1
|
Alibardi L. Keratinization and cornification of avian skin appendages during development. Insights from immunolabeling and electron microscopic studies. Dev Biol 2025; 522:196-219. [PMID: 40154782 DOI: 10.1016/j.ydbio.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
The basal cytoskeleton of avian keratinocytes consists in a number of Intermediate Filament Keratins (IFKs, also indicated as alpha-keratins), poor (soft) or rich (hard) in cysteine. In keratinocytes of developing skin appendages Corneous Beta Proteins (CBPs, formerly termed beta-keratins), build most of the corneous material of developing scutate scales, claws, beak and feathers. CBPs derive from a gene locus termed Epidermal Differentiation Complex (EDC), unrelated to genes for IFKs. CBPs and IFKs belong to two different gene families that evolved independently during the evolution of birds. The evolution of feathers derived from the initial morphogenesis of barb ridges containing specialized proteins. During feather development, the framework of IFKs that combine with CBPs in differentiating keratinocytes, barb and barbule cells, give rise to resistant but flexible corneocytes in feathers and hard corneocytes in scales, claws and beaks. Here, we mainly deal with avian IFKs that are accumulated during the development of skin derivatives of birds, especially downfeathers. The latter are corneous appendages and, when mature, are composed from a prevalent mass of feather-CBPs (fCBPs, formerly indicated as feather beta-keratins). During development fCBPs are deposited over a IFKs cytoskeleton formed in barb and barbule cells, and these small beta-proteins rapidly overcame in amount IFKs, generating the corneous barbs and barbules of downfeathers. This process likely occurs through electrostatic interactions between acidic IFKs and basic CBPs, and later by the formation of covalent bonds (-S-S- and epsilon-bonds). Proteome and molecular studies have sequenced most of IFKs and CBPs of feathers in some species of birds. Most of the proteins extracted from feathers are fCBPs, while a lower amount is constituted from IFKs and other minor proteins.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Dept Biology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
2
|
Alibardi L. Ultrastructure and immunohistochemistry of apteric skin in ratites and its epidermal soft cornification. Acta Histochem 2024; 126:152213. [PMID: 39476480 DOI: 10.1016/j.acthis.2024.152213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
An electron microscopy and immunohistochemistry study has been conducted to acquire comparative information on the structure of apteric skin in ratites, ostrich and emu. The epidermis is thin in the neck of both species and thicker in the dorsal region where acidic and neutral keratins are present in the viable epidermis and stratum corneum. The dermis in both species is mostly occupied by collagen fibrils that form large bundles, often organized in alternated layers in the deeper part of the dermis. Numerous collagen fibrils contact the basement membrane of the epidermis. Sparse tactile Meissner or Krause sensilli are present among the thick collagen bundles. The ostrich epidermis in the dorsal skin is thicker than in the neck, with a columnar basal layer, 3-5 intermediate suprabasal layers and a thick corneous layer. The epidermis of the neck in emu is very thin, featuring two-three narrow cell layers above a flat basal layer and a relatively thick corneous layer. Basal and suprabasal keratinocytes contain lipid droplets and small keratin bundles but no keratohyalin accumulates in pre-corneous cells. The thin corneocytes form a multilayered corneous layer. Loricrine is present in pre-corneous and corneous layers while CBPs, formerly indicated as beta-keratins, are absent in apteric epidermis.
Collapse
|
3
|
Alibardi L. Changes of epidermal proteins immunolocalization in the corneous layer from embryonic to definitive avian beak. Micron 2024; 186:103704. [PMID: 39178619 DOI: 10.1016/j.micron.2024.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
The process of keratinization and cornification in the developing beak has been studied through immunofluorescence and immunogold electron microscopy in chick and zebrafinch embryos. After the curved beak anlagen appears at the tip of the maxillar bone, 5-8 layers of embryonic epidermis are generated from the basal layer of the epidermis. These cells are weakly immunoabeled for IFKs (Intermediate Filament Keratins) and more intensely for scaffoldin, a protein of the EDC (Epidermal Differentiation Complex) involved in the soft keratinization of the embryonic epidermis. Immunolabeling for CBPs (Corneous Beta Proteins) is visible in the transitional embryonic layers that are temporarily generated between the embryonic and definitive beak epidermis. The electron microscope reveals that intermediate layers contain immunolabeled periderm granules for scaffoldin mixed with bundles of corneous material immunolabeled for CBPs. Intense CBPs labeling occurs in the compacting corneous bundles of beta-keratinocytes in the definitive beak while scaffolding labeling disappears. The embryonic epidermis is sloughed before hatching. Sox (Sulfhydryl Oxidase) immunolabeling reveals that the enzyme is almost absent in embryonic layers but is present in transitional and definitive beta-keratinocytes. This indicates the formation of cross-linked disulfide bonds in the definitive corneous layer of the beak. Some calcium precipitation, suggested from von Kossa staining, occurs in the corneous layers only on the 18th day of development in the chick, in preparation for hatching.
Collapse
|
4
|
Gaide N, Filaire F, Bertran K, Crispo M, Dirat M, Secula A, Foret-Lucas C, Payré B, Perlas A, Cantero G, Majó N, Soubies S, Guérin JL. The feather epithelium contributes to the dissemination and ecology of clade 2.3.4.4b H5 high pathogenicity avian influenza viruses in ducks. Emerg Microbes Infect 2023; 12:2272644. [PMID: 37847060 PMCID: PMC10627046 DOI: 10.1080/22221751.2023.2272644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 10/18/2023]
Abstract
Immature feathers are known replication sites for high pathogenicity avian influenza viruses (HPAIVs) in poultry. However, it is unclear whether feathers play an active role in viral transmission. This study aims to investigate the contribution of the feather epithelium to the dissemination of clade 2.3.4.4b goose/Guangdong/1996 lineage H5 HPAIVs in the environment, based on natural and experimental infections of domestic mule and Muscovy ducks. During the 2016-2022 outbreaks, H5 HPAIVs exhibited persistent and marked feather epitheliotropism in naturally infected commercial ducks. Infection of the feather epithelium resulted in epithelial necrosis and disruption, as well as the production and environmental shedding of infectious virions. Viral and feather antigens colocalized in dust samples obtained from poultry barns housing naturally infected birds. In summary, the feather epithelium contributes to viral replication, and it is a likely source of environmental infectious material. This underestimated excretion route could greatly impact the ecology of HPAIVs, facilitating airborne and preening-related infections within a flock, and promoting prolonged viral infectivity and long-distance viral transmission between poultry farms.
Collapse
Affiliation(s)
- Nicolas Gaide
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Fabien Filaire
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- THESEO France, LanXess Biosecurity, LanXess Group, Laval, France
| | - Kateri Bertran
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Manuela Crispo
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Malorie Dirat
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Aurélie Secula
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Bruno Payré
- CMEAB, University of Toulouse, Toulouse, France
| | - Albert Perlas
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Guillermo Cantero
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Natàlia Majó
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | | | | |
Collapse
|
5
|
Alibardi L. General aspects on skin development in vertebrates with emphasis on sauropsids epidermis. Dev Biol 2023; 501:60-73. [PMID: 37244375 DOI: 10.1016/j.ydbio.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
General cellular aspects of skin development in vertebrates are presented with emphasis on the epidermis of sauropsids. Anamniote skin develops into a multilayered mucogenic and soft keratinized epidermis made of Intermediate Filament Keratins (IFKs) that is reinforced in most fish and few anurans by dermal bony and fibrous scales. In amniotes, the developing epidermis in contact with the amniotic fluid initially transits through a mucogenic phase recalling that of their anamniotes progenitors. A new gene cluster termed EDC (Epidermal Differentiation Complex) evolved in amniotes contributing to the origin of the stratum corneum. The EDC contains numerous genes coding for over 100 types of corneous proteins (CPs). In sauropsids 2-8 layers of embryonic epidermis accumulate soft keratins (IFKs) but do not form a compact corneous layer. The embryonic epidermis of reptiles and birds produces small amount of other, poorly known proteins in addition to IFKs and mucins. In the following development, a resistant corneous layer is formed underneath the embryonic epidermis that is shed before hatching. The definitive corneous epidermis of sauropsids is mainly composed of CBPs (Corneous beta proteins, formerly indicated as beta-keratins) derived from the EDC. CBPs belong to a gene sub-family of CPs unique for sauropsids, contain an inner amino acid region formed by beta-sheets, are rich in cysteine and glycine, and make most of the protein composition of scales, claws, beaks and feathers. In mammalian epidermis CPs missing the beta-sheet region are instead produced, and include loricrin, involucrin, filaggrin and various cornulins. Small amount of CPs accumulate in the 2-3 layers of mammalian embryonic epidermis and their appendages, that is replaced with the definitive corneous layers before birth. Differently from sauropsids, mammals utilize KAPs (keratin associated proteins) rich in cysteine and glycine for making the hard corneous material of hairs, claws, hooves, horns, and occasionally also scales.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
6
|
Panteleyev AA. The dual nature of mouse periderm structure, function, and fate. Exp Dermatol 2022; 31:1102-1108. [PMID: 35582825 DOI: 10.1111/exd.14608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
The periderm is the outer layer of embryonic skin which is essential for the development of the epidermis and the establishment of its barrier function. In humans, the periderm is a monolayer and is shed prenatally. The structure and fate of the mouse periderm remains puzzling. Using electron microscopy of mouse skin between the embryonic day 14.5 and the postnatal day 2, we have assessed the periderm structure and its shedding patterns. In contrast to human periderm, the mouse periderm appears to be bilayered, comprising a presumably absorptive outer periderm with numerous microvilli and an inner periderm packed with specific (glycogen-containing?) granules. The desmosomes between the inner periderm and the underlying epidermis are scarce, and they are totally absent between the inner and the outer periderm. The inner and outer periderms in mice are shed at different stages of development: the outer periderm is shed in utero in conjunction with barrier acquisition (E16-18), while the inner periderm is retained postnatally. We assume that the bilayered structure of the mouse periderm and the postnatal retention of its inner layer represent the evolutionary adaptations in ancestral rodents which helps altricial newborns of their extant descendants to cope with acute dehydration right after birth and/or provides a substrate for proper bacterial colonization of newborn skin.
Collapse
|
7
|
Alibardi L, Eckhart L. Immunolocalization of epidermal differentiation complex proteins reveals distinct molecular compositions of cells that control structure and mechanical properties of avian skin appendages. J Morphol 2021; 282:917-933. [PMID: 33830534 DOI: 10.1002/jmor.21357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022]
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode structural proteins of skin derivatives with variable mechanical performances, from the scales of reptiles and birds to the hard claws and beaks, and to the flexible but resistant corneous material of feathers. Corneous proteins with or without extended beta-regions are produced from avian genomes, and include the largely prevalent corneous beta proteins (CβPs, formerly indicated as beta-keratins), and minor contribution from histidine-rich proteins, trichohyalin-like proteins (scaffoldin), loricrin, and other proteins rich in cysteine or other types of amino acids. The light-microscopic and ultrastructural immunolocalization of major and minor EDC-proteins in avian skin (feather CβPs, EDKM, EDWM, EDMTFH, EDDM, and scaffoldin) suggests that each specific appendage consists of a particular mix of these proteins in addition to the main proteins containing a peculiar beta-region of 34 amino acids, indicated as feather/scale/claw/beak CβPs (fCβPs, sCβPs, cCβPs, bCβPs). This indicates that numerous proteins of the EDC are added to the variable meshwork of intermediate filament keratins to produce avian epidermis with different mechanical and functional properties. Although the specific roles for these proteins are not known they likely make an important contribution to the final material properties of the different skin appendages of birds. The highest number of sauropsid CβPs is found in birds, suggesting a relation to the evolution of feathers, and additional epidermal differentiation proteins have contributed to the evolutionary adaptations of avian skin.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Mlitz V, Hermann M, Buchberger M, Tschachler E, Eckhart L. The Trichohyalin-Like Protein Scaffoldin Is Expressed in the Multilayered Periderm during Development of Avian Beak and Egg Tooth. Genes (Basel) 2021; 12:248. [PMID: 33578693 PMCID: PMC7916365 DOI: 10.3390/genes12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 01/19/2023] Open
Abstract
Scaffoldin, an S100 fused-type protein (SFTP) with high amino acid sequence similarity to the mammalian hair follicle protein trichohyalin, has been identified in reptiles and birds, but its functions are not yet fully understood. Here, we investigated the expression pattern of scaffoldin and cornulin, a related SFTP, in the developing beaks of birds. We determined the mRNA levels of both SFTPs by reverse transcription polymerase chain reaction (RT-PCR) in the beak and other ectodermal tissues of chicken (Gallus gallus) and quail (Coturnix japonica) embryos. Immunohistochemical staining was performed to localize scaffoldin in tissues. Scaffoldin and cornulin were expressed in the beak and, at lower levels, in other embryonic tissues of both chickens and quails. Immunohistochemistry revealed scaffoldin in the peridermal compartment of the egg tooth, a transitory cornified protuberance (caruncle) on the upper beak which breaks the eggshell during hatching. Furthermore, scaffoldin marked a multilayered peridermal structure on the lower beak. The results of this study suggest that scaffoldin plays an evolutionarily conserved role in the development of the avian beak with a particular function in the morphogenesis of the egg tooth.
Collapse
Affiliation(s)
- Veronika Mlitz
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria Buchberger
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| | - Erwin Tschachler
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| |
Collapse
|
9
|
Immunohistochemical detection of sulfhydryl oxidase in chick skin appendages and feathers suggests that the enzyme contributes to maturation of the corneous material. ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00498-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Skieresz-Szewczyk K, Jackowiak H, Ratajczak M. Embryonic development of parakeratinized epithelium of the tongue in the domestic duck (Anas platyrhynchos f. domestica): LM, SEM, and TEM observations. PROTOPLASMA 2019; 256:631-642. [PMID: 30382421 PMCID: PMC6482121 DOI: 10.1007/s00709-018-1324-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 05/04/2023]
Abstract
The parakeratinized epithelium is a common and widespread type of keratinized epithelium in the oral cavity in adult birds. In contrast to orthokeratinized epithelium, which mostly covers mechanical papillae and the lingual nail, parakeratinized epithelium covers almost the entire dorsal surface of the tongue in birds. The characteristic feature of parakeratinized epithelium is the presence of nuclei in the keratinized layer. The present study aimed to investigate for the first time the micro- and ultrastructural changes of parakeratinized epithelium during embryonic development and to assess the readiness of the epithelium to serve protective functions during food transport to the esophagus. Three developmental stages were distinguished: embryonic, transformation, and pre-hatching stages. The embryonic stage lasts from the 9th to the 14th day of incubation and the epithelium is composed of undifferentiated epithelial cells. The transformation stage lasts from the 15th to the 22nd day of incubation and the epithelium undergoes transformation into stratified epithelium consisting of basal, intermediate, and superficial layers. The characteristic feature of this stage is formation of the periderm with osmophilic granules. The pre-hatching stage starts on the 23rd day, and the epithelium with a fully developed keratinized layer resembles that of the epithelium in adult animals. No periderm was observed on the epithelial surface. It was confirmed that at the time of hatching the parakeratinized epithelium is fully differentiated and ready to fulfill its function during food transport. The presence of periderm is a common feature characteristic for para- and orthokeratinized epithelium in the oral cavity of birds. However, the formation of the keratinized/cornified layer is different for these two types of keratinized epithelia.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland.
| | - Hanna Jackowiak
- Department of Histology and Embryology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Marlena Ratajczak
- Faculty Laboratory of Electron and Confocal Microscopy, The Adam Mickiewicz University of Poznań, Umultowska 89, 61-614, Poznań, Poland
| |
Collapse
|
11
|
Ultrastructural study on the embryonic development of the orthokeratinized epithelium and its cornified layer (lingual nail) on the ventral surface of the lingual apex in the domestic duck (Anas platyrhynchos f. domestica). ZOOLOGY 2018; 126:36-45. [DOI: 10.1016/j.zool.2017.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022]
|
12
|
Alibardi L. Microscopic and immunohistochemical study on the cornification of the developing beak in the turtleEmydura macquarii. J Morphol 2016; 277:1309-19. [DOI: 10.1002/jmor.20576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/18/2016] [Accepted: 06/23/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; Università Di Bologna; via Selmi 3 Bologna 40126 Italy
| |
Collapse
|
13
|
Alibardi L, Mlitz V, Eckhart L. Immunolocalization of Scaffoldin, a Trichohyalin-Like Protein, in the Epidermis of the Chicken Embryo. Anat Rec (Hoboken) 2014; 298:479-87. [DOI: 10.1002/ar.23039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/14/2014] [Accepted: 07/10/2014] [Indexed: 12/26/2022]
Affiliation(s)
- L. Alibardi
- Comparative Histolab and Department of Biological; Geological and Environmental Sciences (Bigea), University of Bologna; Italy
| | - V. Mlitz
- Department of Dermatology; Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna; Vienna Austria
| | - L. Eckhart
- Department of Dermatology; Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna; Vienna Austria
| |
Collapse
|