1
|
Esposito G, Glukhov E, Gerwick WH, Medio G, Teta R, Lega M, Costantino V. Lake Avernus Has Turned Red: Bioindicator Monitoring Unveils the Secrets of "Gates of Hades". Toxins (Basel) 2023; 15:698. [PMID: 38133202 PMCID: PMC10747548 DOI: 10.3390/toxins15120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Lake Avernus is a volcanic lake located in southern Italy. Since ancient times, it has inspired numerous myths and legends due to the occurrence of singular phenomena, such as coloring events. Only recently has an explanation been found for them, i.e., the recurring color change over time is due to the alternation of cyanobacterial blooms that are a consequence of natural nutrient inputs as well as pollution resulting from human activities. This current report specifically describes the red coloring event that occurred on Lake Avernus in March 2022, the springtime season in this region of Italy. Our innovative multidisciplinary approach, the 'Fast Detection Strategy' (FDS), was devised to monitor cyanobacterial blooms and their toxins. It integrates remote sensing data from satellites and drones, on-site sampling, and analytical/bioinformatics analyses into a cohesive information flow. Thanks to FDS, we determined that the red color was attributable to a bloom of Planktothrix rubescens, a toxin-producing cyanobacterium. Here, we report the detection and identification of 14 anabenopeptins from this P. rubescens strain, seven of which are known and seven are newly reported herein. Moreover, we explored the mechanisms and causes behind this cyclic phenomenon, confirming cyanobacteria's role as reliable indicators of environmental changes. This investigation further validates FDS's effectiveness in detecting and characterizing cyanobacterial blooms and their associated toxins, expanding its potential applications.
Collapse
Affiliation(s)
- Germana Esposito
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (G.E.); (V.C.)
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (E.G.); (W.H.G.)
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (E.G.); (W.H.G.)
| | - Gabriele Medio
- Department of Engineering, University of Naples Parthenope, 80133 Napoli, Italy;
| | - Roberta Teta
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (G.E.); (V.C.)
| | - Massimiliano Lega
- Department of Engineering, University of Naples Parthenope, 80133 Napoli, Italy;
| | - Valeria Costantino
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (G.E.); (V.C.)
| |
Collapse
|
2
|
Tsavkelova EA, Glukhareva ID, Volynchikova EA, Egorova MA, Leontieva MR, Malakhova DV, Kolomeitseva GL, Netrusov AI. Cyanobacterial Root Associations of Leafless Epiphytic Orchids. Microorganisms 2022; 10:microorganisms10051006. [PMID: 35630449 PMCID: PMC9144888 DOI: 10.3390/microorganisms10051006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/07/2022] Open
Abstract
The leafless orchids are rare epiphytic plants with extremely reduced leaves, and their aerial roots adopted for photosynthesis. The beneficial plant–microbial interactions contribute significantly to host nutrition, fitness, and growth. However, there are no data available on the bacterial associations, inhabiting leafless orchids. Here, we describe the diversity of cyanobacteria, which colonize the roots of greenhouse Microcoelia moreauae and Chiloschista parishii. The biodiversity and structure of the cyanobacterial community were analyzed using a complex approach, comprising traditional cultivable techniques, denaturing gradient gel electrophoresis (DGGE), and phylogenetic analysis, as well as the light and scanning electron microscopy (SEM). A wide diversity of associated bacteria colonize the root surface, forming massive biofilms on the aerial roots. The dominant populations of filamentous nitrogen-fixing cyanobacteria belonged to the orders Oscillatoriales, Synechococcales, and Nostocales. The composition of the cyanobacterial community varied, depending on the nitrogen supply. Two major groups prevailed under nitrogen-limiting conditions, belonging to Leptolyngbya sp. and Komarekiella sp. The latter was characterized by DGGE profiling and sequencing, as well as by its distinctive features of morphological plasticity. The leading role of these phototrophophic and diazotrophic cyanobacteria is discussed in terms of the epiphytic lifestyle of the leafless orchids.
Collapse
Affiliation(s)
- Elena A. Tsavkelova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
- Correspondence: ; Tel.: +7-(495)-939-4545
| | - Irina D. Glukhareva
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Elena A. Volynchikova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Maria A. Egorova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Maria R. Leontieva
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Dina V. Malakhova
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| | - Galina L. Kolomeitseva
- The Stock Greenhouse, N.V. Tsitsin Main Botanical Garden RAS, Botanicheskaya Street 4, 127276 Moscow, Russia;
| | - Alexander I. Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Lenin’s Hills, 119234 Moscow, Russia; (I.D.G.); (E.A.V.); (M.A.E.); (M.R.L.); (D.V.M.); (A.I.N.)
| |
Collapse
|
3
|
Structure and enzymatic degradation of the polysaccharide secreted by Nostoc commune. Carbohydr Res 2022; 515:108544. [DOI: 10.1016/j.carres.2022.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
|
4
|
Sido MY. Consistent Application of Inorganic N-Fertilizer Caused Retrogressive Succession of Cyanobacteria in an Upland Agricultural Soil of China. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721040135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Muñoz-Martín MÁ, Berrendero Gómez E, Perona E, Mateo P. Analysis of molecular diversity within single cyanobacterial colonies from environmental samples. Sci Rep 2020; 10:18453. [PMID: 33116154 PMCID: PMC7595047 DOI: 10.1038/s41598-020-75303-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/30/2020] [Indexed: 12/04/2022] Open
Abstract
Attached or floating macroscopic cyanobacteria can be found in shallow waters and can be easily hand-collected, but their identification is often challenging due to their high morphological variability. In addition, many members of environmental samples lose their morphological adaptations under controlled conditions, making the integration of analyses of field populations and derived isolated cultures necessary in order to evaluate phenotypic plasticity for identification purposes. Therefore, in this study, twenty-nine macroscopic field samples were analyzed by Illumina sequencing and parallel optical microscopy. Some colonies showed the typical morphological characteristics of Rivularia biasolettiana, and others showed those of Rivularia haematites. However, other Rivularia-like colonies showed ambiguous morphologies, and some of them showed the phenotypic features of the new genus Cyanomargarita, which is virtually indistinguishable from Rivularia in the field. In all of the colonies, phylotype composition was highly heterogeneous, with abundances varying depending on the analyzed sample. Some colonies were dominated (97-99%) by a single phylotype, while in others, the percentage of the dominant phylotype decreased to approximately 50-60%. Surprisingly, the same dominant phylotype was found in R. biasolettiana and R. haematites colonies. The relationships between environmental and/or biological factors and morphological variability in these colonies are discussed.
Collapse
Affiliation(s)
- M Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Esther Berrendero Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Departamento de Biología Aplicada, Facultad de Ciencias Experimentales, Universidad de Miguel Hernandez, 03202, Elche, Spain
| | - Elvira Perona
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Pushkareva E, Wilmotte A, Láska K, Elster J. Comparison of Microphototrophic Communities Living in Different Soil Environments in the High Arctic. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Primer Design for an Accurate View of Picocyanobacterial Community Structure by Using High-Throughput Sequencing. Appl Environ Microbiol 2019; 85:AEM.02659-18. [PMID: 30709827 DOI: 10.1128/aem.02659-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/30/2019] [Indexed: 12/26/2022] Open
Abstract
High-throughput sequencing (HTS) of the 16S rRNA gene has been used successfully to describe the structure and dynamics of microbial communities. Picocyanobacteria are important members of bacterioplankton communities, and, so far, they have predominantly been targeted using universal bacterial primers, providing a limited resolution of the picocyanobacterial community structure and dynamics. To increase such resolution, the study of a particular target group is best approached with the use of specific primers. Here, we aimed to design and evaluate specific primers for aquatic picocyanobacterial genera to be used with high-throughput sequencing. Since the various regions of the 16S rRNA gene have different degrees of conservation in different bacterial groups, we therefore first determined which hypervariable region of the 16S rRNA gene provides the highest taxonomic and phylogenetic resolution for the genera Synechococcus, Prochlorococcus, and Cyanobium An in silico analysis showed that the V5, V6, and V7 hypervariable regions appear to be the most informative for this group. We then designed primers flanking these hypervariable regions and tested them in natural marine and freshwater communities. We successfully detected that most (97%) of the obtained reads could be assigned to picocyanobacterial genera. We defined operational taxonomic units as exact sequence variants (zero-radius operational taxonomic units [zOTUs]), which allowed us to detect higher genetic diversity and infer ecologically relevant information about picocyanobacterial community composition and dynamics in different aquatic systems. Our results open the door to future studies investigating picocyanobacterial diversity in aquatic systems.IMPORTANCE The molecular diversity of the aquatic picocyanobacterial community cannot be accurately described using only the available universal 16S rRNA gene primers that target the whole bacterial and archaeal community. We show that the hypervariable regions V5, V6, and V7 of the 16S rRNA gene are better suited to study the diversity, community structure, and dynamics of picocyanobacterial communities at a fine scale using Illumina MiSeq sequencing. Due to its variability, it allows reconstructing phylogenies featuring topologies comparable to those generated when using the complete 16S rRNA gene sequence. Further, we successfully designed a new set of primers flanking the V5 to V7 region whose specificity for picocyanobacterial genera was tested in silico and validated in several freshwater and marine aquatic communities. This work represents a step forward for understanding the diversity and ecology of aquatic picocyanobacteria and sets the path for future studies on picocyanobacterial diversity.
Collapse
|
8
|
Muñoz-Martín MÁ, Becerra-Absalón I, Perona E, Fernández-Valbuena L, Garcia-Pichel F, Mateo P. Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. THE NEW PHYTOLOGIST 2019; 221:123-141. [PMID: 30047599 DOI: 10.1111/nph.15355] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are a key biotic component as primary producers in biocrusts, topsoil communities that have important roles in the functioning of drylands. Yet, major knowledge gaps exist regarding the composition of biocrust cyanobacterial diversity and distribution in Mediterranean ecosystems. We describe cyanobacterial diversity in Mediterranean semiarid soil crusts along an aridity gradient by using next-generation sequencing and bioinformatics analyses, and detect clear shifts along it in cyanobacterial dominance. Statistical analyses show that temperature and precipitation were major parameters determining cyanobacterial composition, suggesting the presence of differentiated climatic niches for distinct cyanobacteria. The responses to temperature of a set of cultivated, pedigreed strains representative of the field populations lend direct support to that contention, with psychrotolerant vs thermotolerant physiology being strain dependent, and consistent with their dominance along the natural gradient. Our results suggest a possible replacement, as global warming proceeds, of cool-adapted by warm-adapted nitrogen-fixing cyanobacteria (such as Scytonema) and a switch in the dominance of Microcoleus vaginatus by thermotolerant, novel phylotypes of bundle-forming cyanobacteria. These differential sensitivities of cyanobacteria to rising temperatures and decreasing precipitation, their ubiquity, and their low generation time point to their potential as bioindicators of global change.
Collapse
Affiliation(s)
- M Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Itzel Becerra-Absalón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Comparada, Facultad de Ciencia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Perona
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lara Fernández-Valbuena
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Pushkareva E, Pessi IS, Namsaraev Z, Mano MJ, Elster J, Wilmotte A. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica. Syst Appl Microbiol 2018; 41:363-373. [DOI: 10.1016/j.syapm.2018.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022]
|
10
|
Tse TJ, Doig LE, Tang S, Zhang X, Sun W, Wiseman SB, Feng CX, Liu H, Giesy JP, Hecker M, Jones PD. Combining High-Throughput Sequencing of sedaDNA and Traditional Paleolimnological Techniques To Infer Historical Trends in Cyanobacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6842-6853. [PMID: 29782156 DOI: 10.1021/acs.est.7b06386] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Freshwaters worldwide are under increasing pressure from anthropogenic activities and changing climate. Unfortunately, many inland waters lack sufficient long-term monitoring to assess environmental trends. Analysis of sedimentary ancient DNA ( sedaDNA) is emerging as a means to reconstruct the past occurrence of microbial communities of inland waters. The purpose of this study was to assess a combination of high-throughput sequencing (16S rRNA) of sedaDNA and traditional paleolimnological analyses to explore multidecadal relationships among cyanobacterial community composition, the potential for cyanotoxin production, and paleoenvironmental proxies. DNA was extracted from two sediment cores collected from a northern Canadian Great Plains reservoir. Diversity indices illustrated significant community-level changes since reservoir formation. Furthermore, higher relative abundances in more recent years were observed for potentially toxic cyanobacterial genera including Dolichospermum. Correlation-based network analysis revealed this trend significantly and positively correlated to abundances of the microcystin synthetase gene ( mcyA) and other paleoproxies (nutrients, pigments, stanols, sterols, and certain diatom species), demonstrating synchrony between molecular and more standard proxies. These findings demonstrate a novel approach to infer long-term dynamics of cyanobacterial diversity in inland waters and highlight the power of high-throughput sequencing to reconstruct trends in environmental quality and inform lake and reservoir management and monitoring program design.
Collapse
Affiliation(s)
- Timothy J Tse
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
| | - Lorne E Doig
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
| | - Song Tang
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C3 , Canada
- National Institute of Environmental Health , Chinese Center for Disease Control and Prevention , No. 7 Panjiayuan Nanli , Chaoyang District, Beijing 100021 , China
| | - Xiaohui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management , Guangdong Institute of Eco-environment Science & Technology , Guangzhou , Guangdong 510650 , China
| | - Steve B Wiseman
- Department of Biological Sciences , University of Lethbridge , Lethbridge , AB T1K 3M4 , Canada
| | - Cindy Xin Feng
- School of Public Health , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - John P Giesy
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- Zoology Department, Center for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
- School of Biological Sciences , University of Hong Kong , Hong Kong , SAR 999077 , China
| | - Markus Hecker
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C3 , Canada
| | - Paul D Jones
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C3 , Canada
| |
Collapse
|
11
|
Jiang Y, Xiao P, Liu Y, Wang J, Li R. Targeted deep sequencing reveals high diversity and variable dominance of bloom-forming cyanobacteria in eutrophic lakes. HARMFUL ALGAE 2017; 64:42-50. [PMID: 28427571 DOI: 10.1016/j.hal.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial blooms in eutrophic lakes are severe environmental problems worldwide. To characterize the spatiotemporal heterogeneity of cyanobacterial blooms, a high-throughput method is necessary for the specific detection of cyanobacteria. In this study, the cyanobacterial composition of three eutrophic waters in China (Taihu Lake, Dongqian Lake, and Dongzhen Reservoir) was determined by pyrosequencing the cpcBA intergenic spacer (cpcBA-IGS) of cyanobacteria. A total of 2585 OTUs were obtained from the normalized cpcBA-IGS sequence dataset at a distance of 0.05. The 238 most abundant OTUs contained 92% of the total sequences and were classified into six cyanobacterial groups. The water samples of Taihu Lake were dominated by Microcystis, mixed Nostocales species, Synechococcus, and unclassified cyanobacteria. Besides, all the samples from Taihu Lake were clustered together in the dendrogram based on shared abundant OTUs. The cyanobacterial diversity in Dongqian Lake was dramatically decreased after sediment dredging and Synechococcus became exclusively dominant in this lake. The genus Synechococcus was also dominant in the surface water of Dongzhen Reservoir, while phylogenetically diverse cyanobacteria coexisted at a depth of 10m in this reservoir. In summary, targeted deep sequencing based on cpcBA-IGS revealed a large diversity of bloom-forming cyanobacteria in eutrophic lakes and spatiotemporal changes in the composition of cyanobacterial communities. The genus Microcystis was the most abundant bloom-forming cyanobacteria in eutrophic lakes, while Synechococcus could be exclusively dominant under appropriate environmental conditions.
Collapse
Affiliation(s)
- Yongguang Jiang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Peng Xiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
12
|
Pessi IS, Maalouf PDC, Laughinghouse HD, Baurain D, Wilmotte A. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. JOURNAL OF PHYCOLOGY 2016; 52:356-68. [PMID: 27273529 DOI: 10.1111/jpy.12399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/31/2016] [Indexed: 05/12/2023]
Abstract
The study of Antarctic cyanobacterial diversity has been mostly limited to morphological identification and traditional molecular techniques. High-throughput sequencing (HTS) allows a much better understanding of microbial distribution in the environment, but its application is hampered by several methodological and analytical challenges. In this work, we explored the use of HTS as a tool for the study of cyanobacterial diversity in Antarctic aquatic mats. Our results highlight the importance of using artificial communities to validate the parameters of the bioinformatics procedure used to analyze natural communities, since pipeline-dependent biases had a strong effect on the observed community structures. Analysis of microbial mats from five Antarctic lakes and an aquatic biofilm from the Sub-Antarctic showed that HTS is a valuable tool for the assessment of cyanobacterial diversity. The majority of the operational taxonomic units retrieved were related to filamentous taxa such as Leptolyngbya and Phormidium, which are common genera in Antarctic lacustrine microbial mats. However, other phylotypes related to different taxa such as Geitlerinema, Pseudanabaena, Synechococcus, Chamaesiphon, Calothrix, and Coleodesmium were also found. Results revealed a much higher diversity than what had been reported using traditional methods and also highlighted remarkable differences between the cyanobacterial communities of the studied lakes. The aquatic biofilm from the Sub-Antarctic had a distinct cyanobacterial community from the Antarctic lakes, which in turn displayed a salinity-dependent community structure at the phylotype level.
Collapse
Affiliation(s)
- Igor Stelmach Pessi
- Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Pedro De Carvalho Maalouf
- Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Haywood Dail Laughinghouse
- Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Denis Baurain
- Eukaryotic Phylogenomics, Department of Life Sciences/PhytoSYSTEMS, University of Liège, Chemin de la Vallée 4, B22, Quartier Vallée 1, Sart-Tilman, 4000, Liège, Belgium
| | - Annick Wilmotte
- Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| |
Collapse
|
13
|
Touzet N, McCarthy D, Gill A, Fleming GTA. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:416-428. [PMID: 26930314 DOI: 10.1016/j.scitotenv.2016.02.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/27/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies.
Collapse
Affiliation(s)
- N Touzet
- Centre for Environmental Research, Innovation and Sustainability, School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland.
| | - D McCarthy
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - A Gill
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - G T A Fleming
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
14
|
Obbels D, Verleyen E, Mano MJ, Namsaraev Z, Sweetlove M, Tytgat B, Fernandez-Carazo R, De Wever A, D'hondt S, Ertz D, Elster J, Sabbe K, Willems A, Wilmotte A, Vyverman W. Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica. FEMS Microbiol Ecol 2016; 92:fiw041. [PMID: 26936447 DOI: 10.1093/femsec/fiw041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses, endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematoda were present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type. However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science, which underscores the need for additional biodiversity assessments in Antarctic inland locations.
Collapse
Affiliation(s)
- Dagmar Obbels
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Marie-José Mano
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Zorigto Namsaraev
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium Winogradsky Institute of Microbiology RAS, Pr-t 60-letya Oktyabrya, 7/2, Moscow 117312, Russia NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 12 31 82, Russia
| | - Maxime Sweetlove
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Rafael Fernandez-Carazo
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Aaike De Wever
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Sofie D'hondt
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Damien Ertz
- Botanic Garden Meise, Department Bryophytes-Thallophytes, Nieuwelaan 38, B-1860 Meise, Belgium Federation Wallonia-Brussels, General Administration of the Non-Compulsory Education and Scientific Research, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Josef Elster
- Centre for Polar Ecology, Faculty of Sciences, University of South Bohemia, Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 379 82, Třeboň, Czech republic
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Anne Willems
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Annick Wilmotte
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| |
Collapse
|
15
|
Teta R, Sala GD, Glukhov E, Gerwick L, Gerwick WH, Mangoni A, Costantino V. Combined LC-MS/MS and Molecular Networking Approach Reveals New Cyanotoxins from the 2014 Cyanobacterial Bloom in Green Lake, Seattle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14301-10. [PMID: 26567695 PMCID: PMC4851459 DOI: 10.1021/acs.est.5b04415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cyanotoxins obtained from a freshwater cyanobacterial collection at Green Lake, Seattle during a cyanobacterial harmful algal bloom in the summer of 2014 were studied using a new approach based on molecular networking analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data. This MS networking approach is particularly well-suited for the detection of new cyanotoxin variants and resulted in the discovery of three new cyclic peptides, namely microcystin-MhtyR (6), which comprised about half of the total microcystin content in the bloom, and ferintoic acids C (12) and D (13). Structure elucidation of 6 was aided by a new microscale methylation procedure. Metagenomic analysis of the bloom using the 16S-ITS rRNA region identified Microcystis aeruginosa as the predominant cyanobacterium in the sample. Fragments of the putative biosynthetic genes for the new cyanotoxins were also identified, and their sequences correlated to the structure of the isolated cyanotoxins.
Collapse
Affiliation(s)
- Roberta Teta
- The NeaNat Group (www.neanat.unina.it), Dipartimento di Farmacia, Universita degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Gerardo Della Sala
- The NeaNat Group (www.neanat.unina.it), Dipartimento di Farmacia, Universita degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, MC 0212, La Jolla, CA 92093-0212, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, MC 0212, La Jolla, CA 92093-0212, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, MC 0212, La Jolla, CA 92093-0212, USA
| | - Alfonso Mangoni
- The NeaNat Group (www.neanat.unina.it), Dipartimento di Farmacia, Universita degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Valeria Costantino
- The NeaNat Group (www.neanat.unina.it), Dipartimento di Farmacia, Universita degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
16
|
Pushkareva E, Pessi IS, Wilmotte A, Elster J. Cyanobacterial community composition in Arctic soil crusts at different stages of development. FEMS Microbiol Ecol 2015; 91:fiv143. [PMID: 26564957 PMCID: PMC4668365 DOI: 10.1093/femsec/fiv143] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Cyanobacterial diversity in soil crusts has been extensively studied in arid lands of temperate regions, particularly semi-arid steppes and warm deserts. Nevertheless, Arctic soil crusts have received far less attention than their temperate counterparts. Here, we describe the cyanobacterial communities from various types of soil crusts from Svalbard, High Arctic. Four soil crusts at different development stages (ranging from poorly-developed to well-developed soil crusts) were analysed using 454 pyrosequencing of the V3-V4 variable region of the cyanobacterial 16S rRNA gene. Analyses of 95 660 cyanobacterial sequences revealed a dominance of OTUs belonging to the orders Synechococcales, Oscillatoriales and Nostocales. The most dominant OTUs in the four studied sites were related to the filamentous cyanobacteria Leptolyngbya sp. Phylotype richness estimates increased from poorly- to mid-developed soil crusts and decreased in the well-developed lichenized soil crust. Moreover, pH, ammonium and organic carbon concentrations appeared significantly correlated with the cyanobacterial community structure.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Centre for Polar Ecology, University of South Bohemia, 37005 ČeskéBudějovice, Czech Republic
| | - Igor S Pessi
- Centre for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Annick Wilmotte
- Centre for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Josef Elster
- Centre for Polar Ecology, University of South Bohemia, 37005 ČeskéBudějovice, Czech Republic Institute of Botany, Academy of Science of the Czech Republic, 37982 Třeboň, Czech Republic
| |
Collapse
|
17
|
Winckelmann D, Bleeke F, Bergmann P, Klöck G. Growth of Cyanobacterium aponinum influenced by increasing salt concentrations and temperature. 3 Biotech 2015; 5:253-260. [PMID: 28324290 PMCID: PMC4434411 DOI: 10.1007/s13205-014-0224-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/29/2014] [Indexed: 11/17/2022] Open
Abstract
The increasing requirement of food neutral biofuels demands the detection of alternative sources. The use of non-arable land and waste water streams is widely discussed in this regard. A Cyanobacterium was isolated on the area of a possible algae production side near a water treatment plant in the arid desert region al-Wusta. It was identified as Cyanobacterium aponinum PB1 and is a possible lipid source. To determine its suitability of a production process using this organism, a set of laboratory experiments were performed. Its growth behavior was examined in regard to high temperatures and increasing NaCl concentrations. A productivity of 0.1 g L-1 per day was measured at an alga density below 0.75 g L-1. C. aponinum PB1 showed no sign of altered growth behavior in media containing 70 g L-1 NaCl or less. Detection of a negative effect of NaCl on the growth using Pulse-Amplitude-Modulation chlorophyll fluorescence analysis was not more sensitive than optical density measurement.
Collapse
Affiliation(s)
- Dominik Winckelmann
- School of Engineering and Science, Jacobs-University Bremen, Campus Ring 1, 28759, Bremen, Germany
- University of Applied Sciences Bremen, Am Neustadtswall 30, 28199, Bremen, Germany
| | - Franziska Bleeke
- School of Engineering and Science, Jacobs-University Bremen, Campus Ring 1, 28759, Bremen, Germany
- University of Applied Sciences Bremen, Am Neustadtswall 30, 28199, Bremen, Germany
| | - Peter Bergmann
- University of Applied Sciences Bremen, Am Neustadtswall 30, 28199, Bremen, Germany
| | - Gerd Klöck
- University of Applied Sciences Bremen, Am Neustadtswall 30, 28199, Bremen, Germany.
| |
Collapse
|
18
|
Banack SA, Caller T, Henegan P, Haney J, Murby A, Metcalf JS, Powell J, Cox PA, Stommel E. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins (Basel) 2015; 7:322-36. [PMID: 25643180 PMCID: PMC4344626 DOI: 10.3390/toxins7020322] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/12/2014] [Accepted: 01/21/2015] [Indexed: 11/16/2022] Open
Abstract
A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association.
Collapse
Affiliation(s)
| | - Tracie Caller
- Cheyenne Regional Medical Group, Cheyenne, WY 82001, USA.
| | - Patricia Henegan
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | - James Haney
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Amanda Murby
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - James S Metcalf
- Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
| | - James Powell
- Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
| | - Paul Alan Cox
- Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
| | - Elijah Stommel
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| |
Collapse
|
19
|
Estimating cyanobacteria community dynamics and its relationship with environmental factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:1141-60. [PMID: 24448632 PMCID: PMC3924496 DOI: 10.3390/ijerph110101141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/21/2022]
Abstract
The cyanobacteria community dynamics in two eutrophic freshwater bodies (Tiegang Reservoir and Shiyan Reservoir) was studied with both a traditional microscopic counting method and a PCR-DGGE genotyping method. Results showed that cyanobacterium Phormidium tenue was the predominant species; twenty-six cyanobacteria species were identified in water samples collected from the two reservoirs, among which fourteen were identified with the morphological method and sixteen with the PCR-DGGE method. The cyanobacteria community composition analysis showed a seasonal fluctuation from July to December. The cyanobacteria population peaked in August in both reservoirs, with cell abundances of 3.78 × 108 cells L-1 and 1.92 × 108 cells L-1 in the Tiegang and Shiyan reservoirs, respectively. Canonical Correspondence Analysis (CCA) was applied to further investigate the correlation between cyanobacteria community dynamics and environmental factors. The result indicated that the cyanobacteria community dynamics was mostly correlated with pH, temperature and total nitrogen. This study demonstrated that data obtained from PCR-DGGE combined with a traditional morphological method could reflect cyanobacteria community dynamics and its correlation with environmental factors in eutrophic freshwater bodies.
Collapse
|
20
|
Teta R, Irollo E, Della Sala G, Pirozzi G, Mangoni A, Costantino V. Smenamides A and B, chlorinated peptide/polyketide hybrids containing a dolapyrrolidinone unit from the Caribbean sponge Smenospongia aurea. Evaluation of their role as leads in antitumor drug research. Mar Drugs 2013; 11:4451-63. [PMID: 24217287 PMCID: PMC3853738 DOI: 10.3390/md11114451] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/25/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022] Open
Abstract
An in-depth study of the secondary metabolites contained in the Caribbean sponge Smenospongia aurea led to the isolation of smenamide A (1) and B (2), hybrid peptide/polyketide compounds containing a dolapyrrolidinone unit. Their structures were elucidated using high-resolution ESI-MS/MS and homo- and heteronuclear 2D NMR experiments. Structures of smenamides suggested that they are products of the cyanobacterial metabolism, and 16S rRNA metagenomic analysis detected Synechococcus spongiarum as the only cyanobacterium present in S. aurea. Smenamides showed potent cytotoxic activity at nanomolar levels on lung cancer Calu-1 cells, which for compound 1 is exerted through a clear pro-apoptotic mechanism. This makes smenamides promising leads for antitumor drug design.
Collapse
Affiliation(s)
- Roberta Teta
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, Napoli 80131, Italy; E-Mails: (R.T.); (G.S.); (A.M.)
| | - Elena Irollo
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione “G. Pascale”, Via M. Semmola, Napoli 80131, Italy; E-Mails: (E.I.); (G.P.)
| | - Gerardo Della Sala
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, Napoli 80131, Italy; E-Mails: (R.T.); (G.S.); (A.M.)
| | - Giuseppe Pirozzi
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione “G. Pascale”, Via M. Semmola, Napoli 80131, Italy; E-Mails: (E.I.); (G.P.)
| | - Alfonso Mangoni
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, Napoli 80131, Italy; E-Mails: (R.T.); (G.S.); (A.M.)
| | - Valeria Costantino
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, Napoli 80131, Italy; E-Mails: (R.T.); (G.S.); (A.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-081-678-504; Fax: +39-081-678-552
| |
Collapse
|
21
|
Zhong X, Berdjeb L, Jacquet S. Temporal dynamics and structure of picocyanobacteria and cyanomyoviruses in two large and deep peri-alpine lakes. FEMS Microbiol Ecol 2013; 86:312-26. [PMID: 23772675 DOI: 10.1111/1574-6941.12166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 11/29/2022] Open
Abstract
We conducted a 1-year survey of the surface waters of two deep peri-alpine lakes, and investigated the abundances and community structure of picocyanobacteria and co-occurring cyanomyophages. Picocyanobacterial abundances ranged between 4.5 × 10(4) and 1.6 × 10(5) cells mL(-1) in Lake Annecy vs. 2.2 × 10(3) and 1.6 × 10(5) cells mL(-1) in Lake Bourget. Cyanomyoviruses ranged between 2.8 × 10(3) and 3.7 × 10(5) copies of g 20 mL(-1) in Lake Annecy vs. between 9.4 × 10(3) and 9.4 × 10(5) copies of g 20 mL(-1) in Lake Bourget. The structures of picocyanobacteria and cyanomyoviruses differed in the two lakes, and a more pronounced dynamic pattern with greater seasonality was observed in Lake Bourget. At the annual scale, there was no relationship between cyanomyovirus and picocyanobacterial abundances or structures, but we could observe that abundances of the two communities covaried in spring in Lake Bourget. We showed that (i) the changes of picocyanobacteria and cyanomyoviruses were caused by the combined effect of several environmental and biological factors the importance of which differed over time and between the lakes, and (ii) the viral control of the picocyanobacterial community was probably relatively weak at the scale of the investigation.
Collapse
Affiliation(s)
- Xu Zhong
- INRA, UMR CARRTEL, Thonon-les-Bains cx, France
| | | | | |
Collapse
|
22
|
Touzet N, McCarthy D, Fleming GTA. Molecular fingerprinting of lacustrian cyanobacterial communities: regional patterns in summer diversity. FEMS Microbiol Ecol 2013; 86:444-57. [PMID: 23802655 DOI: 10.1111/1574-6941.12172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 06/07/2013] [Accepted: 06/19/2013] [Indexed: 12/01/2022] Open
Abstract
The assessment of lacustrian water quality is necessary to comply with environmental regulations. At the regional scale, difficulties reside in the selection of representative lakes. Given the risks towards water quality associated with phytoplankton blooms, a mesoscale survey was carried out in Irish lakes to identify patterns in the distribution and diversity of planktonic cyanobacteria. A stratified sampling strategy was carried out via geographic information systems (GIS) analysis of river catchment attributes due to the range of hydrogeomorphological features and the high number of lakes within the study area. 16S rRNA gene denaturing gradient gel electrophoresis analysis showed variation between the cyanobacterial communities sampled, with lower occurrence of cyanobacteria in August concomitant to increased wind and precipitation regimes. Multivariate analysis delineated three ecoregions based on land cover typology and revealed significant patterns in the distribution of cyanobacterial diversity. A majority of filamentous cyanobacteria genotypes occurred in larger lakes contained river catchments with substantial forest cover. In contrast, higher diversity of spherical cyanobacteria genotypes was observed in lakes of lesser trophic state. In the context of aquatic resource management, the combined use of GIS-based sampling strategy and molecular methods offers promising prospects for assessing microbial community structure at varying scales of space and time.
Collapse
Affiliation(s)
- Nicolas Touzet
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, Institute of Technology Sligo, Sligo, Ireland
| | | | | |
Collapse
|
23
|
Crouzet O, Wiszniowski J, Donnadieu F, Bonnemoy F, Bohatier J, Mallet C. Dose-dependent effects of the herbicide mesotrione on soil cyanobacterial communities. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:23-31. [PMID: 23014935 DOI: 10.1007/s00244-012-9809-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/01/2012] [Indexed: 05/26/2023]
Abstract
This study aimed to investigate the dose-response effects of an herbicide on soil photosynthetic microbial communities, particularly cyanobacteria, using a microcosm approach. Pure mesotrione (active ingredient), and Callisto (a commercial formulation of this triketone herbicide), were spread at different rates on soil microcosm surfaces. Soil Chlorophyll concentrations were quantified to assess the photosynthetic biomass, and the genetic structure and diversity of the cyanobacterial community were investigated by a group-specific polymerase chain reaction followed by denaturing gradient gel electrophoresis. Dose-dependent responses were evidenced for both functional and structural parameters. No effect was detected in soils treated with 1 × AR (1-fold recommended application rate) irrespective of the herbicide formulation. At 10 × AR (10-fold recommended application rate), only Callisto treatment induced significant decreases of photosynthetic biomass, whereas structural parameters were less affected. At the 100 × AR (100-fold recommended application rate), both pure mesotrione and Callisto had strong negative impacts on soil chlorophyll concentrations and cyanobacterial genetic structure and diversity. At both the 10 × AR and 100 × AR treatments, Callisto induced significant stronger effects than pure mesotrione. In addition, indicators of photosynthetic biomass, compared with structural parameters of cyanobacterial communities (within 14 days), responded (within 7 days) more quickly to herbicide stress. The results of this study underscore the relevance of soil photosynthetic microbial communities to develop indicators for herbicide risk assessment.
Collapse
Affiliation(s)
- Olivier Crouzet
- LMGE, Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France.
| | | | | | | | | | | |
Collapse
|
24
|
Molecular fingerprinting of cyanobacteria from river biofilms as a water quality monitoring tool. Appl Environ Microbiol 2012; 79:1459-72. [PMID: 23263954 DOI: 10.1128/aem.03351-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benthic cyanobacterial communities from Guadarrama River (Spain) biofilms were examined using temperature gradient gel electrophoresis (TGGE), comparing the results with microscopic analyses of field-fixed samples and the genetic characterization of cultured isolates from the river. Changes in the structure and composition of cyanobacterial communities and their possible association with eutrophication in the river downstream were studied by examining complex TGGE patterns, band extraction, and subsequent sequencing of 16S rRNA gene fragments. Band profiles differed among sampling sites depending on differences in water quality. The results showed that TGGE band richness decreased in a downstream direction, and there was a clear clustering of phylotypes on the basis of their origins from different locations according to their ecological requirements. Multivariate analyses (cluster analysis and canonical correspondence analysis) corroborated these differences. Results were consistent with those obtained from microscopic observations of field-fixed samples. According to the phylogenetic analysis, morphotypes observed in natural samples were the most common phylotypes in the TGGE sequences. These phylotypes were closely related to Chamaesiphon, Aphanocapsa, Pleurocapsa, Cyanobium, Pseudanabaena, Phormidium, and Leptolyngbya. Differences in the populations in response to environmental variables, principally nutrient concentrations (dissolved inorganic nitrogen and soluble reactive phosphorus), were found. Some phylotypes were associated with low nutrient concentrations and high levels of dissolved oxygen, while other phylotypes were associated with eutrophic-hypertrophic conditions. These results support the view that once a community has been characterized and its genetic fingerprint obtained, this technique could be used for the purpose of monitoring rivers.
Collapse
|
25
|
Lane CE, Gutierrez-Wing MT, Rusch KA, Benton MG. Homogeneous detection of cyanobacterial DNA via polymerase chain reaction. Lett Appl Microbiol 2012; 55:376-83. [PMID: 22913815 DOI: 10.1111/j.1472-765x.2012.03304.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To design a primer set enabling the identification through PCR of high-quality DNA for routine and high-throughput genomic screening of a diverse range of cyanobacteria. METHODS AND RESULTS A codon-equivalent multiple alignment of the phycocyanin alpha-subunit coding sequence (cpcA) of 22 cyanobacteria was generated and analysed to produce a single degeneracy primer set with virtually uniform product size. Also, an 18S ribosomal RNA detection set is proposed for rejecting false positives. The primer sets were tested against five diverse cyanobacteria, Chlorella vulgaris, Saccharomyces cerevisiae, and Escherichia coli. All five cyanobacteria showed positive amplification of cpcA product with homogeneous fragment length, and no products were observed for any other organism. Additionally, the only product formation observed for the 18S rRNA set was in C. vulgaris and S. cerevisiae. CONCLUSIONS The newly proposed primer set served as effective check primers for cyanobacteria. Cyanobacteria gDNA had a positive, homogenous result, while other bacteria, eukaryotes and alga tested were negative. SIGNIFICANCE AND IMPACT OF THE STUDY These novel, broad-spectrum primers will greatly increase the utility of PCR on newly discovered cyanobacterial species.
Collapse
Affiliation(s)
- C E Lane
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - M T Gutierrez-Wing
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - K A Rusch
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - M G Benton
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
26
|
High levels of genetic variation within Helicoverpa armigera nucleopolyhedrovirus populations in individual host insects. Arch Virol 2012; 157:2281-9. [DOI: 10.1007/s00705-012-1416-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/05/2012] [Indexed: 11/26/2022]
|
27
|
Yamada S, Ohkubo S, Miyashita H, Setoguchi H. Genetic diversity of symbiotic cyanobacteria in Cycas revoluta (Cycadaceae). FEMS Microbiol Ecol 2012; 81:696-706. [PMID: 22537413 DOI: 10.1111/j.1574-6941.2012.01403.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 11/28/2022] Open
Abstract
The diversity of cyanobacterial species within the coralloid roots of an individual and populations of Cycas revoluta was investigated based on 16S rRNA gene sequences. Sixty-six coralloid roots were collected from nine natural populations of cycads on Kyushu and the Ryukyu Islands, covering the entire distribution range of the species. Approximately 400 bp of the 5'-end of 16S rRNA genes was amplified, and each was identified by denaturing gradient gel electrophoresis. Most coralloid roots harbored only one cyanobiont, Nostoc, whereas some contained two or three, representing cyanobiont diversity within a single coralloid root isolated from a natural habitat. Genotypes of Nostoc within a natural population were occasionally highly diverged and lacked DNA sequence similarity, implying genetic divergence of Nostoc. On the other hand, Nostoc genotypes showed no phylogeographic structure across the distribution range, while host cycads exhibited distinct north-south differentiation. Cycads may exist in symbiosis with either single or multiple Nostoc strains in natural soil habitats.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
28
|
Baillie VL, Bouwer G. Development of highly sensitive assays for detection of genetic variation in key Helicoverpa armigera nucleopolyhedrovirus genes. J Virol Methods 2011; 178:179-85. [DOI: 10.1016/j.jviromet.2011.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022]
|
29
|
|
30
|
Coman C, Bica A, Drugă B, Barbu-Tudoran L, Dragoş N. Methodological constraints in the molecular biodiversity study of a thermomineral spring cyanobacterial mat: a case study. Antonie van Leeuwenhoek 2010; 99:271-81. [PMID: 20665239 DOI: 10.1007/s10482-010-9486-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
The biodiversity of a specific cyanobacterial mat associated to a thermomineral spring from the Western Plain of Romania was investigated. Light and electron microscopy, together with molecular tools (denaturing gradient gel electrophoresis-DGGE, automated ribosomal intergenic spacer analysis-ARISA and amplified ribosomal DNA restriction analysis-ARDRA), based on 16S rDNA and 16S-23S internal transcribed spacer markers were used. Based on the partial 16S rRNA fragments sequenced, eight cyanobacterial taxons were identified, all belonging to the Oscillatoriales order, Phormidium and Leptolyngbya being dominant. A significant difference was observed, in comparison with the morphological approach. In certain conditions, DGGE can provide misleading information due to multiple melting domains in the same sequence, to multiple rrn operons in the same genome and due to unspecific hybridization among closely related sequences. This can lead to an overestimated species abundance which can cause incorrect description of the microbial community investigated. Additional techniques, such as ARISA and ARDRA, can improve the microbial biodiversity studies, thus providing optimal results.
Collapse
Affiliation(s)
- Cristian Coman
- Department of Biology, Babeş-Bolyai University, 1 Kogălniceanu Street, Cluj-Napoca, Romania.
| | | | | | | | | |
Collapse
|
31
|
Gorlenko VM, Buryukhaev SP, Matyugina EB, Borzenko SV, Namsaraev ZB, Bryantseva IA, Boldareva EN, Sorokin DY, Namsaraev BB. Microbial communities of the stratified soda Lake Doroninskoe (Transbaikal region). Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710030161] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Gaget V, Gribaldo S, Tandeau de Marsac N. An rpoB signature sequence provides unique resolution for the molecular typing of cyanobacteria. Int J Syst Evol Microbiol 2010; 61:170-183. [PMID: 20190018 DOI: 10.1099/ijs.0.019018-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of morphological characters for the classification of cyanobacteria has often led to ambiguous strain assignment. In the past two decades, the availability of sequences, such as those of the 16S rRNA, nif, cpc and rpoC1 genes, and the use of metagenomics, has steadily increased and has made the reconstruction of evolutionary relationships of some cyanobacterial groups possible in addition to improving strain assignment. Conserved indels (insertions/deletions) are present in all cyanobacterial RpoB (β subunit of RNA polymerase) sequences presently available in public databases. These indels are located in the Rpb2_6 domain of RpoB, which is involved in DNA binding and DNA-directed RNA polymerase activity. They are variable in length (6-44 aa) and sequence, and form part of what appears to be a longer signature sequence (43-81 aa). Indeed, a number of these sequences turn out to be distinctive among several strains of a given genus and even among strains of a given species. These signature sequences can thus be used to identify cyanobacteria at a subgenus level and can be useful molecular markers to establish the taxonomic positions of cyanobacterial isolates in laboratory cultures, and/or to assess cyanobacterial biodiversity in space and time in natural ecosystems.
Collapse
Affiliation(s)
- Virginie Gaget
- Institut Pasteur, Unité des Cyanobactéries; URA CNRS 2172, 75015 Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Unité de Biologie Moléculaire du Gène Chez les Extrêmophiles; 75015, Paris, France
| | | |
Collapse
|
33
|
DNA profiling of complex bacterial populations: toxic cyanobacterial blooms. Appl Microbiol Biotechnol 2009; 85:237-52. [DOI: 10.1007/s00253-009-2180-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 11/25/2022]
|
34
|
Srivastava AK, Bhargava P, Kumar A, Rai LC, Neilan BA. Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. SALINE SYSTEMS 2009; 5:4. [PMID: 19344531 PMCID: PMC2680867 DOI: 10.1186/1746-1448-5-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/06/2009] [Indexed: 11/22/2022]
Abstract
Background Salinity is known to affect almost half of the world's irrigated lands, especially rice fields. Furthermore, cyanobacteria, one of the critical inhabitants of rice fields have been characterized at molecular level from many different geographical locations. This study, for the first time, has examined the molecular diversity of cyanobacteria inhabiting Indian rice fields which experience various levels of salinity. Results Ten physicochemical parameters were analyzed for samples collected from twenty experimental sites. Electrical conductivity data were used to classify the soils and to investigate relationship between soil salinity and cyanobacterial diversity. The cyanobacterial communities were analyzed using semi-nested 16S rRNA gene PCR and denaturing gradient gel electrophoresis. Out of 51 DGGE bands selected for sequencing only 31 which showed difference in sequences were subjected to further analysis. BLAST analysis revealed highest similarity for twenty nine of the sequences with cyanobacteria, and the other two to plant plastids. Clusters obtained based on morphological and molecular attributes of cyanobacteria were correlated to soil salinity. Among six different clades, clades 1, 2, 4 and 6 contained cyanobacteria inhabiting normal or low saline (having EC < 4.0 ds m-1) to (high) saline soils (having EC > 4.0 ds m-1), however, clade 5 represented the cyanobacteria inhabiting only saline soils. Whilst, clade 3 contained cyanobacteria from normal soils. The presence of DGGE band corresponding to Aulosira strains were present in large number of soil indicating its wide distribution over a range of salinities, as were Nostoc, Anabaena, and Hapalosiphon although to a lesser extent in the sites studied. Conclusion Low salinity favored the presence of heterocystous cyanobacteria, while very high salinity mainly supported the growth of non-heterocystous genera. High nitrogen content in the low salt soils is proposed to be a result of reduced ammonia volatilization compared to the high salt soils. Although many environmental factors could potentially determine the microbial community present in these multidimensional ecosystems, changes in the diversity of cyanobacteria in rice fields was correlated to salinity.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Department of Botany, School of Life Sciences, Mizoram University, Tanhril Campus, Aizawl-796009, India.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Enterococci represent an important part of bacterial microbiota in different types of artisanal cheeses, made from either raw or pasteurized milk. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) of ribosomal DNA is currently one of the most frequently used fingerprinting method to study diversity and dynamics of microbial communities and also a tool for microbial identification. Among several primer pairs for DGGE analysis published so far, six primer pairs amplifying different variable regions of 16S rDNA were selected and applied in our DGGE analysis of 12 species belonging to genus Enterococcus and eight other bacterial species often found in cheeses (seven lactobacilli and one Lactoccocus lactis). When DGGE procedures were optimized, the same set of primers was used for DGGE analysis of five cheese samples. Our study demonstrates that the use of different primer pairs generate significant differences in DGGE analysis of enterococcal population, consequently, appropriate primers regarding the purpose of analysis can be selected. For differentiation and identification of pure enterococcal isolates, primer pair P1V1/P2V1 showed the most promising results since all 12 enterococcal isolates gave distinctive DGGE fingerprints, but with multiple bands patterns; therefore, these primers do not seem to be appropriate for identification of enterococcal species in mixed cultures. Use of primer pairs HDA1/HDA2 and V3f/V3r amplifying V3 region showed better potential for detection and identification of enterococci in mixed communities, but since some bacterial species showed the same fingerprint, for clear identification combination of DGGE and some other method (e.g. species specific PCR) or combined DGGE analysis using two primer pairs generating distinctive results should be used.
Collapse
|
36
|
Papaefthimiou D, Van Hove C, Lejeune A, Rasmussen U, Wilmotte A. DIVERSITY AND HOST SPECIFICITY OF AZOLLA CYANOBIONTS(1). JOURNAL OF PHYCOLOGY 2008; 44:60-70. [PMID: 27041041 DOI: 10.1111/j.1529-8817.2007.00448.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A unique, hereditary symbiosis exists between the water fern Azolla and cyanobacteria that reside within a cavity in the dorsal leaf-lobe of the plant. This association has been studied extensively, and questions have frequently been raised regarding the number and diversity of cyanobionts (cyanobacterial symbionts) among the different Azolla strains and species. In this work, denaturating gradient gel electrophoresis (DGGE) and a clone library based on the 16S rRNA gene were used to study the genetic diversity and host specificity of the cyanobionts in 35 Azolla strains covering a wide taxonomic and geographic range. DNA was extracted directly from the cyanobacterial packets, isolated after enzymatic digestion of the Azolla leaves. Our results indicated the existence of different cyanobiont strains among Azolla species, and diversity within a single Azolla species, independent of the geographic origin of the host. Furthermore, the cyanobiont exhibited host-species specificity and showed most divergence between the two sections of genus Azolla, Azolla and Rhizosperma. These findings are in agreement with the recent redefinition of the taxon Azolla cristata within the section Azolla. With regard to the taxonomic status of the cyanobiont, the genus Anabaena of the Nostocaceae family was identified as the closest relative by this work.
Collapse
Affiliation(s)
- Dimitra Papaefthimiou
- Department of Botany, Stockholm University, SE-106 91 Stockholm, SwedenLaboratory of Plant Biology, Faculty of Sciences, Catholic University of Louvain, Place Croix Du Sud 5, B-1348 Louvain-La-Neuve, BelgiumDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenCenter for Protein Engineering, Chemistry Institute (B6), University of Liége, 4000 Liége, Belgium
| | - Charles Van Hove
- Department of Botany, Stockholm University, SE-106 91 Stockholm, SwedenLaboratory of Plant Biology, Faculty of Sciences, Catholic University of Louvain, Place Croix Du Sud 5, B-1348 Louvain-La-Neuve, BelgiumDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenCenter for Protein Engineering, Chemistry Institute (B6), University of Liége, 4000 Liége, Belgium
| | - André Lejeune
- Department of Botany, Stockholm University, SE-106 91 Stockholm, SwedenLaboratory of Plant Biology, Faculty of Sciences, Catholic University of Louvain, Place Croix Du Sud 5, B-1348 Louvain-La-Neuve, BelgiumDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenCenter for Protein Engineering, Chemistry Institute (B6), University of Liége, 4000 Liége, Belgium
| | - Ulla Rasmussen
- Department of Botany, Stockholm University, SE-106 91 Stockholm, SwedenLaboratory of Plant Biology, Faculty of Sciences, Catholic University of Louvain, Place Croix Du Sud 5, B-1348 Louvain-La-Neuve, BelgiumDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenCenter for Protein Engineering, Chemistry Institute (B6), University of Liége, 4000 Liége, Belgium
| | - Annick Wilmotte
- Department of Botany, Stockholm University, SE-106 91 Stockholm, SwedenLaboratory of Plant Biology, Faculty of Sciences, Catholic University of Louvain, Place Croix Du Sud 5, B-1348 Louvain-La-Neuve, BelgiumDepartment of Botany, Stockholm University, SE-106 91 Stockholm, SwedenCenter for Protein Engineering, Chemistry Institute (B6), University of Liége, 4000 Liége, Belgium
| |
Collapse
|
37
|
Ohkubo S, Miyashita H, Murakami A, Takeyama H, Tsuchiya T, Mimuro M. Molecular detection of epiphytic Acaryochloris spp. on marine macroalgae. Appl Environ Microbiol 2006; 72:7912-5. [PMID: 17028237 PMCID: PMC1694208 DOI: 10.1128/aem.01148-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A molecular method for detecting the epiphyte community on marine macroalgae was developed by using PCR-denaturing gradient gel electrophoresis. Selective amplification of 16S rRNA gene fragments from either cyanobacteria or algal plastids improved the detection of minor epiphytes. Two phylotypes of Acaryochloris, a chlorophyll d-containing cyanobacterium, were found not only on red macroalgae but also on green and brown macroalgae.
Collapse
Affiliation(s)
- Satoshi Ohkubo
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|