1
|
Sonam W, Liu Y, Ren L. Differentiation and Interconnection of the Bacterial Community Associated with Silene nigrescens Along the Soil-To-Plant Continuum in the Sub-Nival Belt of the Qiangyong Glacier. PLANTS (BASEL, SWITZERLAND) 2025; 14:1190. [PMID: 40284077 PMCID: PMC12030249 DOI: 10.3390/plants14081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Plant microbiomes provide significant fitness advantages to their plant hosts, especially in the sub-nival belt. Studies to date have primarily focused on belowground communities in this region. Here, we utilized high-throughput DNA sequencing to quantify bacterial communities in the rhizosphere soil as well as in the root and leaf endosphere compartments of Silene nigrescens to uncover the differentiation and interconnections of these bacterial communities along the soil-to-plant continuum. Our findings reveal that the bacterial communities exhibit notable variation across different plant compartment niches: the rhizosphere soil, root endosphere, and leaf endosphere. There was a progressive decline in diversity, network complexity, network modularity, and niche breadth from the rhizosphere soil to the root endosphere, and further to the leaf endosphere. Conversely, both the host plant selection effect and the stability of these communities showed an increasing trend. Total nitrogen and total potassium emerged as crucial factors accounting for the observed differences in diversity and composition, respectively. Additionally, 3.6% of the total amplicon sequence variants (ASVs) were shared across the rhizosphere soil, root endosphere, and leaf endosphere. Source-tracking analysis further revealed bacterial community migration among these compartments. The genera Pseudomonas, IMCC26256, Mycobacterium, Phyllobacterium, and Sphingomonas constituted the core of the bacterial microbiome. These taxa are shared across all three compartment niches and function as key connector species. Notably, Pseudomonas stands out as the predominant taxon among these bacteria, with nitrogen being the most significant factor influencing its relative abundance. These findings deepen our understanding of the assembly principles and ecological dynamics of the plant microbiome in the sub-nival belt, offering an integrated framework for its study.
Collapse
Affiliation(s)
- Wangchen Sonam
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Luming Ren
- Nanning Garden Expo Park Management Center, Nanning Institute of Tropical Botany, Nanning 530299, China;
| |
Collapse
|
2
|
Liu Y, Han Q, Zhang J, Zhang X, Chen Y, Li M, Hao Y, Hong Y, Tang R, Ferguson BJ, Gresshoff PM, Kuai J, Zhou G, Li X, Ji H. Soybean nodulation shapes the rhizosphere microbiome to increase rapeseed yield. J Adv Res 2024:S2090-1232(24)00553-8. [PMID: 39674502 DOI: 10.1016/j.jare.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
INTRODUCTION Crop rotation, a crucial agricultural practice that enhances soil health and crop productivity, is widely used in agriculture worldwide. Soybeans play a crucial role in crop rotation owing to their nitrogen-fixing ability, which is facilitated by symbiotic bacteria in their root systems. The soybean-rapeseed rotation is an effective agricultural practice in the Yangtze River Basin of China. However, the mechanism underlying the effectiveness of this system remains unknown. OBJECTIVES The aim of this study was to decipher the mechanisms by which previous soybean cultivation enhances the growth of subsequent rapeseed. METHODS Soybeans with three distinct nodulation genotypes were rotated with rapeseed, and the impact of previous soybean cultivation on subsequent rapeseed growth was evaluated by examining the soybean root secretome and soil rhizosphere microbiome. RESULTS Soybean-rapeseed rotation significantly enhanced subsequent rapeseed growth and yield, especially when supernodulating soybean plants were used, which released the most nitrogen into the soil rhizosphere. The differences in soybean nodulation capability led to variations in root exudation, which in turn influenced the bacterial communities in the rhizosphere. Notably, the supernodulating soybean plants promoted Sphingomonadaceae family of bacteria growth by secreting oleic acid and cis-4-hydroxy-D-proline, and further attracted them through cis-4-hydroxy-D-proline. Furthermore, the exogenous application of Sphingomonadaceae bacteria, either alone or in combination with rhizobia, significantly enhanced the growth of rapeseed. CONCLUSION Our data definitively demonstrated the crucial role of previous soybean cultivation in enhancing the yield of rapeseed, with the assistance of Sphingomonadaceae bacteria and rhizobia. This study elucidates the role of soybean nodulation in rhizosphere bacterial dynamics, highlighting its importance in sustainable agricultural practices.
Collapse
Affiliation(s)
- Yu Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Han
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jiaming Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehai Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingbo Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongfang Hao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruizhen Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sustainability, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agricultural and Food Sustainability, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jie Kuai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongtao Ji
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
El-Saadony MT, Saad AM, Mohammed DM, Fahmy MA, Elesawi IE, Ahmed AE, Algopishi UB, Elrys AS, Desoky ESM, Mosa WF, Abd El-Mageed TA, Alhashmi FI, Mathew BT, AbuQamar SF, El-Tarabily KA. Drought-tolerant plant growth-promoting rhizobacteria alleviate drought stress and enhance soil health for sustainable agriculture: A comprehensive review. PLANT STRESS 2024; 14:100632. [DOI: 10.1016/j.stress.2024.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Guo R, Li B, Zhao Y, Tang C, Klosterman SJ, Wang Y. Rhizobacterial Bacillus enrichment in soil enhances smoke tree resistance to Verticillium wilt. PLANT, CELL & ENVIRONMENT 2024; 47:4086-4100. [PMID: 38894696 DOI: 10.1111/pce.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Verticillium wilt, caused by the soilborne fungus Verticillium dahliae, poses a serious threat to the health of more than 200 plant species worldwide. Although plant rhizosphere-associated microbiota can influence plant resistance to V. dahliae, empirical evidence underlying Verticillium wilt resistance of perennial trees is scarce. In this study, we systemically investigated the effect of the soil microbiota on the resistance of smoke trees (Cotinus coggygria) to Verticillium wilt using field, greenhouse and laboratory experiments. Comparative analysis of the soil microbiota in the two stands of smoke trees suggested that Bacillus represented the most abundant and key microbial genus related to potential disease suppression. Smoke tree seedlings were inoculated with isolated Bacillus strains, which exhibited disease suppressiveness and plant growth-promoting properties. Furthermore, repletion of Bacillus agents to disease conducive soil significantly resulted in reduced incidence of smoke tree wilt and increased resistance of the soil microbiota to V. dahliae. Finally, we explored a more effective combination of Bacillus agents with the fungicide propiconazole to combat Verticillium wilt. The results establish a foundation for the development of an effective control for this disease. Overall, this work provides a direct link between Bacillus enrichment and disease resistance of smoke trees, facilitating the development of green control strategies and measurements of soil-borne diseases.
Collapse
Affiliation(s)
- Ruifeng Guo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Bimeng Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yize Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Tang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, California, USA
| | - Yonglin Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Yao SH, Zhou C, Li SJ, Li YH, Shen CW, Tao Y, Li X. Microbial diversity across tea varieties and ecological niches: correlating tea polyphenol contents with stress resistance. Front Microbiol 2024; 15:1439630. [PMID: 39252833 PMCID: PMC11381266 DOI: 10.3389/fmicb.2024.1439630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Microorganisms exhibit intricate interconnections with tea plants; however, despite the well-established role of microorganisms in crop growth and development, research on microbes within the tea plant remains insufficient, particularly regarding endophytic microorganisms. Methods In this study, we collected samples of leaves and rhizosphere soils from 'Zhuyeqi', 'Baojing Huangjincha#1', 'Baiye#1', and 'Jinxuan' varieties planted. Results Our analyses revealed significant variations in tea polyphenol contents among tea varieties, particularly with the 'Zhuyeqi' variety exhibiting higher levels of tea polyphenols (>20% contents). Microbiome studies have revealed that endophytic microbial community in tea plants exhibited higher host specificity compared to rhizospheric microbial community. Analyses of across-ecological niches of the microbial community associated with tea plants revealed that soil bacteria serve as a significant reservoir for endophytic bacteria in tea plants, Bacillus may play a crucial role in shaping the bacterial community across-ecological niche within the tea plants with higher tea polyphenol levels. In the aforementioned analyses, the microbial community of 'Zhuyeqi' exhibited a higher degree of host specificity for leaf endophytic microorganisms, the topological structure of the co-occurrence network is also more intricate, harboring a greater number of potential core microorganisms within its nodes. A closer examination was conducted on the microbial community of 'Zhuyeqi', further analyses of its endophytic bacteria indicated that its endophytic microbial community harbored a greater abundance of biomarkers, particularly among bacteria, and the enriched Methylobacterium and Sphingomonas in 'Zhuyeqi' may play distinct roles in disease resistance and drought resilience in tea plants. Conclusion In summary, this study has shed light on the intricate relationships of tea plant varieties with their associated microbial communities, unveiling the importance of microorganisms and tea varieties with higher tea polyphenols, and offering valuable insights to the study of microorganisms and tea plants.
Collapse
Affiliation(s)
- Su-Hang Yao
- Hunan Vegetable Research Institute, Changsha, China
- College of Horticulture, Hunan Agriculture University, Changsha, China
| | - Chi Zhou
- Hunan Vegetable Research Institute, Changsha, China
| | - Sai-Jun Li
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha) Hunan Branch, Changsha, China
| | - Yu-Han Li
- Hunan Vegetable Research Institute, Changsha, China
- College of Horticulture, Hunan Agriculture University, Changsha, China
| | - Cheng-Wen Shen
- College of Horticulture, Hunan Agriculture University, Changsha, China
| | - Yu Tao
- Hunan Vegetable Research Institute, Changsha, China
| | - Xin Li
- Hunan Vegetable Research Institute, Changsha, China
| |
Collapse
|
6
|
Santoyo G, Orozco-Mosqueda MDC, Afridi MS, Mitra D, Valencia-Cantero E, Macías-Rodríguez L. Trichoderma and Bacillus multifunctional allies for plant growth and health in saline soils: recent advances and future challenges. Front Microbiol 2024; 15:1423980. [PMID: 39176277 PMCID: PMC11338895 DOI: 10.3389/fmicb.2024.1423980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Saline soils pose significant challenges to global agricultural productivity, hindering crop growth and efficiency. Despite various mitigation strategies, the issue persists, underscoring the need for innovative and sustainable solutions. One promising approach involves leveraging microorganisms and their plant interactions to reclaim saline soils and bolster crop yields. This review highlights pioneering and recent advancements in utilizing multi-traits Trichoderma and Bacillus species as potent promoters of plant growth and health. It examines the multifaceted impacts of saline stress on plants and microbes, elucidating their physiological and molecular responses. Additionally, it delves into the role of ACC deaminase in mitigating plant ethylene levels by Trichoderma and Bacillus species. Although there are several studies on Trichoderma-Bacillus, much remains to be understood about their synergistic relationships and their potential as auxiliaries in the phytoremediation of saline soils, which is why this work addresses these challenges.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | | | | | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| |
Collapse
|
7
|
Peter O, Imran M, Shaffique S, Kang SM, Rolly NK, Felistus C, Bilal S, Dan-Dan Z, Injamum-Ul-Hoque M, Kwon EH, Mong MN, Gam HJ, Kim WC, Lee IJ. Combined application of melatonin and Bacillus sp. strain IPR-4 ameliorates drought stress tolerance via hormonal, antioxidant, and physiomolecular signaling in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1274964. [PMID: 38974978 PMCID: PMC11224487 DOI: 10.3389/fpls.2024.1274964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
The role of melatonin and plant growth-promoting rhizobacteria (PGPR) in enhancing abiotic stress tolerance has been widely investigated. However, the mechanism underlying the interaction between melatonin and PGPR in drought stress tolerance is poorly understood. In this study, we investigated the role of Bacillus sp. strain IPR-4 co-inoculated with melatonin (IPR-4/MET) to ameliorate drought stress response in soybean. Initially, 16 random isolates were selected from a previously pooled collection of isolates from soil at plant physiology lab, and were screesn for plant growth promoting (PGP) traits and their survival rate polyethylene glycol (PEG6000) (5%, 10%, and 15%). Among these isolate Bacillus sp. strain IPR-4 were selected on base of its significant PGP traits such as the survival rate gradient concentrations of PEG6000 (5%, 10%, and 15%) compared to other isolates, and produced high levels of indole-3-acetic acid and organic acids, coupled with exopolysaccharide, siderophores, and phosphate solubilization under drought stress. The Bacillus sp. strain IPR-4 were then validated using 16S rRNA sequencing. To further investigate the growth-promoting ability of the Bacillus sp. IPR-4 and its potential interaction with MET, the bacterial inoculum (40 mL of 4.5 × 10-8 cells/mL) was applied alone or in combination with MET to soybean plants for 5 days. Then, pre-inoculated soybean plants were subjected to drought stress conditions for 9 days by withholding water under greenhouse conditions. Furthermore, when IPR-4/MET was applied to plants subjected to drought stress, a significant increase in plant height (33.3%) and biomass (fresh weight) was observed. Similarly, total chlorophyll content increased by 37.1%, whereas the activity of peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, and glutathione reductase increased by 38.4%, 34.14%, 76.8%, 69.8%, and 31.6%, respectively. Moreover, the hydrogen peroxide content and malondialdehyde decreased by 37.3% and 30% in drought-stressed plants treated with IPR-4 and melatonin. Regarding the 2,2-diphenyl-1-picrylhydrazyl activity and total phenolic content, shows 38% and 49.6% increase, respectively. Likewise, Bacillus-melatonin-treated plants enhanced the uptake of magnesium, calcium, and potassium by 31.2%, 50.7%, and 30.5%, respectively. Under the same conditions, the salicylic acid content increased by 29.1%, whereas a decreasing abscisic acid content (25.5%) was observed. The expression levels of GmNCED3, GmDREB2, and GmbZIP1 were recorded as the lowest. However, Bacillus-melatonin-treated plants recorded the highest expression levels (upregulated) of GmCYP707A1 and GmCYP707A2, GmPAL2.1, and GmERD1 in response to drought stress. In a nutshell, these data confirm that Bacillus sp. IPR-4 and melatonin co-inoculation has the highest plant growth-promoting efficiency under both normal and drought stress conditions. Bacillus sp. IPR-4/melatonin is therefore proposed as an effective plant growth regulator that optimizes nutrient uptake, modulates redox homeostasis, and enhances drought tolerance in soybean plants.
Collapse
Affiliation(s)
- Odongkara Peter
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- Biosafety Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Nkulu Kabange Rolly
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Center for International Development, Kyungpook National University, Daegu, Republic of Korea
| | - Chebitok Felistus
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Zhao Dan-Dan
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration, Wonju, Republic of Korea
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mohammad Nazree Mong
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Chan- Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Khan Z, Jan R, Asif S, Farooq M, Kim KM. Exogenous GABA Enhances Copper Stress Resilience in Rice Plants via Antioxidant Defense Mechanisms, Gene Regulation, Mineral Uptake, and Copper Homeostasis. Antioxidants (Basel) 2024; 13:700. [PMID: 38929139 PMCID: PMC11200589 DOI: 10.3390/antiox13060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of gamma-aminobutyric acid (GABA) in plants has been highlighted due to its critical role in mitigating metal toxicity, specifically countering the inhibitory effects of copper stress on rice plants. This study involved pre-treating rice plants with 1 mM GABA for one week, followed by exposure to varying concentrations of copper at 50 μM, 100 μM, and 200 μM. Under copper stress, particularly at 100 μM and 200 μM, plant height, biomass, chlorophyll content, relative water content, mineral content, and antioxidant activity decreased significantly compared to control conditions. However, GABA treatment significantly alleviated the adverse effects of copper stress. It increased plant height by 13%, 18%, and 32%; plant biomass by 28%, 52%, and 60%; chlorophyll content by 12%, 30%, and 24%; and relative water content by 10%, 24%, and 26% in comparison to the C50, C100, and C200 treatments. Furthermore, GABA treatment effectively reduced electrolyte leakage by 11%, 34%, and 39%, and the concentration of reactive oxygen species, such as malondialdehyde (MDA), by 9%, 22%, and 27%, hydrogen peroxide (H2O2) by 12%, 38%, and 30%, and superoxide anion content by 8%, 33, and 39% in comparison to C50, C100, and C200 treatments. Additionally, GABA supplementation led to elevated levels of glutathione by 69% and 80%, superoxide dismutase by 22% and 125%, ascorbate peroxidase by 12% and 125%, and catalase by 75% and 100% in the C100+G and C200+G groups as compared to the C100 and C200 treatments. Similarly, GABA application upregulated the expression of GABA shunt pathway-related genes, including gamma-aminobutyric transaminase (OsGABA-T) by 38% and 80% and succinic semialdehyde dehydrogenase (OsSSADH) by 60% and 94% in the C100+G and C200+G groups, respectively, as compared to the C100 and C200 treatments. Conversely, the expression of gamma-aminobutyric acid dehydrogenase (OsGAD) was downregulated. GABA application reduced the absorption of Cu2+ by 54% and 47% in C100+G and C200+G groups as compared to C100, and C200 treatments. Moreover, GABA treatment enhanced the uptake of Ca2+ by 26% and 82%, Mg2+ by 12% and 67%, and K+ by 28% and 128% in the C100+G and C200+G groups as compared to C100, and C200 treatments. These findings underscore the pivotal role of GABA-induced enhancements in various physiological and molecular processes, such as plant growth, chlorophyll content, water content, antioxidant capacity, gene regulation, mineral uptake, and copper sequestration, in enhancing plant tolerance to copper stress. Such mechanistic insights offer promising implications for the advancement of safe and sustainable food production practices.
Collapse
Affiliation(s)
- Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Alam M, Pandit B, Moin A, Iqbal UN. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol 2024; 64:343-366. [PMID: 39011025 PMCID: PMC11246410 DOI: 10.1007/s12088-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.
Collapse
Affiliation(s)
- Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
- Department of Botany, Surendranath College, 24/2 MG Road, Kolkata, West Bengal 700009 India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Umaimah Nuzhat Iqbal
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| |
Collapse
|
10
|
Yang L, Yang Q, Wulu J, Wang Y, Jin W, Yan Z, Zhang Z. Quality analysis and function prediction of soil microbial communities of Polygonatum cyrtonema in two indigenous-origins. Front Microbiol 2024; 15:1410501. [PMID: 38881668 PMCID: PMC11176499 DOI: 10.3389/fmicb.2024.1410501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Polygonatum cyrtonema Hua (PCH), as an important economic crop, is used as raw industrial materials and traditional Chinese medicine. There are significant variations in the quality of PCH from different geographical origins. It can be due to the change of the endophytic fungi and soil microbial communities of PCH. Therefore, the aim of this study is to investigate the composition and functional prediction of the main microbial communities in the rhizomes and soil of PCH and explore their impact on medicinal quality. High-throughput sequencing techniques targeting ITS and 16S rDNA were employed to compare the structure and biodiversity differences of endophytic fungi in the rhizomes and soil microbial communities of PCH from 12 different locations in Sichuan and Guangxi province. Heatmap analysis was used for comprehensive statistics and visualization of the richness of rhizome and soil microbial communities from all locations. Venn analysis was conducted to determine the total number of shared fungi between rhizomes and soil, and GraphPad Prism analysis was employed to predict and compare the microbial communities related to phenotypes at the genus level in Sichuan and Guangxi. Tax4Fun and Fungild were used for metabolic function prediction of microbial communities in the rhizomes and soil of PCH. The results revealed the identification of 19,387 bacterial amplicon sequence variants (ASVs) in the rhizomes and 37,990 bacterial ASVs in the soil, with 6,889 shared bacterial ASVs. In addition, 2,948 fungal ASVs were identified in the rhizomes and 8,868 in the soil, with 1,893 shared fungal ASVs. Microbial sequencing results indicated that the fungal communities between soil and rhizomes were mainly composed of Ascomycota and Basidiomycota, while bacterial communities included Proteobacteria, Acidobacteria, Bacteroidota, Gammatimonadota, and Firmicutes. Dominant bacterial groups such as Nitrospira, Acidibacter, and fungal groups including Mortierella, Ceratobasidium, and Fusarium were identified as potential contributors to the observed traits. In the top 15 microbial genera, both Sichuan and Guangxi contain 15 bacterial genera, but there are differences in their abundance. Guangxi has three unique fungal genera, including the genera Scleroderma, Russula, and Gliocladiopsis. On the other hand, Sichuan has the unique fungal genus Chamaeota. The correlation analysis between the microbiota and the chemical content from 12 different collecting spots was performed by GraphPad Prism. Burkholderia-Caballeronia-Paraburkholderia, Acidibacter, and Amycolatopsis show an inverse proportionality to total polysaccharides and saponins, while Enterobacter shows a direct proportionality to total polysaccharides and inverse proportionality to saponins. The metabolism pathways show a significant positive correlation with PCH polysaccharides and saponins. This study provide new insights into the mechanisms underlying the quality differences between the two major indigenous areas.
Collapse
Affiliation(s)
- Li Yang
- School of Pharmacy, Southwest Minzu University, Chengdu, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, China
| | - Qing Yang
- School of Pharmacy, Southwest Minzu University, Chengdu, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, China
| | - Jiansang Wulu
- School of Pharmacy, Southwest Minzu University, Chengdu, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, China
| | - Yue Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, China
| | - Wenfang Jin
- School of Pharmacy, Southwest Minzu University, Chengdu, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, China
| | - Zhigang Yan
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhifeng Zhang
- School of Pharmacy, Southwest Minzu University, Chengdu, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, China
| |
Collapse
|
11
|
Vergine M, Vita F, Casati P, Passera A, Ricciardi L, Pavan S, Aprile A, Sabella E, De Bellis L, Luvisi A. Characterization of the olive endophytic community in genotypes displaying a contrasting response to Xylella fastidiosa. BMC PLANT BIOLOGY 2024; 24:337. [PMID: 38664617 PMCID: PMC11044560 DOI: 10.1186/s12870-024-04980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.
Collapse
Affiliation(s)
- Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.
| | - Paola Casati
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
12
|
Zhou X, Gong F, Dong J, Lin X, Cao K, Xu H, Zhou X. Abscisic Acid Affects Phenolic Acid Content to Increase Tolerance to UV-B Stress in Rhododendron chrysanthum Pall. Int J Mol Sci 2024; 25:1234. [PMID: 38279235 PMCID: PMC10816200 DOI: 10.3390/ijms25021234] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The presence of the ozone hole increases the amount of UV radiation reaching a plant's surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation is present, and has been able to adapt to strong UV-B radiation over a long period of evolution. We investigated the response of R. chrysanthum leaves to UV-B radiation using widely targeted metabolomics and transcriptomics. Although phytohormones have been studied for many years in plant growth and development and adaptation to environmental stresses, this paper is innovative in terms of the species studied and the methods used. Using unique species and the latest research methods, this paper was able to add information to this topic for the species R. chrysanthum. We treated R. chrysanthum grown in a simulated alpine environment, with group M receiving no UV-B radiation and groups N and Q (externally applied abscisic acid treatment) receiving UV-B radiation for 2 days (8 h per day). The results of the MN group showed significant changes in phenolic acid accumulation and differential expression of genes related to phenolic acid synthesis in leaves of R. chrysanthum after UV-B radiation. We combined transcriptomics and metabolomics data to map the metabolic regulatory network of phenolic acids under UV-B stress in order to investigate the response of such secondary metabolites to stress. L-phenylalanine, L-tyrosine and phenylpyruvic acid contents in R. chrysanthum were significantly increased after UV-B radiation. Simultaneously, the levels of 3-hydroxyphenylacetic acid, 2-phenylethanol, anthranilate, 2-hydroxycinnamic acid, 3-hydroxycinnamic acid, α-hydroxycinnamic acid and 2-hydroxy-3-phenylpropanoic acid in this pathway were elevated in response to UV-B stress. In contrast, the study in the NQ group found that externally applied abscisic acid (ABA) in R. chrysanthum had greater tolerance to UV-B radiation, and phenolic acid accumulation under the influence of ABA also showed greater differences. The contents of 2-phenylethanol, 1-o-p-coumaroyl-β-d-glucose, 2-hydroxy-3-phenylpropanoic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-o-feruloylquinic ac-id-o-glucoside were significantly elevated in R. chrysanthum after external application of ABA to protect against UV-B stress. Taken together, these studies of the three groups indicated that ABA can influence phenolic acid production to promote the response of R. chrysanthum to UV-B stress, which provided a theoretical reference for the study of its complex molecular regulatory mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
13
|
Xu Q, Zhu T, Zhao R, Zhao Y, Duan Y, Liu X, Luan G, Hu R, Tang S, Ma X, Liu Y, Li S, Lu X. Arthrospira promotes plant growth and soil properties under high salinity environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1293958. [PMID: 38116155 PMCID: PMC10728656 DOI: 10.3389/fpls.2023.1293958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Salt stress detrimentally impacts plant growth, imperiling crop yield and food quality. Ameliorating plant resilience and productivity in saline environments is critical for global food security. Here, we report the positive effect of Arthrospira (Spirulina) on plant growth and salt tolerance in Arabidopsis and sweet sorghum. Arthrospira application greatly promotes seed germination and seedling growth in both species under salt stress conditions in a dosage-dependent manner. Application of 6 mg Arthrospira per plate significantly enhances K+/Na+ equilibrium and reactive oxygen species (ROS) scavenging in Arabidopsis, reducing salt-induced toxicity. The primary root length, survival rate, chlorophyll content, photosynthesis, plant height, biomass and yield were all improved in both species. Concurrently, Arthrospira demonstrated the synthesis of compatible solutes, such as trehalose (Tre) and glucosylglycerol (GG), contributing to heightened stress tolerance when co-cultivated with Arabidopsis on plates. Transcriptome analysis revealed dramatic up-/down- regulation of genes involved in phytohormone signal transduction, chlorophyll and photosynthesis metabolism, and phenylpropanoid metabolism in Arabidopsis. Furthermore, the application of Arthrospira exerted a positive influence on the rhizosphere bacteriome structure in sweet sorghum, crucial for nutrient cycling and soil health enhancement. Our findings uncovered the underlying mechanisms of algae-plants interaction in saline soil, proposing strategies to enhance crop productivity and soil quality, thereby addressing the urgent need for sustainable agriculture practices to mitigate salinity's repercussions amidst climate change challenges.
Collapse
Affiliation(s)
- Qiyu Xu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Tao Zhu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Ruifeng Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yangkai Duan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xiang Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xinrong Ma
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yan Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| |
Collapse
|
14
|
Zhang E, Lu Y, Zhao R, Yin X, Zhang J, Yu B, Yao M, Liao Z, Lan X. Endophytic bacterial community structure and diversity of the medicinal plant Mirabilis himalaica from different locations. Braz J Microbiol 2023; 54:2991-3003. [PMID: 37921953 PMCID: PMC10689605 DOI: 10.1007/s42770-023-01149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/06/2023] [Indexed: 11/05/2023] Open
Abstract
Endophytic bacteria play important roles in medicinal plant growth, abiotic stress, and metabolism. Mirabilis himalaica (Edgew.) Heimerl is known for its medicinal value as Tibetan traditional plant; however, little is known about the endophytic bacteria associated with this plant in different geographic conditions and vegetal tissues. To compare the endophytic bacterial community associated with this plant in different geographic conditions and vegetal tissues, we collected the leaves, stems, and roots of M. himalaica from five locations, Nongmu college (NM), Gongbujiangda (GB), Zhanang County (ZL), Lang County (LX), and Sangri County (SR), and sequenced the 16S rRNA V5-V7 region with the Illumina sequencing method. A total of 522,450 high-quality sequences and 4970 operational taxonomic units (OTUs) were obtained. The different tissues from different locations harbored unique bacterial assemblages. Proteobacteria and Actinobacteria were the dominant phyla in all the samples, while the dominant genera changed based on the different tissues. The endophytic bacterial structures in the leaf and stem tissues were different compared to root tissues. Redundancy analysis (RDA) showed that the endophytic bacterial community was significantly correlated with pH, available phosphorus (AP), total phosphorus (TP), total nitrogen (TN), and soil organic matter (SOM). These findings suggested that the geographic conditions, climate type, ecosystem type, and tissues determined the endophytic bacterial composition and relative abundances. This conclusion could facilitate an understanding of the relationship and ecological function of the endophytic bacteria associated with M. himalaica and provide valuable information for artificial planting of M. himalaica and identifying and applying functional endophytic bacteria.
Collapse
Affiliation(s)
- Erhao Zhang
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Yazhou Lu
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Rundong Zhao
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Xiu Yin
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Jie Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Benxia Yu
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Min Yao
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, 330029, Jiangxi, China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing Engineering and Technology Research Center for Sweetpotato, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China.
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
| |
Collapse
|
15
|
Kim ST, Sang MK. Enhancement of osmotic stress tolerance in soybean seed germination by bacterial bioactive extracts. PLoS One 2023; 18:e0292855. [PMID: 37824539 PMCID: PMC10569584 DOI: 10.1371/journal.pone.0292855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
Soybean (Glycine max (L.) Merr.) is important to the global food industry; however, its productivity is affected by abiotic stresses such as osmosis, flooding, heat, and cold. Here, we evaluated the bioactive extracts of two biostimulant bacterial strains, Bacillus butanolivorans KJ40 and B. siamensis H30-3, for their ability to convey tolerance to osmotic stress in soybean seeds during germination. Soybean seeds were dip-treated in extracts of KJ40 (KJ40E) or H30-3 (H30-3E) and incubated with either 0% or 20% polyethylene glycol 6000 (PEG), simulating drought-induced osmotic stress. We measured malondialdehyde content as a marker for lipid peroxidation, as well as the activity of antioxidant enzymes, including catalase, glutathione peroxidase, and glutathione reductase, together with changes in sugars content. We also monitored the expression of genes involved in the gibberellic acid (GA)-biosynthesis pathway, and abscisic acid (ABA) signaling. Following osmotic stress in the extract-treated seeds, malondialdehyde content decreased, while antioxidant enzyme activity increased. Similarly, the expression of GA-synthesis genes, including GmGA2ox1 and GmGA3 were upregulated in KJ40E-dipped seeds at 12 or 6 h after treatment, respectively. The ABA signaling genes GmABI4 and GmDREB1 were upregulated in H30-3E- and KJ40E-treated seeds at 0 and 12 h after treatment under osmotic stress; however, GmABI5, GmABI4, and GmDREB1 levels were also elevated in the dip-treated seeds in baseline conditions. The GA/ABA ratio increased only in KJ40E-treated seeds undergoing osmotic stress, while glucose content significantly decreased in H30-3E-treated seeds at 24 h after treatment. Collectively, our findings indicated that dip-treatment of soybean seeds in KJ40E and H30-3E can enhance the seeds' resistance to osmotic stress during germination, and ameliorate cellular damage caused by secondary oxidative stress. This seed treatment can be used agriculturally to promote germination under drought stress and lead to increase crop yield and quality.
Collapse
Affiliation(s)
- Sang Tae Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
16
|
Yao Y, Yang Y, Pan Y, Liu Z, Hou X, Li Y, Zhang H, Wang C, Liao W. Crucial roles of trehalose and 5-azacytidine in alleviating salt stress in tomato: Both synergistically and independently. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108075. [PMID: 37801738 DOI: 10.1016/j.plaphy.2023.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Trehalose may improve plant stress tolerance by regulating gene expression under different abiotic stresses. DNA methylation is involved in plant growth and development, but also in response to abiotic stresses. 5-azacytidine is a widely used inhibitor of DNA methylation. In this study, tomato (Solanum lycopersicum L. 'Ailsa Craig') was used as experimental material to explore the effects of trehalose and DNA methylation on the growth and development in tomato seedlings under salt stress. 10 mM trehalose, 50 μM 5-azacytidine, and their combined treatments could significantly increase growth parameters in tomato under salt stress, indicating trehalose and 5-azacytidine might play crucial roles in alleviating salt stress both synergistically and independently. Additionally, trehalose significantly down-regulated the expression of DNA methylase genes (SlDRM5, SlDRM1L1, SlCMT3 and SlCMT2) and up-regulated the expression of DNA demethylases genes under salt stress, suggesting that trehalose might regulate DNA methylation under salt stress condition. Under salt stress, trehalose and 5-azacytidine treatments enhanced antioxidant enzyme activity and induced antioxidant enzyme gene expression in tomato seedlings. Meanwhile, trehalose and 5-azacytidine increased ABA content by regulating the expression of ABA metabolism-related genes, thereby enhancing salt tolerance in tomato. Altogether, these results suggest that trehalose conferred salt tolerance in tomato seedlings probably by DNA demethylation and enhancing antioxidant capability and ABA accumulation.
Collapse
Affiliation(s)
- Yandong Yao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Ying Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Hongsheng Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
17
|
Rodríguez R, Barra PJ, Larama G, Carrion VJ, de la Luz Mora M, Hale L, Durán P. Microbiome engineering optimized by Antarctic microbiota to support a plant host under water deficit. FRONTIERS IN PLANT SCIENCE 2023; 14:1241612. [PMID: 37780522 PMCID: PMC10541027 DOI: 10.3389/fpls.2023.1241612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Climate change challenges modern agriculture to develop alternative and eco-friendly solutions to alleviate abiotic and/or biotic stresses. The use of soil microbiomes from extreme environments opens new avenues to discover novel microorganisms and microbial functions to protect plants. In this study we confirm the ability of a bioinoculant, generated by natural engineering, to promote host development under water stress. Microbiome engineering was mediated through three factors i) Antarctic soil donation, ii) water deficit and iii) multigenerational tomato host selection. We revealed that tomato plants growing in soils supplemented with Antarctic microbiota were tolerant to water deficit stress after 10 generations. A clear increase in tomato seedling tolerance against water deficit stress was observed in all soils over generations of Host Mediated Microbiome Engineering, being Fildes mixture the most representatives, which was evidenced by an increased survival time, plant stress index, biomass accumulation, and decreased leaf proline content. Microbial community analysis using 16s rRNA gene amplicon sequencing data suggested a microbiome restructuring that could be associated with increased tolerance of water deficit. Additionally, the results showed a significant increase in the relative abundance of Candidatus Nitrosocosmicus and Bacillus spp. which could be key taxa associated with the observed tolerance improvement. We proposed that in situ microbiota engineering through the evolution of three factors (long-standing extreme climate adaption and host and stress selection) could represent a promising strategy for novel generation of microbial inoculants.
Collapse
Affiliation(s)
- Rodrigo Rodríguez
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Agroscientific SpA, Temuco, Chile
| | - Patricio J. Barra
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Giovanni Larama
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | | | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Paola Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
19
|
Chieb M, Gachomo EW. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC PLANT BIOLOGY 2023; 23:407. [PMID: 37626328 PMCID: PMC10464363 DOI: 10.1186/s12870-023-04403-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.
Collapse
Affiliation(s)
- Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
20
|
Riber L, Carstens AB, Dougherty PE, Roy C, Willenbücher K, Hille F, Franz CMAP, Hansen LH. Pheno- and Genotyping of Three Novel Bacteriophage Genera That Target a Wheat Phyllosphere Sphingomonas Genus. Microorganisms 2023; 11:1831. [PMID: 37513003 PMCID: PMC10385605 DOI: 10.3390/microorganisms11071831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Bacteriophages are viral agents that infect and replicate within bacterial cells. Despite the increasing importance of phage ecology, environmental phages-particularly those targeting phyllosphere-associated bacteria-remain underexplored, and current genomic databases lack high-quality phage genome sequences linked to specific environmentally important bacteria, such as the ubiquitous sphingomonads. Here, we isolated three novel phages from a Danish wastewater treatment facility. Notably, these phages are among the first discovered to target and regulate a Sphingomonas genus within the wheat phyllosphere microbiome. Two of the phages displayed a non-prolate Siphovirus morphotype and demonstrated a narrow host range when tested against additional Sphingomonas strains. Intergenomic studies revealed limited nucleotide sequence similarity within the isolated phage genomes and to publicly available metagenome data of their closest relatives. Particularly intriguing was the limited homology observed between the DNA polymerase encoding genes of the isolated phages and their closest relatives. Based on these findings, we propose three newly identified genera of viruses: Longusvirus carli, Vexovirus birtae, and Molestusvirus kimi, following the latest ICTV binomial nomenclature for virus species. These results contribute to our current understanding of phage genetic diversity in natural environments and hold promising implications for phage applications in phyllosphere microbiome manipulation strategies.
Collapse
Affiliation(s)
- Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Alexander Byth Carstens
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Peter Erdmann Dougherty
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Chayan Roy
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Katharina Willenbücher
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Strasse 1, 24103 Kiel, Germany
| | - Frank Hille
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Strasse 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Strasse 1, 24103 Kiel, Germany
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
21
|
Imran M, Mpovo CL, Aaqil Khan M, Shaffique S, Ninson D, Bilal S, Khan M, Kwon EH, Kang SM, Yun BW, Lee IJ. Synergistic Effect of Melatonin and Lysinibacillus fusiformis L. (PLT16) to Mitigate Drought Stress via Regulation of Hormonal, Antioxidants System, and Physio-Molecular Responses in Soybean Plants. Int J Mol Sci 2023; 24:8489. [PMID: 37239837 PMCID: PMC10218646 DOI: 10.3390/ijms24108489] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Drought is one of the most detrimental factors that causes significant effects on crop development and yield. However, the negative effects of drought stress may be alleviated with the aid of exogenous melatonin (MET) and the use of plant-growth-promoting bacteria (PGPB). The present investigation aimed to validate the effects of co-inoculation of MET and Lysinibacillus fusiformis on hormonal, antioxidant, and physio-molecular regulation in soybean plants to reduce the effects of drought stress. Therefore, ten randomly selected isolates were subjected to various plant-growth-promoting rhizobacteria (PGPR) traits and a polyethylene-glycol (PEG)-resistance test. Among these, PLT16 tested positive for the production of exopolysaccharide (EPS), siderophore, and indole-3-acetic acid (IAA), along with higher PEG tolerance, in vitro IAA, and organic-acid production. Therefore, PLT16 was further used in combination with MET to visualize the role in drought-stress mitigation in soybean plant. Furthermore, drought stress significantly damages photosynthesis, enhances ROS production, and reduces water stats, hormonal signaling and antioxidant enzymes, and plant growth and development. However, the co-application of MET and PLT16 enhanced plant growth and development and improved photosynthesis pigments (chlorophyll a and b and carotenoids) under both normal conditions and drought stress. This may be because hydrogen-peroxide (H2O2), superoxide-anion (O2-), and malondialdehyde (MDA) levels were reduced and antioxidant activities were enhanced to maintain redox homeostasis and reduce the abscisic-acid (ABA) level and its biosynthesis gene NCED3 while improving the synthesis of jasmonic acid (JA) and salicylic acid (SA) to mitigate drought stress and balance the stomata activity to maintain the relative water states. This may be possible due to a significant increase in endo-melatonin content, regulation of organic acids, and enhancement of nutrient uptake (calcium, potassium, and magnesium) by co-inoculated PLT16 and MET under normal conditions and drought stress. In addition, co-inoculated PLT16 and MET modulated the relative expression of DREB2 and TFs bZIP while enhancing the expression level of ERD1 under drought stress. In conclusion, the current study found that the combined application of melatonin and Lysinibacillus fusiformis inoculation increased plant growth and could be used to regulate plant function during drought stress as an eco-friendly and low-cost approach.
Collapse
Affiliation(s)
- Muhammad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju 54874, Republic of Korea;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Clems Luzolo Mpovo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar 24830, Pakistan
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Daniel Ninson
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
22
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
23
|
Asaf S, Jan R, Khan MA, Khan AL, Asif S, Bilal S, Ahmad W, Waqas M, Kim KM, Al-Harrasi A, Lee IJ. Unraveling the mutualistic interaction between endophytic Curvularia lunata CSL1 and tomato to mitigate cadmium (Cd) toxicity via transcriptomic insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160542. [PMID: 36493827 DOI: 10.1016/j.scitotenv.2022.160542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, endophytic fungus Curvularia lunata strain SL1 was used to explore its bioremediation potential and growth restoration of tomato (Solanum lycopersicum) under cadmium (Cd) stress. Our findings demonstrate that SL1 establishes a symbiotic relationship with tomato plants, which modulates the antioxidant system, secondary metabolites, and gene expression in tomato plants exposed to Cd stress. Under Cd stress, tomato seedling growth was significantly reduced by up to 42.8 %, although this reduction was mitigated by up to 25 % after SL1 inoculation. Similar to this, SLI inoculation inhibits Cd absorption and translocation to the upper parts of the plant. Additionally, during Cd stress, phytohormones related to stress, including jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), were elevated; however, SL1 inoculation lowered their level. RNA-Seq data revealed that the highest number of differentially expressed genes (DEGs) was detected in the comparison between control and 1 mM Cd, followed by 2 mM Cd stress. These DEGs were mostly related to oxidoreductase activity, catalytic activity, plant hormones transduction, and photosynthesis. The findings also suggested that SL1 could improve tomato tolerance to Cd stress by modulating Ca2+ signaling, phytohormone biosynthesis, MAPK signaling pathway, and some transcription factors.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Technology, Peshawar, Pakistan
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Waqar Ahmad
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Muhammad Waqas
- Department of Agriculture Extension, Government of Khyber Pakhtunkhwa, Mardan, Pakistan
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman.
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
24
|
Mazoyon C, Hirel B, Pecourt A, Catterou M, Gutierrez L, Sarazin V, Dubois F, Duclercq J. Sphingomonas sediminicola Is an Endosymbiotic Bacterium Able to Induce the Formation of Root Nodules in Pea ( Pisum sativum L.) and to Enhance Plant Biomass Production. Microorganisms 2023; 11:microorganisms11010199. [PMID: 36677491 PMCID: PMC9861922 DOI: 10.3390/microorganisms11010199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The application of bacterial bio-inputs is a very attractive alternative to the use of mineral fertilisers. In ploughed soils including a crop rotation pea, we observed an enrichment of bacterial communities with Sphingomonas (S.) sediminicola. Inoculation experiments, cytological studies, and de novo sequencing were used to investigate the beneficial role of S. sediminicola in pea. S. sediminicola is able to colonise pea plants and establish a symbiotic association that promotes plant biomass production. Sequencing of the S. sediminicola genome revealed the existence of genes involved in secretion systems, Nod factor synthesis, and nitrogenase activity. Light and electron microscopic observations allowed us to refine the different steps involved in the establishment of the symbiotic association, including the formation of infection threads, the entry of the bacteria into the root cells, and the development of differentiated bacteroids in root nodules. These results, together with phylogenetic analysis, demonstrated that S. sediminicola is a non-rhizobia that has the potential to develop a beneficial symbiotic association with a legume. Such a symbiotic association could be a promising alternative for the development of more sustainable agricultural practices, especially under reduced N fertilisation conditions.
Collapse
Affiliation(s)
- Candice Mazoyon
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | - Bertrand Hirel
- Unité Mixte de Recherche 1318 INRA-AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), 78026 Versailles, France
| | - Audrey Pecourt
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | - Manuella Catterou
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | | | - Fréderic Dubois
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | - Jérôme Duclercq
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
- Correspondence: ; Tel.: +33-3-22827612
| |
Collapse
|
25
|
Hossain MS, DeLaune PB, Gentry TJ. Microbiome analysis revealed distinct microbial communities occupying different sized nodules in field-grown peanut. Front Microbiol 2023; 14:1075575. [PMID: 36937276 PMCID: PMC10017544 DOI: 10.3389/fmicb.2023.1075575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Legume nodulation is the powerhouse of biological nitrogen fixation (BNF) where host-specific rhizobia dominate the nodule microbiome. However, other rhizobial or non-rhizobial inhabitants can also colonize legume nodules, and it is unclear how these bacteria interact, compete, or combinedly function in the nodule microbiome. Under such context, to test this hypothesis, we conducted 16S-rRNA based nodule microbiome sequencing to characterize microbial communities in two distinct sized nodules from field-grown peanuts inoculated with a commercial inoculum. We found that microbial communities diverged drastically in the two types of peanut nodules (big and small). Core microbial analysis revealed that the big nodules were inhabited by Bradyrhizobium, which dominated composition (>99%) throughout the plant life cycle. Surprisingly, we observed that in addition to Bradyrhizobium, the small nodules harbored a diverse set of bacteria (~31%) that were not present in big nodules. Notably, these initially less dominant bacteria gradually dominated in small nodules during the later plant growth phases, which suggested that native microbial communities competed with the commercial inoculum in the small nodules only. Conversely, negligible or no competition was observed in the big nodules. Based on the prediction of KEGG pathway analysis for N and P cycling genes and the presence of diverse genera in the small nodules, we foresee great potential of future studies of these microbial communities which may be crucial for peanut growth and development and/or protecting host plants from various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| | | | - Terry J Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|
26
|
Sorouri B, Rodriguez CI, Gaut BS, Allison SD. Variation in Sphingomonas traits across habitats and phylogenetic clades. Front Microbiol 2023; 14:1146165. [PMID: 37138640 PMCID: PMC10150699 DOI: 10.3389/fmicb.2023.1146165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Whether microbes show habitat preferences is a fundamental question in microbial ecology. If different microbial lineages have distinct traits, those lineages may occur more frequently in habitats where their traits are advantageous. Sphingomonas is an ideal bacterial clade in which to investigate how habitat preference relates to traits because these bacteria inhabit diverse environments and hosts. Here we downloaded 440 publicly available Sphingomonas genomes, assigned them to habitats based on isolation source, and examined their phylogenetic relationships. We sought to address whether: (1) there is a relationship between Sphingomonas habitat and phylogeny, and (2) whether there is a phylogenetic correlation between key, genome-based traits and habitat preference. We hypothesized that Sphingomonas strains from similar habitats would cluster together in phylogenetic clades, and key traits that improve fitness in specific environments should correlate with habitat. Genome-based traits were categorized into the Y-A-S trait-based framework for high growth yield, resource acquisition, and stress tolerance. We selected 252 high quality genomes and constructed a phylogenetic tree with 12 well-defined clades based on an alignment of 404 core genes. Sphingomonas strains from the same habitat clustered together within the same clades, and strains within clades shared similar clusters of accessory genes. Additionally, key genome-based trait frequencies varied across habitats. We conclude that Sphingomonas gene content reflects habitat preference. This knowledge of how environment and host relate to phylogeny may also help with future functional predictions about Sphingomonas and facilitate applications in bioremediation.
Collapse
Affiliation(s)
- Bahareh Sorouri
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
- *Correspondence: Bahareh Sorouri,
| | - Cynthia I. Rodriguez
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Steven D. Allison
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
- Department of Earth System Science, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
27
|
Shaffique S, Imran M, Kang SM, Khan MA, Asaf S, Kim WC, Lee IJ. Seed Bio-priming of wheat with a novel bacterial strain to modulate drought stress in Daegu, South Korea. FRONTIERS IN PLANT SCIENCE 2023; 14:1118941. [PMID: 37180396 PMCID: PMC10173886 DOI: 10.3389/fpls.2023.1118941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
Wheat is one of the major cereal crop grown food worldwide and, therefore, plays has a key role in alleviating the global hunger crisis. The effects of drought stress can reduces crop yields by up to 50% globally. The use of drought-tolerant bacteria for biopriming can improve crop yields by countering the negative effects of drought stress on crop plants. Seed biopriming can reinforce the cellular defense responses to stresses via the stress memory mechanism, that its activates the antioxidant system and induces phytohormone production. In the present study, bacterial strains were isolated from rhizospheric soil taken from around the Artemisia plant at Pohang Beach, located near Daegu, in the South Korea Republic of Korea. Seventy-three isolates were screened for their growth-promoting attributes and biochemical characteristics. Among them, the bacterial strain SH-8 was selected preferred based on its plant growth-promoting bacterial traits, which are as follows: abscisic acid (ABA) concentration = 1.08 ± 0.05 ng/mL, phosphate-solubilizing index = 4.14 ± 0.30, and sucrose production = 0.61 ± 0.13 mg/mL. The novel strain SH-8 demonstrated high tolerance oxidative stress. The antioxidant analysis also showed that SH-8 contained significantly higher levels of catalase (CAT), superoxide dismutase (SOD), and ascorbic peroxidase (APX). The present study also quantified and determined the effects of biopriming wheat (Triticum aestivum) seeds with the novel strain SH-8. SH-8 was highly effective in enhancing the drought tolerance of bioprimed seeds; their drought tolerance and germination potential (GP) were increased by up to 20% and 60%, respectively, compared with those in the control group. The lowest level of impact caused by drought stress and the highest germination potential, seed vigor index (SVI), and germination energy (GE) (90%, 2160, and 80%, respectively), were recorded for seeds bioprimed with with SH-8. These results show that SH-8 enhances drought stress tolerance by up to 20%. Our study suggests that the novel rhizospheric bacterium SH-8 (gene accession number OM535901) is a valuable biostimulant that improves drought stress tolerance in wheat plants and has the potential to be used as a biofertilizer under drought conditions.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Won-Chan Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- *Correspondence: Won-Chan Kim, ; In-Jung Lee,
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- *Correspondence: Won-Chan Kim, ; In-Jung Lee,
| |
Collapse
|
28
|
The Role of Exogenous Gibberellic Acid and Methyl Jasmonate against White-Backed Planthopper ( Sogatella furcifera) Stress in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:ijms232314737. [PMID: 36499068 PMCID: PMC9739488 DOI: 10.3390/ijms232314737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the essential staple foods for more than half of the world's population, and its production is affected by different environmental abiotic and biotic stress conditions. The white-backed planthopper (WBPH, Sogatella furcifera) causes significant damage to rice plants, leading to substantial economic losses due to reduced production. In this experiment, we applied exogenous hormones (gibberellic acid and methyl jasmonate) to WBPH-infested rice plants and examined the relative expression of related genes, antioxidant accumulation, the recovery rate of affected plants, endogenous hormones, the accumulation of H2O2, and the rate of cell death using DAB and trypan staining, respectively. The expression of the transcriptional regulator (OsGAI) and gibberellic-acid-mediated signaling regulator (OsGID2) was upregulated significantly in GA 50 µM + WBPH after 36 h. OsGAI was upregulated in the control, GA 50 µM + WBPH, GA 100 µM + WBPH, and MeJA 100 µM + WBPH. However, after 48 h, the OsGID2 was significantly highly expressed in all groups of plants. The glutathione (GSH) values were significantly enhanced by GA 100 µM and MeJA 50 µM treatment. Unlike glutathione (GSH), the catalase (CAT) and peroxidase (POD) values were significantly reduced in control + WBPH plants. However, a slight increase in CAT and POD values was observed in GA 50 + WBPH plants and a reduction in the POD value was observed in GA 100 µM + WBPH and MeJA 50 µM + WBPH plants. GA highly recovered the WBPH-affected rice plants, while no recovery was seen in MeJA-treated plants. MeJA was highly accumulated in control + WBPH, MeJA 50 µM + WBPH, and GA 100 µM + WBPH plants. The H2O2 accumulation was highly decreased in GA-treated plants, while extensive cell death was observed in MeJA-treated plants compared with GA-treated plants. From this study, we can conclude that the exogenous application of GA can overcome the effects of the WBPH and enhance resistance in rice.
Collapse
|
29
|
Kamran M, Imran QM, Ahmed MB, Falak N, Khatoon A, Yun BW. Endophyte-Mediated Stress Tolerance in Plants: A Sustainable Strategy to Enhance Resilience and Assist Crop Improvement. Cells 2022; 11:cells11203292. [PMID: 36291157 PMCID: PMC9600683 DOI: 10.3390/cells11203292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biotic and abiotic stresses severely affect agriculture by affecting crop productivity, soil fertility, and health. These stresses may have significant financial repercussions, necessitating a practical, cost-effective, and ecologically friendly approach to lessen their negative impacts on plants. Several agrochemicals, such as fertilizers, pesticides, and insecticides, are used to improve plant health and protection; however, these chemical supplements have serious implications for human health. Plants being sessile cannot move or escape to avoid stress. Therefore, they have evolved to develop highly beneficial interactions with endophytes. The targeted use of beneficial plant endophytes and their role in combating biotic and abiotic stresses are gaining attention. Therefore, it is important to experimentally validate these interactions and determine how they affect plant fitness. This review highlights research that sheds light on how endophytes help plants tolerate biotic and abiotic stresses through plant–symbiont and plant–microbiota interactions. There is a great need to focus research efforts on this vital area to achieve a system-level understanding of plant–microbe interactions that occur naturally.
Collapse
Affiliation(s)
- Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
- Correspondence: (M.K.); (B.-W.Y.)
| | - Qari Muhammad Imran
- Department of Medical Biochemistry & Biophysics, Umea University, 90187 Umea, Sweden
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Noreen Falak
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Amna Khatoon
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (M.K.); (B.-W.Y.)
| |
Collapse
|
30
|
Comparative Study of Trehalose and Trehalose 6-Phosphate to Improve Antioxidant Defense Mechanisms in Wheat and Mustard Seedlings under Salt and Water Deficit Stresses. STRESSES 2022. [DOI: 10.3390/stresses2030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Trehalose 6-phosphate (T6P) regulates sugar levels and starch metabolism in a plant cell and thus interacts with various signaling pathways, and after converting T6P into trehalose (Tre), it acts as a vital osmoprotectant under stress conditions. This study was conducted using wheat (Triticum aestivum L. cv. Norin 61) and mustard (Brassica juncea L. cv. BARI sharisha 13) seedlings to investigate the role of Tre and T6P in improving salt and water deficit stress tolerance. The seedlings were grown hydroponically using Hyponex solution and exposed to salt (300 and 200 mM NaCl for wheat and mustard, respectively) and water deficit (20 and 12% PEG 6000 for wheat and mustard, respectively) stresses with or without Tre and T6P. The study demonstrated that salt and water deficit stress negatively influenced plant growth by destroying photosynthetic pigments and increasing oxidative damage. In response to salt and water deficit stresses, the generation of H2O2 increased by 114 and 67%, respectively, in wheat seedlings, while in mustard, it increased by 86 and 50%, respectively. Antioxidant defense systems were also altered by salt and water deficit stresses due to higher oxidative damage. The AsA content was reduced by 65 and 38% in wheat and 61 and 45% in mustard under salt and water deficit stresses, respectively. The subsequent negative results of salinity and water deficit can be overcome by exogenous application of Tre and T6P; these agents reduced the oxidative stress by decreasing H2O2 and TBARS levels and increasing enzymatic and non-enzymatic antioxidants. Moreover, the application of Tre and T6P decreased the accumulation of Na in the shoots and roots of wheat and mustard seedlings. Therefore, the results suggest that the use of Tre and T6P is apromising strategy to alleviate osmotic and ionic toxicity in plants under salt and water deficit stresses.
Collapse
|
31
|
Renaudin M, Laforest-Lapointe I, Bellenger JP. Unraveling global and diazotrophic bacteriomes of boreal forest floor feather mosses and their environmental drivers at the ecosystem and at the plant scale in North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155761. [PMID: 35533858 DOI: 10.1016/j.scitotenv.2022.155761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Feather mosses are abundant cryptogams of the boreal forest floor and shelter a broad diversity of bacteria who have important ecological functions (e.g., decomposition, nutrient cycling). In particular, nitrogen (N2-) fixation performed by feather moss-associated diazotrophs constitutes an important entry of nitrogen in the boreal forest ecosystem. However, the composition of the feather moss bacteriome and its environmental drivers are still unclear. Using cDNA amplicon sequencing of the 16S rRNA and nifH genes and cyanobacterial biomass quantification, we explored the active global and diazotrophic bacterial communities of two dominant feather moss species (i) at the ecosystem scale, along a 500-km climatic and nutrient deposition gradient in the North American boreal forest, and (ii) at the plant scale, along the moss shoot senescence gradient. We found that cyanobacteria were major actors of the feather moss bacteriome, accounting for 33% of global bacterial communities and 65% of diazotrophic communities, and that several cyanobacterial and methanotrophic genera were contributing to N2-fixation. Moreover, we showed that bacteria were occupying ecological niches along the moss shoot, with phototrophs being dominant in the apical part and methanotrophs being dominant in the basal part. Finally, climate (temperature, precipitation), environmental variables (moss species, month, tree density) and nutrients (nitrogen, phosphorus, molybdenum, vanadium, iron) strongly shaped global and diazotrophic bacteriomes. In summary, this work presents evidence that the feather moss bacteriome plays crucial roles in supporting moss growth, health, and decomposition, as well as in the boreal forest carbon and nitrogen cycles. This study also highlights the substantial effects of climate and nutrients on the feather moss bacteriome, suggesting the importance of understanding the impacts of global change on moss-associated bacterial growth and activity.
Collapse
Affiliation(s)
- Marie Renaudin
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| | | | - Jean-Philippe Bellenger
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| |
Collapse
|
32
|
Byregowda R, Prasad SR, Oelmüller R, Nataraja KN, Prasanna Kumar MK. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. Int J Mol Sci 2022; 23:ijms23169194. [PMID: 36012460 PMCID: PMC9408852 DOI: 10.3390/ijms23169194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the wake of changing climatic conditions, plants are frequently exposed to a wide range of biotic and abiotic stresses at various stages of their development, all of which negatively affect their growth, development, and productivity. Drought is one of the most devastating abiotic stresses for most cultivated crops, particularly in arid and semiarid environments. Conventional breeding and biotechnological approaches are used to generate drought-tolerant crop plants. However, these techniques are costly and time-consuming. Plant-colonizing microbes, notably, endophytic fungi, have received increasing attention in recent years since they can boost plant growth and yield and can strengthen plant responses to abiotic stress. In this review, we describe these microorganisms and their relationship with host plants, summarize the current knowledge on how they “reprogram” the plants to promote their growth, productivity, and drought tolerance, and explain why they are promising agents in modern agriculture.
Collapse
Affiliation(s)
- Roopashree Byregowda
- Department of Seed Science and Technology, University of Agricultural Sciences, Bangalore 560065, India
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| | | | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
- Correspondence:
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore 560065, India
| | - M. K. Prasanna Kumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore 560065, India
| |
Collapse
|
33
|
Bergman ME, Evans SE, Davis B, Hamid R, Bajwa I, Jayathilake A, Chahal AK, Phillips MA. An Arabidopsis GCMS chemical ionization technique to quantify adaptive responses in central metabolism. PLANT PHYSIOLOGY 2022; 189:2072-2090. [PMID: 35512197 PMCID: PMC9342981 DOI: 10.1093/plphys/kiac207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
We present a methodology to survey central metabolism in 13CO2-labeled Arabidopsis (Arabidopsis thaliana) rosettes by ammonia positive chemical ionization-gas chromatography-mass spectrometry. This technique preserves the molecular ion cluster of methyloxime/trimethylsilyl-derivatized analytes up to 1 kDa, providing unambiguous nominal mass assignment of >200 central metabolites and 13C incorporation rates into a subset of 111 from the tricarboxylic acid (TCA) cycle, photorespiratory pathway, amino acid metabolism, shikimate pathway, and lipid and sugar metabolism. In short-term labeling assays, we observed plateau labeling of ∼35% for intermediates of the photorespiratory cycle except for glyoxylate, which reached only ∼4% labeling and was also present at molar concentrations several fold lower than other photorespiratory intermediates. This suggests photorespiratory flux may involve alternate intermediate pools besides the generally accepted route through glyoxylate. Untargeted scans showed that in illuminated leaves, noncyclic TCA cycle flux and citrate export to the cytosol revert to a cyclic flux mode following methyl jasmonate (MJ) treatment. MJ also caused a block in the photorespiratory transamination of glyoxylate to glycine. Salicylic acid treatment induced the opposite effects in both cases, indicating the antagonistic relationship of these defense signaling hormones is preserved at the metabolome level. We provide complete chemical ionization spectra for 203 Arabidopsis metabolites from central metabolism, which uniformly feature the unfragmented pseudomolecular ion as the base peak. This unbiased, soft ionization technique is a powerful screening tool to identify adaptive metabolic trends in photosynthetic tissue and represents an important advance in methodology to measure plant metabolic flux.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Sonia E Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Benjamin Davis
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Rehma Hamid
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Ibadat Bajwa
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Amreetha Jayathilake
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Anmol Kaur Chahal
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|
34
|
Kour D, Yadav AN. Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Curr Microbiol 2022; 79:248. [PMID: 35834053 DOI: 10.1007/s00284-022-02939-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Climate change is emerging as a crucial issue with global attention and leading to abiotic stress conditions. There are different abiotic stress which affects the crop production among which drought is known to be most destructive stress affecting crop productivity and world's food security. Different approaches are under consideration to increase adaptability of the plants under drought stress with plant-microbe interactions being a greater area of focus. Stress-adaptive microbes either from the rhizosphere, internal tissue, or aerial parts of plants have been reported which through different mechanisms help the plants to cope up with drought and also promote their growth. These mechanisms include the accumulation of osmolytes, decrease in the inhibitory levels of ethylene by aminocyclopropane-1-carboxylate (ACC) deaminase enzyme, and furnishing the unavailable nutrients to plants. Microbial genera including Azotobacter, Bacillus, Ochrobactrum, Pseudomonas, and Serratia are known to be self-adaptive and growth promoters under drought stressed conditions. Stress-adaptive plant growth promoting (PGP) microbes thus are excellent candidates for stress alleviation in drought environment to provide maximum benefits to the plants. The present review deals with the effect of the drought stress on plants, biodiversity of the drought-adaptive microbes, mechanisms of the drought stress alleviation through enhancement of stress alleviators, reduction of the stress aggravators, and modification of the molecular pathways as well as the multiple PGP attributes of the drought-adaptive microbes.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India.
| |
Collapse
|
35
|
MacIntyre AM, Meline V, Gorman Z, Augustine SP, Dye CJ, Hamilton CD, Iyer-Pascuzzi AS, Kolomiets MV, McCulloh KA, Allen C. Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease. PLoS One 2022; 17:e0266254. [PMID: 35476629 PMCID: PMC9045674 DOI: 10.1371/journal.pone.0266254] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Ralstonia solanacearum causes bacterial wilt disease, leading to severe crop losses. Xylem sap from R. solanacearum-infected tomato is enriched in the disaccharide trehalose. Water-stressed plants also accumulate trehalose, which increases drought tolerance via abscisic acid (ABA) signaling. Because R. solanacearum-infected plants suffer reduced water flow, we hypothesized that bacterial wilt physiologically mimics drought stress, which trehalose could mitigate. We found that R. solanacearum-infected plants differentially expressed drought-associated genes, including those involved in ABA and trehalose metabolism, and had more ABA in xylem sap. Consistent with this, treating tomato roots with ABA reduced both stomatal conductance and stem colonization by R. solanacearum. Treating roots with trehalose increased xylem sap ABA and reduced plant water use by lowering stomatal conductance and temporarily improving water use efficiency. Trehalose treatment also upregulated expression of salicylic acid (SA)-dependent tomato defense genes; increased xylem sap levels of SA and other antimicrobial compounds; and increased bacterial wilt resistance of SA-insensitive NahG tomato plants. Additionally, trehalose treatment increased xylem concentrations of jasmonic acid and related oxylipins. Finally, trehalose-treated plants were substantially more resistant to bacterial wilt disease. Together, these data show that exogenous trehalose reduced both water stress and bacterial wilt disease and triggered systemic disease resistance, possibly through a Damage Associated Molecular Pattern (DAMP) response pathway. This suite of responses revealed unexpected linkages between plant responses to biotic and abiotic stress and suggested that R. solanacearum-infected plants increase trehalose to improve water use efficiency and increase wilt disease resistance. The pathogen may degrade trehalose to counter these efforts. Together, these results suggest that treating tomatoes with exogenous trehalose could be a practical strategy for bacterial wilt management.
Collapse
Affiliation(s)
- April M. MacIntyre
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Valerian Meline
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States of America
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America
| | - Steven P. Augustine
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Carolyn J. Dye
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Corri D. Hamilton
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States of America
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America
| | - Katherine A. McCulloh
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
36
|
Lombardino J, Bijlani S, Singh NK, Wood JM, Barker R, Gilroy S, Wang CCC, Venkateswaran K. Genomic Characterization of Potential Plant Growth-Promoting Features of Sphingomonas Strains Isolated from the International Space Station. Microbiol Spectr 2022; 10:e0199421. [PMID: 35019675 PMCID: PMC8754149 DOI: 10.1128/spectrum.01994-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
In an ongoing microbial tracking investigation of the International Space Station (ISS), several Sphingomonas strains were isolated. Based on the 16S rRNA gene sequence, phylogenetic analysis identified the ISS strains as Sphingomonas sanguinis (n = 2) and one strain isolated from the Kennedy Space Center cleanroom (used to assemble various Mars mission spacecraft components) as Sphingomonas paucimobilis. Metagenomic sequence analyses of different ISS locations identified 23 Sphingomonas species. An abundance of shotgun metagenomic reads were detected for S. sanguinis in the location from where the ISS strains were isolated. A complete metagenome-assembled genome was generated from the shotgun reads metagenome, and its comparison with the whole-genome sequences (WGS) of the ISS S. sanguinis isolates revealed that they were highly similar. In addition to the phylogeny, the WGS of these Sphingomonas strains were compared with the WGS of the type strains to elucidate genes that can potentially aid in plant growth promotion. Furthermore, the WGS comparison of these strains with the well-characterized Sphingomonas sp. LK11, an arid desert strain, identified several genes responsible for the production of phytohormones and for stress tolerance. Production of one of the phytohormones, indole-3-acetic acid, was further confirmed in the ISS strains using liquid chromatography-mass spectrometry. Pathways associated with phosphate uptake, metabolism, and solubilization in soil were conserved across all the S. sanguinis and S. paucimobilis strains tested. Furthermore, genes thought to promote plant resistance to abiotic stress, including heat/cold shock response, heavy metal resistance, and oxidative and osmotic stress resistance, appear to be present in these space-related S. sanguinis and S. paucimobilis strains. Characterizing these biotechnologically important microorganisms found on the ISS and harnessing their key features will aid in the development of self-sustainable long-term space missions in the future. IMPORTANCESphingomonas is ubiquitous in nature, including the anthropogenically contaminated extreme environments. Members of the Sphingomonas genus have been identified as potential candidates for space biomining beyond earth. This study describes the isolation and identification of Sphingomonas members from the ISS, which are capable of producing the phytohormone indole-3-acetic acid. Microbial production of phytohormones will help future in situ studies, grow plants beyond low earth orbit, and establish self-sustainable life support systems. Beyond phytohormone production, stable genomic elements of abiotic stress resistance, heavy metal resistance, and oxidative and osmotic stress resistance were identified, rendering the ISS Sphingomonas isolate a strong candidate for biotechnology-related applications.
Collapse
Affiliation(s)
| | - Swati Bijlani
- University of Southern California, Los Angeles, California, USA
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason M. Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Richard Barker
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Simon Gilroy
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Clay C. C. Wang
- University of Southern California, Los Angeles, California, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
37
|
No JH, Nishu SD, Hong JK, Lyou ES, Kim MS, Wee GN, Lee TK. Raman-Deuterium Isotope Probing and Metagenomics Reveal the Drought Tolerance of the Soil Microbiome and Its Promotion of Plant Growth. mSystems 2022; 7:e0124921. [PMID: 35103487 PMCID: PMC8805637 DOI: 10.1128/msystems.01249-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/11/2022] [Indexed: 01/07/2023] Open
Abstract
Drought has become a major agricultural threat leading crop yield loss. Although a few species of rhizobacteria have the ability to promote plant growth under drought, the drought tolerance of the soil microbiome and its relationship with the promotion of plant growth under drought are scarcely studied. This study aimed to develop a novel approach for assessing drought tolerance in agricultural land by quantitatively measuring microbial phenotypes using stable isotopes and Raman spectroscopy. Raman spectroscopy with deuterium isotope probing was used to identify the Raman signatures of drought effects from drought-tolerant bacteria. Counting drought-tolerant cells by applying these phenotypic properties to agricultural samples revealed that 0% to 52.2% of all measured single cells had drought-tolerant properties, depending on the soil sample. The proportions of drought-tolerant cells in each soil type showed similar tendencies to the numbers of revived pea plants cultivated under drought. The phenotype of the soil microbiome and plant behavior under drought conditions therefore appeared to be highly related. Studying metagenomics suggested that there was a reliable link between the phenotype and genotype of the soil microbiome that could explain mechanisms that promote plant growth in drought. In particular, the proportion of drought-tolerant cells was highly correlated with genes encoding phytohormone production, including tryptophan synthase and isopentenyl-diphosphate delta-isomerase; these enzymes are known to alleviate drought stress. Raman spectroscopy with deuterium isotope probing shows high potential as an alternative technology for quantitatively assessing drought tolerance through phenotypic analysis of the soil microbiome. IMPORTANCE Soil microbiome has played a critical role in the plant survival during drought. However, the drought tolerance of soil microbiome and its ability to promote plant growth under drought is still scarcely studied. In this study, we identified the Raman signature (i.e., phenotype) of drought effects from drought-tolerant bacteria in agricultural soil samples using Raman-deuterium isotope probing (Raman-DIP). Moreover, the number of drought-tolerant cells measured by Raman-DIP was highly related to the survival rate of plant cultivation under drought and the abundance of genes encoding phytohormone production alleviating drought stress in plant. These results suggest Raman-DIP is a promising technology for measuring drought tolerance of soil microbiome. This result give us important insight into further studies of a reliable link between phenotype and genotype of soil microbiome for future plant-bacteria interaction research.
Collapse
Affiliation(s)
- Jee Hyun No
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Susmita Das Nishu
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Jin-Kyung Hong
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Eun Sun Lyou
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Min Sung Kim
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Gui Nam Wee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
38
|
Onwe RO, Onwosi CO, Ezugworie FN, Ekwealor CC, Okonkwo CC. Microbial trehalose boosts the ecological fitness of biocontrol agents, the viability of probiotics during long-term storage and plants tolerance to environmental-driven abiotic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150432. [PMID: 34560451 DOI: 10.1016/j.scitotenv.2021.150432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Despite the impressive gain in agricultural production and greater availability of food, a large portion of the world population is affected by food shortages and nutritional imbalance. This is due to abiotic stresses encountered by plants as a result of environmental-driven perturbations, loss of viability of starter cultures (probiotics) for functional foods during storage as well as the vulnerability of farm produce to postharvest pathogens. The use of compatible solutes (e.g., trehalose, proline, etc.) has been widely supported as a solution to these concerns. Trehalose is one of the widely reported microbial- or plant-derived metabolites that help microorganisms (e.g., biocontrol agents, probiotics and plant growth-promoting bacteria) and plants to tolerate harsh environmental conditions. Due to its recent categorization as generally regarded as safe (GRAS), trehalose is an essential tool for promoting nutrition-sensitive agriculture by replacing the overuse of chemical agents (e.g., pesticides, herbicides). Therefore, the current review evaluated the progress currently made in the application of trehalose in sustainable agriculture. The challenges, opportunities, and future of this biometabolite in food security were highlighted.
Collapse
Affiliation(s)
- Reuben O Onwe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chito C Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Anambra State, Nigeria
| | - Chigozie C Okonkwo
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
39
|
Zhang H, Sun X, Dai M. Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100228. [PMID: 35059626 PMCID: PMC8760038 DOI: 10.1016/j.xplc.2021.100228] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 05/11/2023]
Abstract
Drought is one of the main abiotic stresses that cause crop yield loss. Improving crop yield under drought stress is a major goal of crop breeding, as it is critical to food security. The mechanism of plant drought resistance has been well studied, and diverse drought resistance genes have been identified in recent years, but transferring this knowledge from the laboratory to field production remains a significant challenge. Recently, some new strategies have become research frontiers owing to their advantages of low cost, convenience, strong field operability, and/or environmental friendliness. Exogenous plant growth regulator (PGR) treatment and microbe-based plant biotechnology have been used to effectively improve crop drought tolerance and preserve yield under drought stress. However, our understanding of the mechanisms by which PGRs regulate plant drought resistance and of plant-microbiome interactions under drought is still incomplete. In this review, we summarize these two strategies reported in recent studies, focusing on the mechanisms by which these exogenous treatments regulate crop drought resistance. Finally, future challenges and directions in crop drought resistance breeding are discussed.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
40
|
Wang F, Wei Y, Yan T, Wang C, Chao Y, Jia M, An L, Sheng H. Sphingomonas sp. Hbc-6 alters physiological metabolism and recruits beneficial rhizosphere bacteria to improve plant growth and drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1002772. [PMID: 36388485 PMCID: PMC9650444 DOI: 10.3389/fpls.2022.1002772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 05/13/2023]
Abstract
Drought poses a serious threat to plant growth. Plant growth-promoting bacteria (PGPB) have great potential to improve plant nutrition, yield, and drought tolerance. Sphingomonas is an important microbiota genus that is extensively distributed in the plant or rhizosphere. However, the knowledge of its plant growth-promoting function in dry regions is extremely limited. In this study, we investigated the effects of PGPB Sphingomonas sp. Hbc-6 on maize under normal conditions and drought stress. We found that Hbc-6 increased the biomass of maize under normal conditions and drought stress. For instance, the root fresh weight and shoot dry weight of inoculated maize increased by 39.1% and 34.8% respectively compared with non-inoculated plant, while they increased by 61.3% and 96.3% respectively under drought conditions. Hbc-6 also promoted seed germination, maintained stomatal morphology and increased chlorophyll content so as to enhance photosynthesis of plants. Hbc-6 increased antioxidant enzyme (catalase, superoxide, peroxidase) activities and osmoregulation substances (proline, soluble sugar) and up-regulated the level of beneficial metabolites (resveratrol, etc.). Moreover, Hbc-6 reshaped the maize rhizosphere bacterial community, increased its richness and diversity, and made the rhizosphere bacterial community more complex to resist stress; Hbc-6 could also recruit more potentially rhizosphere beneficial bacteria which might promote plant growth together with Hbc-6 both under normal and drought stress. In short, Hbc-6 increased maize biomass and drought tolerance through the above ways. Our findings lay a foundation for exploring the complex mechanisms of interactions between Sphingomonas and plants, and it is important that Sphingomonas sp. Hbc-6 can be used as a potential biofertilizer in agricultural production, which will assist finding new solutions for improving the growth and yield of crops in arid areas.
Collapse
Affiliation(s)
- Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yali Wei
- Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou, China
| | - Taozhe Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Cuicui Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yinghui Chao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingyue Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- The College of Forestry, Beijing Forestry University, Beijing, China
- *Correspondence: Lizhe An, ; Hongmei Sheng,
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Lizhe An, ; Hongmei Sheng,
| |
Collapse
|
41
|
Luo W, Zai X, Sun J, Li D, Li Y, Li G, Wei G, Chen W. Coupling Root Diameter With Rooting Depth to Reveal the Heterogeneous Assembly of Root-Associated Bacterial Communities in Soybean. Front Microbiol 2021; 12:783563. [PMID: 34925288 PMCID: PMC8678505 DOI: 10.3389/fmicb.2021.783563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Root diameter and rooting depth lead to morphological and architectural heterogeneity of plant roots; however, little is known about their effects on root-associated microbial communities. Bacterial community assembly was explored across 156 samples from three rhizocompartments (the rhizosphere, rhizoplane, and endosphere) for different diameters (0.0–0.5 mm, 0.5–1.0 mm, 1.0–2.0 mm, and>2.0 mm) and depths (0–5 cm, 5–10 cm, 10–15 cm, and 15–20 cm) of soybean [Glycine max (L.) Merrill] root systems. The microbial communities of all samples were analyzed using amplicon sequencing of bacterial 16S rRNA genes. The results showed that root diameter significantly affected the rhizosphere and endosphere bacterial communities, while rooting depth significantly influenced the rhizosphere and rhizoplane bacterial communities. The bacterial alpha diversity decreased with increasing root diameter in all three rhizocompartments, and the diversity increased with increasing rooting depth only in the rhizoplane. Clearly, the hierarchical enrichment process of the bacterial community showed a change from the rhizosphere to the rhizoplane to the endosphere, and the bacterial enrichment was higher in thinner or deeper roots (except for the roots at a depth of 15–20 cm). Network analysis indicated that thinner or deeper roots led to higher bacterial network complexity. The core and keystone taxa associated with the specific root diameter class and rooting depth class harbored specific adaptation or selection strategies. Root diameter and rooting depth together affected the root-associated bacterial assembly and network complexity in the root system. Linking root traits to microbiota may enhance our understanding of plant root-microbe interactions and their role in developing environmentally resilient root ecosystems.
Collapse
Affiliation(s)
- Wen Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Xiaoyu Zai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Jieyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Da Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Yuanli Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Guoqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
42
|
Nakayasu M, Yamazaki S, Aoki Y, Yazaki K, Sugiyama A. Triterpenoid and Steroidal Saponins Differentially Influence Soil Bacterial Genera. PLANTS (BASEL, SWITZERLAND) 2021; 10:2189. [PMID: 34685998 PMCID: PMC8538258 DOI: 10.3390/plants10102189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Plant specialized metabolites (PSMs) are secreted into the rhizosphere, i.e., the soil zone surrounding the roots of plants. They are often involved in root-associated microbiome assembly, but the association between PSMs and microbiota is not well characterized. Saponins are a group of PSMs widely distributed in angiosperms. In this study, we compared the bacterial communities in field soils treated with the pure compounds of four different saponins. All saponin treatments decreased bacterial α-diversity and caused significant differences in β-diversity when compared with the control. The bacterial taxa depleted by saponin treatments were higher than the ones enriched; two families, Burkholderiaceae and Methylophilaceae, were enriched, while eighteen families were depleted with all saponin treatments. Sphingomonadaceae, which is abundant in the rhizosphere of saponin-producing plants (tomato and soybean), was enriched in soil treated with α-solanine, dioscin, and soyasaponins. α-Solanine and dioscin had a steroid-type aglycone that was found to specifically enrich Geobacteraceae, Lachnospiraceae, and Moraxellaceae, while soyasaponins and glycyrrhizin with an oleanane-type aglycone did not specifically enrich any of the bacterial families. At the bacterial genus level, the steroidal-type and oleanane-type saponins differentially influenced the soil bacterial taxa. Together, these results indicate that there is a relationship between the identities of saponins and their effects on soil bacterial communities.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan; (M.N.); (K.Y.)
| | - Shinichi Yamazaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (S.Y.); (Y.A.)
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (S.Y.); (Y.A.)
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan; (M.N.); (K.Y.)
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan; (M.N.); (K.Y.)
| |
Collapse
|
43
|
Effects of Organic Fertilizer Mixed with Food Waste Dry Powder on the Growth of Chinese Cabbage Seedlings. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Food waste is a common global threat to the environment, agriculture, and society. In the present study, we used 30% food waste, mixed with 70% bio-fertilizers, and evaluated their ability to affect the growth of Chinese cabbage. The experiment was conducted using different concentrations of food waste to investigate their effect on Chinese cabbage growth, chlorophyll content, and mineral content. Leaf length, root length, and fresh and dry weight were significantly increased in plants treated with control fertilizer (CF) and fertilizer mixed with food waste (MF). However, high concentrations of food waste decreased the growth and biomass of Chinese cabbage due to salt content. Furthermore, higher chlorophyll content, transpiration efficiency, and photosynthetic rate were observed in CF- and MF-treated plants, while higher chlorophyll fluorescence was observed in the MF × 2 and MF × 6 treatments. Inductively coupled plasm mass spectrometry (ICP-MS) results showed an increase in potassium (K), calcium (Ca), phosphorous (P), and magnesium (Mg) contents in the MF and MF × 2 treatments, while higher sodium (Na) content was observed in the MF × 4 and MF × 6 treatments due to the high salt content found in food waste. The analysis of abscisic acid (ABA) showed that increasing amounts of food waste increase the endogenous ABA content, compromising the survival of plants. In conclusion, optimal amounts of food waste—up to MF and MF × 2—increase plant growth and provide an ecofriendly approach to be employed in the agriculture production system.
Collapse
|
44
|
Phyllosphere Community Assembly and Response to Drought Stress on Common Tropical and Temperate Forage Grasses. Appl Environ Microbiol 2021; 87:e0089521. [PMID: 34161142 DOI: 10.1128/aem.00895-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed. Research efforts focus on the plant-leaf microbiome, or phyllosphere, because its microbial members impact ecosystem function by influencing pathogen resistance, plant hormone production, and nutrient availability through processes including nitrogen fixation. However, little is known about grassland phyllospheres and their response to environmental stress. In this study, globally dominant temperate and tropical forage grass species were grown in a greenhouse under current climate conditions and drought conditions that mimic future climate predictions to understand if (i) plant host taxa influence microbial community assembly, (ii) microbial communities respond to drought stress, and (iii) phyllosphere community changes correlate to changes in plant host traits and stress-response strategies. Community analysis using high-resolution sequencing revealed Gammaproteobacteria as the dominant bacterial class, which increased under severe drought stress on both temperate and tropical grasses while overall bacterial community diversity declined. Bacterial community diversity, structure, and response to drought were significantly different between grass species. This community dependence on plant host species correlated with differences in grass species traits, which became more defined under drought stress conditions, suggesting symbiotic evolutionary relationships between plant hosts and their associated microbial community. Further understanding these strategies and the functions microbes provide to plants will help us utilize microbes to promote agricultural and ecosystem productivity in the future. IMPORTANCE Globally important grassland ecosystems are at risk of degradation due to poor management practices compounded by predicted increases in severity and duration of drought over the next century. Finding new ways to support grassland productivity is critical to maintaining their ecological and agricultural benefits. Discerning how grassland microbial communities change in response to climate stress will help us understand how plant-microbe relationships may be useful to sustainably support grasslands in the future. In this study, phyllosphere community diversity and composition were significantly altered under drought conditions. The significance of our research is demonstrating how severe climate stress reduces bacterial community diversity, which previously was directly associated with decreased plant productivity. These findings guide future questions about functional plant-microbe interactions under stress conditions, greatly enhancing our understanding of how bacteria can increase food security by promoting grassland growth and resilience.
Collapse
|
45
|
Imran M, Latif Khan A, Shahzad R, Aaqil Khan M, Bilal S, Khan A, Kang SM, Lee IJ. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AOB PLANTS 2021; 13:plab026. [PMID: 34234933 PMCID: PMC8255075 DOI: 10.1093/aobpla/plab026] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/08/2021] [Indexed: 05/06/2023]
Abstract
Melatonin is an indolamine bioactive molecule that regulates a wide range of physiological processes during plant growth and enhances abiotic stress tolerance. Here we examined the putative role of exogenous melatonin application (foliar or root zone) in improving drought stress tolerance in soybean seedlings. Pre-treatment of soybean seedlings with melatonin (50 and 100 µM) was found to significantly mitigate the negative effects of drought stress on plant growth-related parameters and chlorophyll content. The beneficial impacts against drought were more pronounced by melatonin application in the rhizosphere than in foliar treatments. The melatonin-induced enhanced tolerance could be attributed to improved photosynthetic activity, reduction of abscisic acid and drought-induced oxidative damage by lowering the accumulation of reactive oxygen species and malondialdehyde. Interestingly, the contents of jasmonic acid and salicylic acid were significantly higher following melatonin treatment in the root zone than in foliar treatment compared with the control. The activity of major antioxidant enzymes such as superoxide dismutase, catalase, polyphenol oxidase, peroxidase and ascorbate peroxidase was stimulated by melatonin application. In addition, melatonin counteracted the drought-induced increase in proline and sugar content. These findings revealed that modifying the endogenous plant hormone content and antioxidant enzymes by melatonin application improved drought tolerance in soybean seedlings. Our findings provide evidence for the stronger physiological role of melatonin in the root zone than in leaves, which may be useful in the large-scale field level application during drought.
Collapse
Affiliation(s)
- Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, 41566Republic of Korea
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Raheem Shahzad
- Department of Horticulture, the University of Haripur, Haripur 21120, Pakistan
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, 41566Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Adil Khan
- Department of Plant and Soil sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, 41566Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, 41566Republic of Korea
| |
Collapse
|
46
|
Aguirre-von-Wobeser E, Alonso-Sánchez A, Méndez-Bravo A, Villanueva Espino LA, Reverchon F. Barks from avocado trees of different geographic locations have consistent microbial communities. Arch Microbiol 2021; 203:4593-4607. [PMID: 34160629 DOI: 10.1007/s00203-021-02449-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023]
Abstract
Bark is a permanent surface for microbial colonization at the interface of trees and the surrounding air, but little is known about its microbial communities. We used shotgun metagenomic sequencing to analyze the bark microbiomes of avocado trees from two orchards, and compared one of them to rhizospheric soil. It was shown that the microbial communities of avocado bark have a well-defined taxonomic structure, with consistent patterns of abundance of bacteria, fungi, and archaea, even in trees from two different locations. Bark microbial communities were distinct from rhizospheric soil, although they showed overlap in some taxa. Thus, avocado bark is a well-defined environment, providing niches for specific taxonomic groups, many of which are also found in other aerial plant tissues. The present in-depth characterization of bark microbial communities can form a basis for their future manipulation for agronomical purposes.
Collapse
Affiliation(s)
- Eneas Aguirre-von-Wobeser
- Unidad Regional Hidalgo, CONACYT, Centro de Investigación y Desarrollo, A.C., Blvd. Sta. Catarina s/n, Col. Santiago Tlapacoya, 42110, San Agustin Tlaxiaca, Hidalgo, Mexico.
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Alfonso Méndez-Bravo
- Laboratorio Nacional de Análisis y Síntesis Ecológica, CONACYT, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Col. Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacan, Mexico
| | - Luis Alberto Villanueva Espino
- Laboratorio Nacional de Análisis y Síntesis Ecológica, CONACYT, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Col. Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacan, Mexico
| | - Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico
| |
Collapse
|
47
|
Khan MA, Hamayun M, Asaf S, Khan M, Yun BW, Kang SM, Lee IJ. Rhizospheric Bacillus spp. Rescues Plant Growth Under Salinity Stress via Regulating Gene Expression, Endogenous Hormones, and Antioxidant System of Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2021; 12:665590. [PMID: 34177981 PMCID: PMC8226221 DOI: 10.3389/fpls.2021.665590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 05/27/2023]
Abstract
Salinity has drastically reduced crop yields and harmed the global agricultural industry. We isolated 55 bacterial strains from plants inhabiting the coastal sand dunes of Pohang, Korea. A screening bioassay showed that 14 of the bacterial isolates secreted indole-3-acetic acid (IAA), 12 isolates were capable of exopolysaccharide (EPS) production and phosphate solubilization, and 10 isolates secreted siderophores. Based on our preliminary screening, 11 bacterial isolates were tested for salinity tolerance on Luria-Bertani (LB) media supplemented with 0, 50, 100, and 150 mM of NaCl. Three bacterial isolates, ALT11, ALT12, and ALT30, had the best tolerance against elevated NaCl levels and were selected for further study. Inoculation of the selected bacterial isolates significantly enhanced rice growth attributes, viz., shoot length (22.8-42.2%), root length (28.18-59%), fresh biomass (44.7-66.41%), dry biomass (85-90%), chlorophyll content (18.30-36.15%), Chl a (29.02-60.87%), Chl b (30.86-64.51%), and carotenoid content (26.86-70%), under elevated salt stress of 70 and 140 mM. Furthermore, a decrease in the endogenous abscisic acid (ABA) content (27.9-23%) and endogenous salicylic acid (SA) levels (11.70-69.19%) was observed in inoculated plants. Antioxidant analysis revealed an increase in total protein (TP) levels (42.57-68.26%), whereas it revealed a decrease in polyphenol peroxidase (PPO) (24.63-34.57%), glutathione (GSH) (25.53-24.91%), SOA (13.88-18.67%), and LPO levels (15.96-26.06%) of bacterial-inoculated plants. Moreover, an increase in catalase (CAT) (26-33.04%), peroxidase (POD) (59.55-78%), superoxide dismutase (SOD) (13.58-27.77%), and ascorbic peroxidase (APX) (5.76-22.74%) activity was observed. Additionally, inductively coupled plasma mass spectrometry (ICP-MS) analysis showed a decline in Na+ content (24.11 and 30.60%) and an increase in K+ (23.14 and 15.45%) and Mg+ (2.82 and 18.74%) under elevated salt stress. OsNHX1 gene expression was downregulated (0.3 and 4.1-folds), whereas the gene expression of OsPIN1A, OsCATA, and OsAPX1 was upregulated by a 7-17-fold in bacterial-inoculated rice plants. It was concluded that the selected bacterial isolates, ALT11, ALT12, and ALT30, mitigated the adverse effects of salt stress on rice growth and can be used as climate smart agricultural tools in ecofriendly agricultural practices.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Murtaza Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
48
|
Nakayasu M, Ohno K, Takamatsu K, Aoki Y, Yamazaki S, Takase H, Shoji T, Yazaki K, Sugiyama A. Tomato roots secrete tomatine to modulate the bacterial assemblage of the rhizosphere. PLANT PHYSIOLOGY 2021; 186:270-284. [PMID: 33619554 PMCID: PMC8154044 DOI: 10.1093/plphys/kiab069] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/31/2021] [Indexed: 05/12/2023]
Abstract
Saponins are the group of plant specialized metabolites which are widely distributed in angiosperm plants and have various biological activities. The present study focused on α-tomatine, a major saponin present in tissues of tomato (Solanum lycopersicum) plants. α-Tomatine is responsible for defense against plant pathogens and herbivores, but its biological function in the rhizosphere remains unknown. Secretion of tomatine was higher at the early growth than the green-fruit stage in hydroponically grown plants, and the concentration of tomatine in the rhizosphere of field-grown plants was higher than that of the bulk soil at all growth stages. The effects of tomatine and its aglycone tomatidine on the bacterial communities in the soil were evaluated in vitro, revealing that both compounds influenced the microbiome in a concentration-dependent manner. Numerous bacterial families were influenced in tomatine/tomatidine-treated soil as well as in the tomato rhizosphere. Sphingomonadaceae species, which are commonly observed and enriched in tomato rhizospheres in the fields, were also enriched in tomatine- and tomatidine-treated soils. Moreover, a jasmonate-responsive ETHYLENE RESPONSE FACTOR 4 mutant associated with low tomatine production caused the root-associated bacterial communities to change with a reduced abundance of Sphingomonadaceae. Taken together, our results highlight the role of tomatine in shaping the bacterial communities of the rhizosphere and suggest additional functions of tomatine in belowground biological communication.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Kohei Ohno
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Kyoko Takamatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Shinichi Yamazaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Hisabumi Takase
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Kyoto 621-8555, Japan
| | - Tsubasa Shoji
- Department of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Author for communication:
| |
Collapse
|
49
|
Numan M, Serba DD, Ligaba-Osena A. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets. Genes (Basel) 2021; 12:genes12050739. [PMID: 34068886 PMCID: PMC8156724 DOI: 10.3390/genes12050739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Millets are important cereal crops cultivated in arid and semiarid regions of the world, particularly Africa and southeast Asia. Climate change has triggered multiple abiotic stresses in plants that are the main causes of crop loss worldwide, reducing average yield for most crops by more than 50%. Although millets are tolerant to most abiotic stresses including drought and high temperatures, further improvement is needed to make them more resilient to unprecedented effects of climate change and associated environmental stresses. Incorporation of stress tolerance traits in millets will improve their productivity in marginal environments and will help in overcoming future food shortage due to climate change. Recently, approaches such as application of plant growth-promoting rhizobacteria (PGPRs) have been used to improve growth and development, as well as stress tolerance of crops. Moreover, with the advance of next-generation sequencing technology, genome editing, using the clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system are increasingly used to develop stress tolerant varieties in different crops. In this paper, the innate ability of millets to tolerate abiotic stresses and alternative approaches to boost stress resistance were thoroughly reviewed. Moreover, several stress-resistant genes were identified in related monocots such as rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), and other related species for which orthologs in millets could be manipulated by CRISPR/Cas9 and related genome-editing techniques to improve stress resilience and productivity. These cutting-edge alternative strategies are expected to bring this group of orphan crops at the forefront of scientific research for their potential contribution to global food security.
Collapse
Affiliation(s)
- Muhammad Numan
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA;
| | - Desalegn D. Serba
- USDA-ARS, U. S. Arid-Land Agricultural Research Center, 21881 N Cardon Ln., Maricopa, AZ 85138, USA;
| | - Ayalew Ligaba-Osena
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA;
- Correspondence:
| |
Collapse
|
50
|
Ilangumaran G, Schwinghamer TD, Smith DL. Rhizobacteria From Root Nodules of an Indigenous Legume Enhance Salinity Stress Tolerance in Soybean. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.617978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Soybean is the most widely grown legume worldwide, but it is a glycophyte and salinity stress can decrease its yield potential up to 50%. Plant growth promoting rhizobacteria (PGPR) are known to enhance growth and induce tolerance to abiotic stresses including salinity. The aim of this study was to isolate such PGPR from the root nodules of Amphicarpaea bracteata, a North American relative of soybean. Isolated strains were identified, and 15 strains were screened for potential utilization as PGPR of soybean through a series of greenhouse trials. Four isolates that greatly improved shoot and root growth were further selected and screened under a range of salt concentrations. Two of the most promising strains, Rhizobium sp. SL42 and Hydrogenophaga sp. SL48 were ascertained to exert the greatest beneficial effects on soybean growth and salinity tolerance. They were co-inoculated with Bradyrhizobium japonicum 532C (Bj) and the plants were grown up to the harvest stage. The treatment of Bj+SL42 resulted in higher shoot biomass than the control, 18% at the vegetative stage, 16% at flowering, 7.5% at pod-filling, and 4.6% at harvest and seed weight was increased by 4.3% under salt stress (ECe = 7.4 ds/m). Grain yield was raised under optimal conditions by 7.4 and 8.1% with treatments Bj+SL48 and Bj+SL42+SL48, respectively. Nitrogen assimilation and shoot K+/Na+ ratio were also higher in the co-inoculation treatments. This study suggested that inoculation with bacteria from an indigenous legume can induce stress tolerance, improve growth and yield to support sustainability, and encourage ecological adaptability of soybean.
Collapse
|