein 1, PO BOX 30001, 9700 RB, Groningen, The Netherlands
| | - Jorrit W A Schoenmakers
- Department of Medical Microbiology, University Medical Center Groningen, Hanzeplein 1, PO BOX 30001, 9700 RB, Groningen, The Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - James O McNamara
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Nuclease Probe Technologies, Inc., Lowell, MA, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, Hanzeplein 1, PO BOX 30001, 9700 RB, Groningen, The Netherlands.
| | - Marleen van Oosten
- Department of Medical Microbiology, University Medical Center Groningen, Hanzeplein 1, PO BOX 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
14
|
Complete and Circularized Genome Assemblies of the Kroppenstedtia eburnea Genus Type Strain and the Kroppenstedtia pulmonis Species Type Strain with MiSeq and MinION Sequence Data. Microbiol Resour Announc 2020; 9:9/44/e00650-20. [PMID: 33122418 PMCID: PMC7595940 DOI: 10.1128/mra.00650-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kroppenstedtia eburnea DSM 45196T and Kroppenstedtia pulmonis W9323T are aerobic, Gram-positive, filamentous, chemoorganotrophic thermoactinomycetes. Here, we report on the complete and circular genome assemblies generated using Illumina MiSeq and Oxford Nanopore Technologies MinION reads. Putative gene clusters predicted to be involved in the production of secondary metabolites were also identified.
Collapse
|
15
|
Soh KY, Loh JMS, Hall C, Proft T. Functional Analysis of Two Novel Streptococcus iniae Virulence Factors Using a Zebrafish Infection Model. Microorganisms 2020; 8:E1361. [PMID: 32899555 PMCID: PMC7564053 DOI: 10.3390/microorganisms8091361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Streptococcus iniae is a major fish pathogen that contributes to large annual losses in the aquaculture industry, exceeding US$100 million. It is also reported to cause opportunistic infections in humans. We have recently identified two novel S. iniae virulence factors, an extracellular nuclease (SpnAi) and a secreted nucleotidase (S5nAi), and verified their predicted enzymatic activities using recombinant proteins. Here, we report the generation of green fluorescent S. iniae spnAi and s5nAi deletion mutants and their evaluation in a transgenic zebrafish infection model. Our results show nuclease and nucleotidase activities in S. iniae could be attributed to SpnAi and S5nAi, respectively. Consistent with this, larvae infected with the deletion mutants demonstrated enhanced survival and bacterial clearance, compared to those infected with wild-type (WT) S. iniae. Deletion of spnAi and s5nAi resulted in sustained recruitment of neutrophils and macrophages, respectively, to the site of infection. We also show that recombinant SpnAi is able to degrade neutrophil extracellular traps (NETs) isolated from zebrafish kidney tissue. Our results suggest that both enzymes play an important role in S. iniae immune evasion and might present potential targets for the development of therapeutic agents or vaccines.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Jacelyn Mei San Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher Hall
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
16
|
Forson AM, van der Mei HC, Sjollema J. Impact of solid surface hydrophobicity and micrococcal nuclease production on Staphylococcus aureus Newman biofilms. Sci Rep 2020; 10:12093. [PMID: 32694559 PMCID: PMC7374737 DOI: 10.1038/s41598-020-69084-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is commonly associated with biofilm-related infections and contributes to the large financial loss that accompany nosocomial infections. The micrococcal nuclease Nuc1 enzyme limits biofilm formation via cleavage of eDNA, a structural component of the biofilm matrix. Solid surface hydrophobicity influences bacterial adhesion forces and may as well influence eDNA production. Therefore, it is hypothesized that the impact of Nuc1 activity is dependent on surface characteristics of solid surfaces. For this reason, this study investigated the influence of solid surface hydrophobicity on S. aureus Newman biofilms where Nuc1 is constitutively produced. To this end, biofilms of both a wild-type and a nuc1 knockout mutant strain, grown on glass, salinized glass and Pluronic F-127-coated silanized glass were analysed. Results indicated that biofilms can grow in the presence of Nuc1 activity. Also, Nuc1 and solid surface hydrophobicity significantly affected the biofilm 3D-architecture. In particular, biofilm densities of the wild-type strain on hydrophilic surfaces appeared higher than of the mutant nuc1 knockout strain. Since virulence is related to bacterial cell densities, this suggests that the virulence of S. aureus Newman biofilms is increased by its nuclease production in particular on a hydrophilic surface.
Collapse
Affiliation(s)
- Abigail M Forson
- University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
17
|
Abdeen EE, Mousa WS, Abdel Salam SY, Al-Maary KS, Mubarak AS, Moussa IM, Hemeg HA, Almuzaini AM, Alajaji AI, Alsubki RA, Elbehiry A. Antibiogram and phylogenetic diversity of enterotoxigenic Staphylococcus aureus strains from milk products and public health implications. Saudi J Biol Sci 2020; 27:1968-1974. [PMID: 32714020 PMCID: PMC7376128 DOI: 10.1016/j.sjbs.2020.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 11/26/2022] Open
Abstract
Food poisoning caused by Staphylococcus aureus (S. aureus) toxins is considered one of the foremost public health threat that usually occurs through the ingestion of raw milk contaminated with staphylococcal enterotoxins. The current study spotlights on the prevalence, antibiogram and genetic diversity of S. aureus enterotoxin genes. One hundred and fifty of raw milk (90) and ice cream (60) samples were randomly collected from local markets from Sadat city, Egypt. S. aureus was recovered from 44% of raw milk and 20% of ice cream samples. The identification for the obtained S. aureus isolates was confirmed through targeting the nuc gene. Antibiogram pattern of 32 S. aureus isolates showed high resistance to Cefoxitin, Sulpha/Trimethoprim, Tetracycline, Norfloxacin, Penicillin and Cephradine. However, high susceptibility to Gentamycin and Vancomycin were observed. Multiplex PCR was a competent practise for the recognition of Staphylococcus enterotoxin (SE) genes (SEA, SEB and SED). The phylogenetic analysis of the SED gene of enterotoxigenic S. aureus strains showed identical similarity with 100% to each other and high similarity with other international isolates in GenBank from different localities and sources. The frequency of enterotoxigenic S. aureus strains in milk products could have serious hazardous effects on humans. These results suggested possible strains transmission between different geographical areas through the food and milk product trades.
Collapse
Affiliation(s)
- Eman E Abdeen
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Walid S Mousa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Sarah Y Abdel Salam
- Veterinarian at Veterinary Administrator in Khanka, Division of Public Health, Qalyubia Governorate, Egypt
| | - Khalid S Al-Maary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ayman S Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ihab M Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.,Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Hassan A Hemeg
- Department of Medical Technology/Microbiology, College of Applied Medical Science, Taibah University, Madinah, Saudi Arabia
| | - Abdulaziz M Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed I Alajaji
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Roua Abdullah Alsubki
- Department of Clinical Laboratory Science, Chair of Medical and Molecular Genetics Research, College of Applied Medical Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ayman Elbehiry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt.,Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukairiyah, Saudi Arabia
| |
Collapse
|
18
|
Canning B, Mohamed I, Wickramasinghe N, Swindells J, O'Shea MK. Thermonuclease test accuracy is preserved in methicillin-resistant Staphylococcus aureus isolates. J Med Microbiol 2020; 69:548-551. [PMID: 32101159 PMCID: PMC7440677 DOI: 10.1099/jmm.0.001166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction The nuc gene encodes a thermonuclease which is present in Staphylococcus aureus but not in coagulase-negative staphylococci (CoNS) and is the target of the rapid phenotypic thermonuclease test. The effect of nuc gene variation in methicillin-resistant S. aureus (MRSA) on the performance of PCR testing has been noted, although there are no reports about the effect of MRSA on the activity of the thermonuclease enzyme. Aim Our goals were to examine the sensitivity and specificity of the thermonuclease test used to distinguish S. aureus from CoNS cultured from blood. In addition, we aimed to assess differences in the sensitivity, specificity and accuracy of the thermonuclease test between methicillin-sensitive S. aureus (MSSA) and MRSA isolates. Methodology We performed a retrospective analysis of 1404 isolates. Each isolate from a positive blood culture was identified as a Gram-positive coccus by microscopy then analysed with the thermonuclease test (Southern Group Laboratory) prior to confirmatory identification using VITEK microbial identification platforms (bioMérieux) and cefoxitin disc diffusion testing. Results Of 1331 samples included in the final analysis, 189 were thermonuclease-positive, of which 176 were identified as S. aureus. Of the 1142 thermonuclease-negative samples, 13 were finally identified as S. aureus, giving a sensitivity of 93.1 % (95 % confidence interval [CI] 88.5–96.3) and specificity of 98.9 % (95 % CI 98.1–99.4). Of the nine proven MRSA samples, eight were thermonuclease-positive, giving a sensitivity of 88.9 % (95 % CI 51.8–99.7). Thermonuclease test accuracy for MSSA and MRSA isolates was 98.1 % (95 % CI 97.2–98.8) versus 98.8 % (95 % CI 98.0–99.3), respectively. Conclusions In the era of increasing use of molecular-based microbiology assays, the thermonuclease test remains a simple, inexpensive and robust test for the presumptive identification of S. aureus cultured from blood, irrespective of methicillin sensitivity.
Collapse
Affiliation(s)
- Benjamin Canning
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Iskandar Mohamed
- Department of Gastroenterology, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Nimal Wickramasinghe
- Department of Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jonathan Swindells
- Department of Microbiology, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Matthew K O'Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Bacterial non-specific nucleases of the phospholipase D superfamily and their biotechnological potential. Appl Microbiol Biotechnol 2020; 104:3293-3304. [PMID: 32086594 DOI: 10.1007/s00253-020-10459-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Bacterial non-specific nucleases are ubiquitously distributed and involved in numerous intra- and extracellular processes. Although all nucleases share the basic chemistry for the hydrolysis of phosphodiester bonds in nucleic acid molecules, the catalysis comprises diverse modes of action, which offers great potential for versatile biotechnological applications. A major criterium for their differentiation is substrate specificity. Specific endonucleases are widely used as restriction enzymes in molecular biology approaches, whereas the main applications of non-specific nucleases (NSNs) are the removal of nucleic acids from crude extracts in industrial downstream processing and the prevention of cell clumping in microfabricated channels. In nature, the predominant role of NSNs is the acquisition of nutrient sources such as nucleotides and phosphates. The number of extensively characterized NSNs and available structures is limited. Moreover, their applicability is mostly challenged by the presence of metal chelators that impede the hydrolysis of nucleic acids in a metal ion-dependent manner. However, a few metal ion-independent NSNs that tolerate the presence of metal chelators have been characterized in recent years with none being commercially available to date. The classification and biotechnological potential of bacterial NSNs with a special focus on metal ion-independent nucleases are presented and discussed.Key Points • Bacterial phospholipases (PLD-family) exhibit nucleolytic activity. • Bacterial nucleases of the PLD-family are metal ion-independent. • NSNs can be used in downstream processing approaches.
Collapse
|
20
|
Sultan AR, Hoppenbrouwers T, Lemmens-den Toom NA, Snijders SV, van Neck JW, Verbon A, de Maat MPM, van Wamel WJB. During the Early Stages of Staphylococcus aureus Biofilm Formation, Induced Neutrophil Extracellular Traps Are Degraded by Autologous Thermonuclease. Infect Immun 2019; 87:e00605-19. [PMID: 31527127 PMCID: PMC6867843 DOI: 10.1128/iai.00605-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus extracellular DNA (eDNA) plays a crucial role in the structural stability of biofilms during bacterial colonization; on the contrary, host immune responses can be induced by bacterial eDNA. Previously, we observed production of S. aureus thermonuclease during the early stages of biofilm formation in a mammalian cell culture medium. Using a fluorescence resonance energy transfer (FRET)-based assay, we detected thermonuclease activity of S. aureus biofilms grown in Iscove's modified Dulbecco's medium (IMDM) earlier than that of widely studied biofilms grown in tryptic soy broth (TSB). The thermonuclease found was Nuc1, confirmed by mass spectrometry and competitive Luminex assay. These results indicate that biofilm development in IMDM may not rely on eDNA for structural stability. A bacterial viability assay in combination with wheat germ agglutinin (WGA) staining confirmed the accumulation of dead cells and eDNA in biofilms grown in TSB. However, in biofilms grown in IMDM, minimal amounts of eDNA were found; instead, polysaccharide intercellular adhesin (PIA) was detected. To investigate if this early production of thermonuclease plays a role in immune modulation by biofilm, we studied the effect of thermonuclease on human neutrophil extracellular trap (NET) formation using a nuc knockout and complemented strain. We confirmed that thermonuclease produced by early-stage biofilms grown in IMDM degraded biofilm-induced NETs. Additionally, neither the presence of biofilms nor thermonuclease stimulated an increase in reactive oxygen species (ROS) production by neutrophils. Our findings indicated that S. aureus, during the early stages of biofilm formation, actively evades the host immune responses by producing thermonuclease.
Collapse
Affiliation(s)
- Andi R Sultan
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Tamara Hoppenbrouwers
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | | - Susan V Snijders
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Johan W van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Downregulated Expression of Virulence Factors Induced by Benzyl Isothiocyanate in Staphylococcus Aureus: A Transcriptomic Analysis. Int J Mol Sci 2019; 20:ijms20215441. [PMID: 31683671 PMCID: PMC6862589 DOI: 10.3390/ijms20215441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a common foodborne pathogen that leads to various diseases; therefore, we urgently need to identify different means to control this harmful pathogen in food. In this study, we monitored the transcriptional changes of S. aureus by RNA-seq analysis to better understand the effect of benzyl isothiocyanate (BITC) on the virulence inhibition of S. aureus and determined the bacteriostatic effect of BITC at subinhibitory concentrations. Our results revealed that, compared with the control group (SAC), the BITC-treated experimental group (SAQ_BITC) had 708 differentially expressed genes (DEGs), of which 333 genes were downregulated and the capsular polysaccharide (cp) was significantly downregulated. Furthermore, we screened five of the most virulent factors of S. aureus, including the capsular polysaccharide biosynthesis protein (cp5D), capsular polysaccharide synthesis enzyme (cp8F), thermonuclease (nuc), clumping factor (clf), and protein A (spa), and verified the accuracy of these significantly downregulated genes by qRT-PCR. At the same time, we used light microscopy, scanning electron microscopy (SEM) and inverted fluorescence microscopy (IFM) to observe changes in biofilm associated with the cp5D and cp8F. Therefore, these results will help to further study the basis of BITC for the antibacterial action of foodborne pathogenic bacteria.
Collapse
|
22
|
Shehata MMK, Radwan SM, Ali SAM. Effects of gamma-irradiation on antibiotic resistance and diagnostic molecular markers of methicillin-resistant Staphylococcus aureus in Egyptian cancer patients. Int J Radiat Biol 2019; 95:1728-1743. [PMID: 31502912 DOI: 10.1080/09553002.2019.1664785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: This in-vitro study aimed to assess in 120 [40 community-acquired (CA-MRSA) & 80 hospital-acquired (HA-MRSA)] isolates from cancer patients whether the transmissible staphylococcal cassette chromosome mec (SCCmec) typing, and the Panton-Valentine leukocidin (PVL) virulence genes detection could be employed as tools for molecular diagnostic purposes to distinguish both methicillin-resistant Staphylococcus aureus (MRSA) categories in radiotherapy treated cancer patients.Materials and methods: SCCmec typing was determined by the combination of the type of the cassette chromosome recombinase genes (ccr) gene complex and the class of the methicillin resistance (mec) gene complex. Besides, a rapid slide latex agglutination test (LAT) and antibiotic resistance spectrum determination before and after irradiation were performed.Results: In the strict sense, with the effect of irradiation; the presence of SCCmec subtypes IVa (22.5% vs. 10.0%), b (47.5% vs. 25.0%), & d (7.5 vs. 2.5%) or type V (15.0% vs. 7.5%) genetic elements and PVL genes (p < .001) were not proved as a signature for CA-MRSA. While, the larger SCCmec types II, and III elements were not detected in 14, and 19 from the 38, and 36 typed HA-MRSA isolates (p < .001), respectively. Remarkable effects on class A & class B mec gene complex and type2, type 3 & type 5 ccr gene complex and an increase in agglutination reaction strength in response to gamma irradiation external stimulus were observed.Conclusions: Different heterogeneous genetic composition with upregulation mecA gene expression was detected after irradiation in the HA- MRSA studied population. CA-MRSA showed remarkable ability to acquire multi-antibiotic resistance after irradiation and propose a novel paradigm for future chemotherapy against the multi-resistant pathogens whose proliferation especially among immunocompromised cancer patients is on the increase.
Collapse
Affiliation(s)
- Mona M K Shehata
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | - Sahar A M Ali
- Microbiology and Immunology Department, Faculty of Medicine, Menufia University, Al Minufiyah, Egypt
| |
Collapse
|
23
|
Savariraj WR, Ravindran NB, Kannan P, Paramasivam R, Senthilkumar TMA, Kumarasamy P, Rao VA. Prevalence, antimicrobial susceptibility and virulence genes ofStaphylococcus aureusisolated from pork meat in retail outlets in India. J Food Saf 2018. [DOI: 10.1111/jfs.12589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Narendra Babu Ravindran
- Department of Livestock Products Technology (Meat Science)Madras Veterinary College Chennai India
| | - Porteen Kannan
- Department of Veterinary Public Health and EpidemiologyMadras Veterinary College, TANUVAS Chennai India
| | - Raja Paramasivam
- Department of Animal BiotechnologyMadras Veterinary College, TANUVAS Chennai India
| | - TMA Senthilkumar
- Department of Animal BiotechnologyMadras Veterinary College, TANUVAS Chennai India
| | - Peria Kumarasamy
- Department of Bioinformatics and ARIS CellMadras Veterinary College, TANUVAS Chennai India
| | - Veluru Appa Rao
- Department of Livestock Products Technology (Meat Science)Madras Veterinary College Chennai India
| |
Collapse
|
24
|
High Occurrence of Staphylococcus aureus Isolated from Fitness Equipment from Selected Gymnasiums. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2018; 2018:4592830. [PMID: 30245728 PMCID: PMC6136567 DOI: 10.1155/2018/4592830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/17/2018] [Accepted: 08/02/2018] [Indexed: 11/18/2022]
Abstract
Introduction Staphylococcus aureus is a leading cause of cutaneous bacterial infection involving community. Methods In this study, a total of 42 swab samples were collected from the surface of various fitness equipment such as back machines, exercise mats, dip stations, dumbbells, and treadmills. Identification of the bacterial isolates was conducted using biochemical tests and further analysed molecularly using the PCR method targeting nuc gene (270 bp). The nuc gene encodes for the thermonuclease enzyme, a virulent factor of S. aureus. Results The findings showed 31 out of 42 swab samples (73.81%) were positive with S. aureus. Conclusion This study showed that gymnasium equipment is a potential reservoir for S. aureus and might play an important role in transmitting the pathogen to humans. Objective This study was undertaken to assess the presence of S. aureus on the surface of fitness equipment from selected gymnasiums in Kuching and Kota Samarahan, Sarawak (Malaysia).
Collapse
|
25
|
Fri J, Ndip RN, Njom HA, Clarke AM. First report of methicillin‐resistant
Staphylococcus aureus
in tank cultured dusky kob (
Argyrosomus japonicus
), and evaluation of three phenotypic methods in the detection of MRSA. J Food Saf 2017. [DOI: 10.1111/jfs.12411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Justine Fri
- Microbial pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and MicrobiologyUniversity of Fort HareAlice South Africa
| | - Roland Ndip Ndip
- Department Microbiology and ParasitologyUniversity of BueaBuea Cameroon
| | - Henry Akum Njom
- Microbial pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and MicrobiologyUniversity of Fort HareAlice South Africa
| | - Anna Maria Clarke
- Microbial pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and MicrobiologyUniversity of Fort HareAlice South Africa
| |
Collapse
|
26
|
Detection of Staphylococcus Aureus Among Coagulase Positive Staphylococci from Animal Origin Based on Conventional and Molecular Methods. MACEDONIAN VETERINARY REVIEW 2017. [DOI: 10.1515/macvetrev-2016-0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The present study aimed to detect Staphylococcus aureus (S. aureus) among other coagulase positive staphylococci from animal origin by using conventional methods (biochemical tests and latex agglutination) and a molecular method, based on the nuc gene, as the gold standard and to assess the usefulness of these methods. For this purpose, total of 344 staphylococcal isolates were collected and analysed. A total of 156 isolates suspicious for S. aureus were detected by a conventional biochemical method - 88 from cows, 18 from goats, 7 from pigs, 17 from poultry, 7 from rabbits and 19 from dogs. The majority of S. aureus strains gave typical biochemical reactions with the exception of 30 (19.2%) and 25 (16%) that were VP negative and weak positive in fermenting mannitol, respectively. Twelve strains were found to be non-haemolytic (7.7%) and four strains did not ferment trehalose (2.6%). Other staphylococci were identified as S. pseudintermedius (n = 103), S. hyicus (n = 23) and the rest were coagulase-negative staphylococci. Latex agglutination test resulted in rapid positive reactions with S. aureus with exception of 5 strains (3.2%) from cow mastitis milk. Positive agglutination reactions were also established with S. pseudintermedius, and S. hyicus. PCR confirmed all strains that were preliminary identified as S. aureus by amplification of 270 bp fragment of nuc gene specific for this species. The atypical reactions in certain strains established in this study have shown that the precise detection of S. aureus from animal origin should be done by combination of conventional and molecular methods.
Collapse
|
27
|
Zhang X, Jia R, Zhou J, Wang M, Yin Z, Cheng A. Capsid-Targeted Viral Inactivation: A Novel Tactic for Inhibiting Replication in Viral Infections. Viruses 2016; 8:E258. [PMID: 27657114 PMCID: PMC5035972 DOI: 10.3390/v8090258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Capsid-targeted viral inactivation (CTVI), a conceptually powerful new antiviral strategy, is attracting increasing attention from researchers. Specifically, this strategy is based on fusion between the capsid protein of a virus and a crucial effector molecule, such as a nuclease (e.g., staphylococcal nuclease, Barrase, RNase HI), lipase, protease, or single-chain antibody (scAb). In general, capsid proteins have a major role in viral integration and assembly, and the effector molecule used in CTVI functions to degrade viral DNA/RNA or interfere with proper folding of viral key proteins, thereby affecting the infectivity of progeny viruses. Interestingly, such a capsid-enzyme fusion protein is incorporated into virions during packaging. CTVI is more efficient compared to other antiviral methods, and this approach is promising for antiviral prophylaxis and therapy. This review summarizes the mechanism and utility of CTVI and provides some successful applications of this strategy, with the ultimate goal of widely implementing CTVI in antiviral research.
Collapse
Affiliation(s)
- Xingcui Zhang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Jiakun Zhou
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
28
|
Abstract
The definition of the heterogeneous group of coagulase-negative staphylococci (CoNS) is still based on diagnostic procedures that fulfill the clinical need to differentiate between Staphylococcus aureus and those staphylococci classified historically as being less or nonpathogenic. Due to patient- and procedure-related changes, CoNS now represent one of the major nosocomial pathogens, with S. epidermidis and S. haemolyticus being the most significant species. They account substantially for foreign body-related infections and infections in preterm newborns. While S. saprophyticus has been associated with acute urethritis, S. lugdunensis has a unique status, in some aspects resembling S. aureus in causing infectious endocarditis. In addition to CoNS found as food-associated saprophytes, many other CoNS species colonize the skin and mucous membranes of humans and animals and are less frequently involved in clinically manifested infections. This blurred gradation in terms of pathogenicity is reflected by species- and strain-specific virulence factors and the development of different host-defending strategies. Clearly, CoNS possess fewer virulence properties than S. aureus, with a respectively different disease spectrum. In this regard, host susceptibility is much more important. Therapeutically, CoNS are challenging due to the large proportion of methicillin-resistant strains and increasing numbers of isolates with less susceptibility to glycopeptides.
Collapse
Affiliation(s)
- Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Christine Heilmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
29
|
Characterization of a novel thermostable nuclease homolog (NucM) in a highly divergent Staphylococcus aureus clade. J Clin Microbiol 2014; 52:4036-8. [PMID: 25143575 DOI: 10.1128/jcm.02327-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A thermostable nuclease homologue (NucM) in an animal-associated divergent clade of Staphylococcus aureus in sub-Saharan Africa has a highly divergent nucleotide sequence compared to those of the classical nuc1 and nuc2 genes of S. aureus. Its deduced amino acid sequences, tertiary structures, and nuclease activities, however, are similar.
Collapse
|
30
|
Ali R, Al-Achkar K, Al-Mariri A, Safi M. Role of Polymerase Chain Reaction (PCR) in the detection of antibiotic-resistant Staphylococcus aureus. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2014. [DOI: 10.1016/j.ejmhg.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Kiedrowski MR, Crosby HA, Hernandez FJ, Malone CL, McNamara JO, Horswill AR. Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PLoS One 2014; 9:e95574. [PMID: 24752186 PMCID: PMC3994088 DOI: 10.1371/journal.pone.0095574] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/28/2014] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is a prominent bacterial pathogen that causes a diverse range of acute and chronic infections. Recently, it has been demonstrated that the secreted nuclease (Nuc) enzyme is a virulence factor in multiple models of infection, and in vivo expression of nuc has facilitated the development of an infection imaging approach based on Nuc-activatable probes. Interestingly, S. aureus strains encode a second nuclease (Nuc2) that has received limited attention. With the growing interest in bacterial nucleases, we sought to characterize Nuc2 in more detail through localization, expression, and biochemical studies. Fluorescence microscopy and alkaline phosphatase localization approaches using Nuc2-GFP and Nuc2-PhoA fusions, respectively, demonstrated that Nuc2 is membrane bound with the C-terminus facing the extracellular environment, indicating it is a signal-anchored Type II membrane protein. Nuc2 enzyme activity was detectable on the S. aureus cell surface using a fluorescence resonance energy transfer (FRET) assay, and in time courses, both nuc2 transcription and enzyme activity peaked in early logarithmic growth and declined in stationary phase. Using a mouse model of S. aureus pyomyositis, Nuc2 activity was detected with activatable probes in vivo in nuc mutant strains, demonstrating that Nuc2 is produced during infections. To assess Nuc2 biochemical properties, the protein was purified and found to cleave both single- and double-stranded DNA, and it exhibited thermostability and calcium dependence, paralleling the properties of Nuc. Purified Nuc2 prevented biofilm formation in vitro and modestly decreased biomass in dispersal experiments. Altogether, our findings confirm that S. aureus encodes a second, surface-attached and functional DNase that is expressed during infections and displays similar biochemical properties to the secreted Nuc enzyme.
Collapse
Affiliation(s)
- Megan R. Kiedrowski
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Heidi A. Crosby
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Frank J. Hernandez
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Cheryl L. Malone
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - James O. McNamara
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexander R. Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
32
|
Li ZH, Tang ZX, Fang XJ, Zhang ZL, Shi LE. Bioinformatics analysis of a non-specific nuclease from Yersinia enterocolitica subsp. palearctica. Comput Biol Chem 2013; 47:207-14. [PMID: 24144888 DOI: 10.1016/j.compbiolchem.2013.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022]
Abstract
In this paper, the physical and chemical characteristics, biological structure and function of a non-specific nuclease from Yersinia enterocolitica subsp. palearctica (Y. NSN) found in our group were studied using multiple bioinformatics approaches. The results showed that Y. NSN had 283 amino acids, a weight of 30,692.5 ku and a certain hydrophilic property. Y. NSN had a signal peptide, no transmembrane domains and disulphide bonds. Cleavage site in Y. NSN was between pos. 23 and 24. The prediction result of the secondary structure showed Y. NSN was a coil structure-based protein. The ratio of α-helix, β-folded and random coil were 18.73%, 16.96% and 64.31%, respectively. Active sites were pos. 124, 125, 127, 157, 165 and 169. Mg(2+) binding site was pos. 157. Substrate binding sites were pos. 124, 125 and 169. The analysis of multisequencing alignment and phylogenetic tree indicated that Y. NSN shared high similarity with the nuclease from Y. enterocolitica subsp. enterocolitica 8081. The enzyme activity results showed that Y. NSN was a nuclease with good thermostability.
Collapse
Affiliation(s)
- Zhen-Hua Li
- College of Life and Environmental Sciences, Hangzhou Normal University, 310016 Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|