1
|
Thongwattana T, Chaiyo R, Ponsanti K, Tangnorawich B, Pratumpong P, Toommee S, Jenjob R, Yang SG, Parcharoen Y, Natphopsuk S, Pechyen C. Synthesis of Silver Nanoparticles and Gold Nanoparticles Used as Biosensors for the Detection of Human Serum Albumin-Diagnosed Kidney Disease. Pharmaceuticals (Basel) 2024; 17:1421. [PMID: 39598335 PMCID: PMC11597461 DOI: 10.3390/ph17111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: This study aims to develop a screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) for the detection of human serum albumin (HSA). The objectives include utilizing green synthesis methods for nanoparticle production and evaluating the electrochemical performance of the modified electrodes. Methods: AgNPs and AuNPs were synthesized using Phulae pineapple peel extract (PPA) as a reducing agent. The nanoparticles were characterized using UV-visible spectrophotometry (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The electrochemical performance of AgNP/SPCE and AuNP/SPCE was assessed by cyclic voltammetry (CV) studies, and the electrodes were functionalized with anti-HSA antibodies for HSA detection. Results: Characterization revealed spherical nanoparticles ranging from 10 to 30 nm. Both AgNP/SPCE and AuNP/SPCE demonstrated improved electrochemical performance compared to bare SPCEs. The modified sensors could detect serum albumin concentrations from 10 to 400 μg/mL, with high correlation values of 0.97 and 0.99 for AgNPs and AuNPs, respectively. Conclusions: This research demonstrates the potential of using agricultural waste for green synthesis of nanoparticles and highlights the application of AgNPs and AuNPs in developing sensitive biosensing platforms for the detection of human serum albumin.
Collapse
Affiliation(s)
- Tiarpa Thongwattana
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Ronnakorn Chaiyo
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Khanittha Ponsanti
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Benchamaporn Tangnorawich
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Pathum Thani 12120, Thailand
| | - Patcharee Pratumpong
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Pathum Thani 12120, Thailand
| | - Surachet Toommee
- Industrial Arts Program, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand
| | - Ratchapol Jenjob
- BK21 FOUR Program in Biomedical Science and Engineering, Department of Biomedical Science, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Su-Geun Yang
- BK21 FOUR Program in Biomedical Science and Engineering, Department of Biomedical Science, Inha University College of Medicine, Incheon 22212, Republic of Korea
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Yardnapar Parcharoen
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Pathum Thani 12120, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Sitakan Natphopsuk
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Pathum Thani 12120, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Chiravoot Pechyen
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Yaman D, Jimenez M, Ferreira Gonzalez S, Corrigan D. Current trends in electrochemical approaches for liver biomarker detection: a mini-review. Analyst 2024; 149:5156-5164. [PMID: 39351762 DOI: 10.1039/d4an01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), and albumin are well-established liver biomarkers with significant physiological functions. Alterations in these liver function tests can be indicative of the presence and progression of acute and chronic liver conditions such as liver cirrhosis, non-alcoholic fatty liver disease, biliary disease, and liver failure. Therefore, accurate and quantitative detection of these biomarkers is crucial for diagnosing and monitoring liver disease. There are several commercially available chemistry analyzers capable of simultaneously detecting all these biomarkers, as well as numerous biosensors designed for individual detection. Various techniques have been employed, including colorimetry, surface-enhanced Raman spectroscopy (SERS), electrochemiluminescence (ECL), fluorescence-based techniques, and electrochemical methods. Among these, electrochemical detection stands out due to its simplicity, cost-effectiveness, low sample volume requirement, label-free detection, high sensitivity, fast response times, miniaturization, and portability. Information on recently developed electrochemical biosensors is summarized through detailed tables and is intended to guide future research and development efforts in this area.
Collapse
Affiliation(s)
- Derya Yaman
- Centre for Advanced Measurement Research & Health Translation, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | - Melanie Jimenez
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Sofia Ferreira Gonzalez
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Damion Corrigan
- Centre for Advanced Measurement Research & Health Translation, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| |
Collapse
|
3
|
Mu W, Wu C, Wu F, Gao H, Ren X, Feng J, Miao M, Zhang H, Chang D, Pan H. Ultrasensitive and label-free electrochemical immunosensor for the detection of the ovarian cancer biomarker CA125 based on CuCo-ONSs@AuNPs nanocomposites. J Pharm Biomed Anal 2024; 243:116080. [PMID: 38479306 DOI: 10.1016/j.jpba.2024.116080] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Cancer antigen 125 (CA125) is pivotal as a tumor marker in early ovarian cancer prevention and diagnosis. In this work, we introduced an ultrasensitive label-free electrochemical immunosensor tailored for CA125 detection, leveraging nanogold-functionalized copper-cobalt oxide nanosheets (CuCo-ONSs@AuNPs) as nanocomposites. For the inaugural application, copper-cobalt oxide nanosheets delivered the requisite DPV electrochemical response for the immunosensors. Their large specific surface area and commendable electrical conductivity amplify electron transfer and enable significant gold nanoparticle loading. Concurrently, AuNPs offer a plethora of active sites, facilitating easy immobilization of biomolecules via the bond between amino groups and AuNPs. We employed scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy to characterize the nanomaterials' surface morphology and elemental composition. The electrochemical sensor response signals were ascertained using differential pulse voltammetry. Under optimal conditions, the immunosensor exhibited a linear detection range from 1×10-7 U/mL to 1×10-3 U/mL and a detection limit of 3.9×10-8 U/mL (S/N=3). The proposed label-free electrochemical immunosensor furnishes a straightforward, dependable, and sensitive approach for CA125 quantification and stands as a promising method for clinical detection of other tumor markers.
Collapse
Affiliation(s)
- Wendi Mu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
| | - Chunyan Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
| | - Fangfang Wu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
| | - Hongmin Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
| | - Xinshui Ren
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China; Shanghai University of Medicine and Health Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jing Feng
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
| | - Meng Miao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
| | - Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
| | - Dong Chang
- Department of Laboratory Medicine, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China; The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China.
| |
Collapse
|
4
|
Kaewnu K, Kongkaew S, Unajak S, Hoihuan A, Jaengphop C, Kanatharana P, Thavarungkul P, Limbut W. A reusable screen-printed carbon electrode-based aptasensor for the determination of chloramphenicol in food and environment samples. Talanta 2024; 273:125857. [PMID: 38490024 DOI: 10.1016/j.talanta.2024.125857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
An electrochemical aptasensor was developed for the determination of chloramphenicol (CAP) in fresh foods and food products. The aptasensor was developed using Prussian blue (PB) and chitosan (CS) film. PB acts as a redox probe for detection and CS acts as a sorption material. The aptamer (Apt) was immobilized on a screen-printed carbon electrode (SPCE) modified with gold nanoparticles (AuNPs). Under optimum conditions, the linearity of the aptasensor was between 1.0 and 6.0 × 106 ng L-1 with a detection limit of 0.65 and a quantification limit of 2.15 ng L-1. The electrode could be regenerated up to 24 times without the use of chemicals. The aptasensor showed good repeatability (RSD <11.2%) and good reproducibility (RSD <7.7%). The proposed method successfully quantified CAP in milk, shrimp pond water and shrimp meat with good accuracy (recovery = 88.0 ± 0.6% to 100 ± 2%). The proposed aptasensor could be especially useful in agriculture to ensure the quality of food and the environment and could be used to determine other antibiotics.
Collapse
Affiliation(s)
- Krittapas Kaewnu
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supatinee Kongkaew
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand; Kasetsart Vaccines and Biologics Innovation Centre, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Atittaya Hoihuan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand; Kasetsart Vaccines and Biologics Innovation Centre, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Chutikarn Jaengphop
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand; Kasetsart Vaccines and Biologics Innovation Centre, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
5
|
Siciliano G, Alsadig A, Chiriacò MS, Turco A, Foscarini A, Ferrara F, Gigli G, Primiceri E. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta 2024; 268:125280. [PMID: 37862755 DOI: 10.1016/j.talanta.2023.125280] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Gold nanoparticles (AuNPs) have emerged as powerful tools in the construction of highly sensitive electrochemical biosensors. Their unique properties, such as the ability to serve as an effective platform for biomolecule immobilization and to facilitate electron transfer between the electrode surface and the immobilized molecules, make them a promising choice for biosensor applications. Utilizing AuNPs modified electrodes can lead to improved sensitivity and lower limits of detection compared to unmodified electrodes. This review provides a comprehensive overview of the recent advancements and applications of AuNPs-based electrochemical biosensors in the biomedical field. The synthesis methods of AuNPs, their key properties, and various strategies employed for electrode modification are discussed. Furthermore, this review highlights the remarkable applications of these nanostructure-integrated electrodes, including immunosensors, enzyme biosensors, and DNA biosensors.
Collapse
Affiliation(s)
- Giulia Siciliano
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Ahmed Alsadig
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | | | - Antonio Turco
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Alessia Foscarini
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Francesco Ferrara
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | | |
Collapse
|
6
|
Pandey N, Mandal M, Samanta D, Mukherjee G, Dutta G. A nanobody based ultrasensitive electrochemical biosensor for the detection of soluble CTLA-4 -A candidate biomarker for cancer development and progression. Biosens Bioelectron 2023; 242:115733. [PMID: 37820555 DOI: 10.1016/j.bios.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
A soluble isoform of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has been found in the serum of healthy individuals and alterations in its expression level have been linked with the development and progression of various cancers. Conventionally, soluble CTLA-4 (sCTLA-4) has been quantified by techniques such as ELISA, western blot, and flow cytometry, which however are time-consuming, highly expensive and require large sample volumes. Therefore, rapid, cost-effective and real-time monitoring of soluble CTLA-4 levels is much needed to facilitate timely diagnosis of a worsening disease and help patient selection for immunotherapeutic interventions in cancer. Here, for the first time, we report an ultrasensitive, highly selective electrochemical nanobody (NAb) based biosensor for the quantitative detection of soluble CTLA-4 employing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and gold nanoparticles modified electrode with attomole sensitivity. Incorporating nanomaterials with conductive polymers enhances the sensitivity of the electrochemical biosensor, while the nanobody's stability, specificity and ease of production make it a suitable choice as a bioreceptor. The proposed NAb-based sensor can detect sCTLA-4 from pure recombinant protein in a wide concentration range of 100 ag mL-1- 500 μg mL-1, with a limit of detection of 1.19 ag mL-1 (+3σ of the blank signal). The sensor's relative standard deviation for reproducibility is less than 0.4% and has effective real sample analytics for cell culture supernatant with no significant difference with pure recombinant protein (p < 0.05). Our proposed nanobody based sensor exhibits stability for up to 2 weeks (<3% variation). Moreover, this nanobody-based sensor presents a future opportunity for quantitative, ultrasensitive, and economical biosensor development that can be adapted to monitor the immune landscape of cancer patients to provide a larger therapeutic window.
Collapse
Affiliation(s)
- Nidhi Pandey
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Mukti Mandal
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Dibyendu Samanta
- School of Bio Science, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
7
|
Silveri F, Obořilová R, Máčala J, Compagnone D, Skládal P. Impedimetric immunosensor for microalbuminuria based on a WS 2/Au water-phase assembled nanocomposite. Mikrochim Acta 2023; 190:306. [PMID: 37466678 DOI: 10.1007/s00604-023-05873-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023]
Abstract
An electrochemical impedimetric biosensor for human serum albumin (HSA) determination is proposed. The biosensor is based on water-phase assembled nanocomposites made of 2D WS2 nanoflakes and Au nanoparticles (AuNPs). The WS2 has been produced using a liquid-phase exfoliation strategy assisted by sodium cholate, obtaining a water-stable suspension that allowed the straightforward decoration with AuNPs directly in the aqueous phase. The resulting WS2/Au nanocomposite has been characterized by atomic force microscopy and Raman spectroscopy and, then, employed to modify screen-printed electrodes. Good electron-transfer features have been achieved. An electrochemical immunosensing platform has been assembled exploiting cysteamine-glutaraldehyde covalent chemistry for antibody (Ab) immobilization. The resulting immunosensor exhibited good sensitivity for HSA detection (LOD = 2 ng mL-1), with extended linear range (0.005 - 100 µg mL-1), providing a useful analytical tool for HSA determination in urine at relevant clinical ranges for microalbuminuria screening. The HSA quantification in human urine samples resulted in recoveries from 91.8 to 112.4% and was also reproducible (RSD < 7.5%, n = 3), with marked selectivity. This nanocomposite, thanks to the reliable performance and the ease of the assembling strategy, is a promising alternative for electrochemical immunosensing of health relevant markers.
Collapse
Affiliation(s)
- Filippo Silveri
- Department of Bioscience and Technology for Food, Agriculture and Environment, Campus "Aurelio Saliceti", Via R Balzarini 1, 64100, Teramo, Italy
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC MU-Nanobiotechnology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jakub Máčala
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, Campus "Aurelio Saliceti", Via R Balzarini 1, 64100, Teramo, Italy.
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- CEITEC MU-Nanobiotechnology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
8
|
Highly Sensitive Sensing Detection of Prostate-specific Antigen Based on Point-of-care Electrochemical Immunosensor. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Police Patil AV, Chuang YS, Li C, Wu CC. Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification. BIOSENSORS 2023; 13:bios13010125. [PMID: 36671960 PMCID: PMC9855954 DOI: 10.3390/bios13010125] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 05/31/2023]
Abstract
Electrochemical immunosensors have attracted immense attention due to the ease of mass electrode production and the high compatibility of the miniature electric reader, which is beneficial for developing point-of-care diagnostic devices. Electrochemical immunosensors can be divided into label-free and label-based sensing strategies equipped with potentiometric, amperometric, voltammetric, or impedimetric detectors. Emerging nanomaterials are frequently used on electrochemical immunosensors as a highly rough and conductive interface of the electrodes or on nanocarriers of immobilizing capture antibodies, electroactive mediators, or catalyzers. Adopting nanomaterials can increase immunosensor characteristics with lower detection limits and better sensitivity. Recent research has shown innovative immobilization procedures of nanomaterials which meet the requirements of different electrochemical immunosensors. This review discusses the past five years of advances in nanomaterials (metal nanoparticles, metal nanostructures, carbon nanotubes, and graphene) integrated into the electrochemical immunosensor. Furthermore, the new tendency and endeavors of nanomaterial-based electrochemical immunosensors are discussed.
Collapse
Affiliation(s)
- Avinash V. Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Yu-Sheng Chuang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, Tulane University, 1324 Tulane Ave., New Orleans, LA 70112, USA
| | - Ching-Chou Wu
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
| |
Collapse
|
10
|
3D porous CS-AuNPs-PEDOT-PB nanocomposite cryogel for highly sensitive label-free electrochemical immunosensor for carcinoembryonic antigen determination. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Wang X, Zhang Z, Wu G, Xu C, Wu J, Zhang X, Liu J. Applications of electrochemical biosensors based on functional antibody-modified screen-printed electrodes: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:7-16. [PMID: 34877580 DOI: 10.1039/d1ay01570b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of biomolecular analytes is of great importance in clinical, environmental, and argo-food areas, among which the electrochemical methodology is attracting much attention. In particular, screen-printed electrode (SPE)-based sensing applications have exhibited potential possibility for on-site detection, especially for fast clinical biomarker detection, since they provide a miniaturized but robust and portable electrode detection system. In this context, we focused on the modification of SPE with functional antibodies to improve the electrochemical detection performance in versatile sensing applications, particularly for COVID-19 detection. These antibodies were immobilized onto the electrode surface via various methodologies, through which the powerful potential from the modification of SPE was revealed. Finally, more novel and excellent works on the biomolecular modification of SPE and the prospects of this technology from its state-of-art status to commercialization are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Guolin Wu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Chunxia Xu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jianping Wu
- Department of Clinical Laboratory, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xingguo Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
12
|
Application of PEDOT:PSS and Its Composites in Electrochemical and Electronic Chemosensors. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040079] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is a highly important and attractive conducting polymer as well as commercially available in organic electronics, including electrochemical and electronic chemosensors, due to its unique features such as excellent solution-fabrication capability and miscibility, high and controllable conductivity, excellent chemical and electrochemical stability, good optical transparency and biocompatibility. In this review, we present a comprehensive overview of the recent research progress of PEDOT:PSS and its composites, and the application in electrochemical and electronic sensors for detecting liquid-phase or gaseous chemical analytes, including inorganic or organic ions, pH, humidity, hydrogen peroxide (H2O2), ammonia (NH3), CO, CO2, NO2, and organic solvent vapors like methanol, acetone, etc. We will discuss in detail the structural, architectural and morphological optimization of PEDOT:PSS and its composites with other additives, as well as the fabrication technology of diverse sensor systems in response to a wide range of analytes in varying environments. At the end of the review will be given a perspective summary covering both the key challenges and potential solutions in the future research of PEDOT:PSS-based chemosensors, especially those in a flexible or wearable format.
Collapse
|
13
|
Uric Acid Sensor Based on PEDOT:PSS Modified Screen-Printed Carbon Electrode Fabricated with a Simple Painting Technique. JURNAL KIMIA SAINS DAN APLIKASI 2021. [DOI: 10.14710/jksa.24.2.43-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A screen-printed carbon electrode is a suitable electrode for electrochemical sensors due to its simplicity and portability. This study aimed to fabricate a screen-printed carbon electrode modified with poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (SPCE-PEDOT:PSS) to improve the electrochemical performance for uric acid detection. The SPCE was fabricated using a layer-by-layer painting process of conductive ink consisting of graphite as a conductive material, polystyrene as a polymeric binder, and dichloromethane solvent on a polyvinyl chloride paper substrate. The fabricated SPCE was then modified with PEDOT:PSS by a drop-casting method. The characterization of SPCE-PEDOT:PSS surface morphology was performed using the scanning electron microscopy technique. The SPCE-PEDOT:PSS provided an acceptable linearity (R2 = 0.9985, 0.9993, 0.9985), sensitivity (0.070, 0.015, 0.024 µA/µM), precision (%RSD = 2.70%, 2.89%, 2.40%), limit of detection (1.61 µM, 1.14 µM, 1.62 µM), and limit of quantitation (5.37 µM, 3.81 µM to 5.39 µM) in measurement of uric acid standard solution using cyclic voltammetry, amperometry, and differential pulse voltammetry techniques, respectively. The studies using SPCE-PEDOT:PSS indicated that the electrode could be applied in the electrochemical measurement of uric acid in the human urine sample.
Collapse
|
14
|
An ultrasensitive label-free electrochemical immunosensor based on 3D porous chitosan-graphene-ionic liquid-ferrocene nanocomposite cryogel decorated with gold nanoparticles for prostate-specific antigen. Talanta 2020; 224:121787. [PMID: 33379016 DOI: 10.1016/j.talanta.2020.121787] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
A highly sensitive and selective label-free electrochemical immunosensor was successfully fabricated for measuring prostate-specific antigen (PSA). A composite of chitosan, graphene, ionic liquid and ferrocene (CS-GR-IL-Fc) was drop casted onto a screen-printed carbon electrode (SPCE) and frozen to create a layer of 3D porous cryogel (CS-GR-IL-Fc cry) which was decorated with gold nanoparticles (AuNPs). The biocompatibility and porosity of the cryogel increased the surface area available for AuNPs loading via amino groups and the population of anti-PSA, immobilized on the AuNPs via chemisorption, could be increased. The CS-GR-IL-Fc cry displayed excellent conductivity, enhancing electron transfer and amplifying the current signal. Differential pulse voltammetry was employed to determine PSA by measuring the reduction in the Fc oxidation peak current in response to the formation of PSA/anti-PSA immunocomplex. Under the optimized incubation time and electrolyte pH, the developed immunosensor displayed excellent analytical performances, including a wide linear range at concentrations from 1.0 × 10-7 to 1.0 × 10-1 ng mL-1, with a very low limit of detection of 4.8 × 10-8 ng mL-1 and good reproducibility (relative standard deviation of <4.6%, n = 6), stability (90% sensitivity within 20 days), repeatability (12 cycles of binding-rebinding, the sensitivity > 90%) and selectivity. The results obtained from the device for the determination of PSA in human serum were consistent with results from the enzyme-linked immunosorbent assay (P > 0.05), and indicated the promising potential of the proposed immunosensor in clinical diagnosis.
Collapse
|