1
|
Tripathi P, Render R, Nidhi S, Tripathi V. Microbial genomics: a potential toolkit for forensic investigations. Forensic Sci Med Pathol 2025; 21:417-429. [PMID: 38878110 DOI: 10.1007/s12024-024-00830-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 03/29/2025]
Abstract
Microbial forensics is a new discipline of science that analyzes evidence related to biological crime through the uniqueness and abundance of microorganisms and their toxins. Microorganisms remain alive longer than any other trace of biological evidence, such as DNA, fingerprints, and fibers, because of the protective cell membrane or capsules. Microbiological research has opened up various possibilities for forensic investigations of microbial flora. Current molecular technologies, including DNA sequencing, whole-genome sequencing, metagenomics, DNA fingerprinting, and molecular phylogeny, provide valid results for forensic investigations. Recent advancements in genome sequencing technologies, genetic data generation, and bioinformatic tools have significantly improved microbial sampling methods and forensic analyses. In this review, we discuss the applications of microbial genomic tools and technologies in forensic investigations, including human identification, geolocation, and causes of death.
Collapse
Affiliation(s)
- Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Riya Render
- Department of Forensic Sciences, National Forensic Sciences University, Ponda, Goa, 430401, India
| | - Sweta Nidhi
- Department of Forensic Sciences, National Forensic Sciences University, Ponda, Goa, 430401, India
| | - Vijay Tripathi
- Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, 248002, India.
| |
Collapse
|
2
|
Lahlali R, Ibrahim DS, Belabess Z, Kadir Roni MZ, Radouane N, Vicente CS, Menéndez E, Mokrini F, Barka EA, Galvão de Melo e Mota M, Peng G. High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon 2021; 7:e08142. [PMID: 34693062 PMCID: PMC8515249 DOI: 10.1016/j.heliyon.2021.e08142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations.
Collapse
Affiliation(s)
- Rachid Lahlali
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
| | - Dina S.S. Ibrahim
- Department of Nematodes Diseases and Central Lab of Biotechnology, Plant Pathology Research Institute, Agricultural Research Center (ARC), 12619, Egypt
| | - Zineb Belabess
- Plant Protection Laboratory. Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 60000 Oujda, Morocco
| | - Md Zohurul Kadir Roni
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Nabil Radouane
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
- Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Cláudia S.L. Vicente
- MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Esther Menéndez
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
- Department of Microbiology and Genetics / Spanish-Portuguese Institute for Agricultural Research (CIALE). University of Salamanca, 37007, Salamanca, Spain
| | - Fouad Mokrini
- Plant Protection Laboratory, INRA, Centre Régional de la Recherche Agronomique (CRRA), Rabat, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-protection des Plantes, EA 4707, USC, INRAe1488, Université de Reims Champagne-Ardenne, France
| | - Manuel Galvão de Melo e Mota
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development & Department of Biology, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gary Peng
- Saskatoon Research Development Centre, Agriculture and Agri-Food, Saskatchewan, Canada
| |
Collapse
|
3
|
Jurkevitch E, Pasternak Z. A walk on the dirt: soil microbial forensics from ecological theory to the crime lab. FEMS Microbiol Rev 2021; 45:5937428. [PMID: 33098291 DOI: 10.1093/femsre/fuaa053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Forensics aims at using physical evidence to solve investigations with science-based principles, thus operating within a theoretical framework. This however is often rather weak, the exception being DNA-based human forensics that is well anchored in theory. Soil is a most commonly encountered, easily and unknowingly transferred evidence but it is seldom employed as soil analyses require extensive expertise. In contrast, comparative analyses of soil bacterial communities using nucleic acid technologies can efficiently and precisely locate the origin of forensic soil traces. However, this application is still in its infancy, and is very rarely used. We posit that understanding the theoretical bases and limitations of their uses is essential for soil microbial forensics to be judiciously implemented. Accordingly, we review the ecological theory and experimental evidence explaining differences between soil microbial communities, i.e. the generation of beta diversity, and propose to integrate a bottom-up approach of interactions at the microscale, reflecting historical contingencies with top-down mechanisms driven by the geographic template, providing a potential explanation as to why bacterial communities map according to soil types. Finally, we delimit the use of soil microbial forensics based on the present technologies and ecological knowledge, and propose possible venues to remove existing bottlenecks.
Collapse
Affiliation(s)
- Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zohar Pasternak
- Division of Identification and Forensic Science, Israel Police
| |
Collapse
|
4
|
Barretto DA, Gadwala M, Vootla SK. The silkworm gut microbiota: A potential source for biotechnological applications. J Microbiol Methods 2021. [DOI: 10.1016/bs.mim.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Abstract
The aquatic ecosystem is continuously threatened by the infiltration and discharge of anthropogenic wastewaters. This issue requires the unending improvement of monitoring systems to become more comprehensive and specific to targeted pollutants. This review intended to elucidate the overall aspects explored by researchers in developing better water pollution monitoring tools in recent years. The discussion is encircled around three main elements that have been extensively used as the basis for the development of monitoring methods, namely the dissolved compounds, bacterial indicator, and nucleic acids. The latest technologies applied in wastewater and surface water mapped from these key players were reviewed and categorized into physicochemical and compound characterizations, biomonitoring, and molecular approaches in taxonomical and functional analyses. Overall, researchers are continuously rallying to enhance the detection of causal source for water pollution through either conventional or mostly advanced approaches focusing on spectrometry, high-throughput sequencing, and flow cytometry technology among others. From this review’s perspective, each pollution evaluation technology has its own advantages and it would be beneficial for several aspects of pollutants assessments to be combined and established as a complementary package for better aquatic environmental management in the long run.
Collapse
|
6
|
Yegin Z, Avsar C, Sarisoy G. Frequency of retrotransposon human endogenous retrovirus-K113 and a preliminary analysis of some microbial clues in bipolar disorder. Future Microbiol 2020; 15:1621-1629. [PMID: 33215524 DOI: 10.2217/fmb-2020-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of our study was to investigate whether the retrotransposon human endogenous retrovirus (HERV)-K113 could be related with bipolar disorder or not. As a second and a preliminary aim, we also conducted bacterial screening in whole blood in a limited number of samples. Patients & methods: Three separate PCR reactions including the preintegration sites and sites within the viral sequences were performed for HERV-K113 detection. Bacterial screening was performed with SSCP/sequencing analysis. Results & conclusion: No difference was observed in terms of the frequency of retrotransposon HERV-K113 in Turkish bipolar disorder patients and healthy controls. SSCP/sequencing and alignment analysis for bacterial screening reflected the possible presence of different bacteria. We strongly recommend the broadened retrotransposon and microbial diversity analyses in bipolar disorder for future studies.
Collapse
Affiliation(s)
- Zeynep Yegin
- Medical Laboratory Techniques Program, Vocational School of Health Services, Sinop University, Sinop, Turkey
| | - Cumhur Avsar
- Department of Biology, Faculty of Arts & Sciences, Sinop University, Sinop, Turkey
| | - Gokhan Sarisoy
- Department of Psychiatry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
7
|
Krause SMB, Näther A, Ortiz Cortes V, Mullins E, Kessel GJT, Lotz LAP, Tebbe CC. No Tangible Effects of Field-Grown Cisgenic Potatoes on Soil Microbial Communities. Front Bioeng Biotechnol 2020; 8:603145. [PMID: 33224940 PMCID: PMC7670967 DOI: 10.3389/fbioe.2020.603145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
DNA modification techniques are increasingly applied to improve the agronomic performance of crops worldwide. Before cultivation and marketing, the environmental risks of such modified varieties must be assessed. This includes an understanding of their effects on soil microorganisms and associated ecosystem services. This study analyzed the impact of a cisgenic modification of the potato variety Desirée to enhance resistance against the late blight-causing fungus Phytophthora infestans (Oomycetes) on the abundance and diversity of rhizosphere inhabiting microbial communities. Two experimental field sites in Ireland and the Netherlands were selected, and for 2 subsequent years, the cisgenic version of Desirée was compared in the presence and absence of fungicides to its non-engineered late blight-sensitive counterpart and a conventionally bred late blight-resistant variety. At the flowering stage, total DNA was extracted from the potato rhizosphere and subjected to PCR for quantifying and sequencing bacterial 16S rRNA genes, fungal internal transcribed spacer (ITS) sequences, and nir genes encoding for bacterial nitrite reductases. Both bacterial and fungal communities responded to field conditions, potato varieties, year of cultivation, and bacteria sporadically also to fungicide treatments. At the Dutch site, without annual replication, fungicides stimulated nirK abundance for all potatoes, but with significance only for cisgenic Desirée. In all other cases, neither the abundance nor the diversity of any microbial marker differed between both Desirée versions. Overall, the study demonstrates environmental variation but also similar patterns of soil microbial diversity in potato rhizospheres and indicates that the cisgenic modification had no tangible impact on soil microbial communities.
Collapse
Affiliation(s)
- Sascha M B Krause
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany.,Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Astrid Näther
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | - Vilma Ortiz Cortes
- Teagasc Crops, Environmental and Land Use Program, Crop Science Department, Oak Park Crops Research Centre, Carlow, Ireland
| | - Ewen Mullins
- Teagasc Crops, Environmental and Land Use Program, Crop Science Department, Oak Park Crops Research Centre, Carlow, Ireland
| | - Geert J T Kessel
- Plant Research International, Wageningen University & Research, Wageningen, Netherlands
| | - Lambertus A P Lotz
- Plant Research International, Wageningen University & Research, Wageningen, Netherlands
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| |
Collapse
|
8
|
Gupta VVSR, Zhang B, Penton CR, Yu J, Tiedje JM. Diazotroph Diversity and Nitrogen Fixation in Summer Active Perennial Grasses in a Mediterranean Region Agricultural Soil. Front Mol Biosci 2019; 6:115. [PMID: 31750314 PMCID: PMC6848460 DOI: 10.3389/fmolb.2019.00115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022] Open
Abstract
Summer-growing perennial grasses such as Panicum coloratum L. cv. Bambatsi (Bambatsi panic), Chloris gayana Kunth cv. Katambora (Rhodes grass) and Digitaria eriantha Steud. cv. Premier (Premier digit grass) growing in the poor fertility sandy soils in the Mediterranean regions of southern Australia and western Australia mainly depend upon soil N and biological N inputs through diazotrophic (free living or associative) N fixation. We investigated the community composition and diversity (nifH-amplicon sequencing), abundance (qPCR) and functional capacity (15N incubation assay) of the endophytic diazotrophic community in the below and above ground plant parts of field grown and unfertilized grasses. Results showed a diverse and abundant diazotrophic community inside plant both above and below-ground and there was a distinct diazotrophic assemblage in the different plant parts in all the three grasses. There was a limited difference in the diversity between leaves, stems and roots except that Panicum grass roots harbored greater species richness. Nitrogen fixation potentials ranged between 0.24 and 5.9 mg N kg-1 day-1 and N fixation capacity was found in both the above and below ground plant parts. Results confirmed previous reports of plant species-based variation and that Alpha-Proteobacteria were the dominant group of nifH-harboring taxa both in the belowground and aboveground parts of the three grass species. Results also showed a well-structured nifH-harboring community in all plant parts, an example for a functional endophytic community. Overall, the variation in the number and identity of module hubs and connectors among the different plant parts suggests that co-occurrence patterns within the nifH-harboring community specific to individual compartments and local environments of the niches within each plant part may dictate the overall composition of diazotrophs within a plant.
Collapse
Affiliation(s)
| | - Bangzhou Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| | - Christopher Ryan Penton
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Julian Yu
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Community structures and comparison of nosZ and 16S rRNA genes from culturable denitrifying bacteria. Folia Microbiol (Praha) 2019; 65:497-510. [DOI: 10.1007/s12223-019-00754-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
|
10
|
Abstract
Bacterial communities’ composition, activity and robustness determines the effectiveness of biofiltration units for the desulfurization of biogas. It is therefore important to get a better understanding of the bacterial communities that coexist in biofiltration units under different operational conditions for the removal of H2S, the main reduced sulfur compound to eliminate in biogas. This review presents the main characteristics of sulfur-oxidizing chemotrophic bacteria that are the base of the biological transformation of H2S to innocuous products in biofilters. A survey of the existing biofiltration technologies in relation to H2S elimination is then presented followed by a review of the microbial ecology studies performed to date on biotrickling filter units for the treatment of H2S in biogas under aerobic and anoxic conditions.
Collapse
|
11
|
Gupta VVSR, Bramley RGV, Greenfield P, Yu J, Herderich MJ. Vineyard Soil Microbiome Composition Related to Rotundone Concentration in Australian Cool Climate 'Peppery' Shiraz Grapes. Front Microbiol 2019; 10:1607. [PMID: 31379773 PMCID: PMC6646731 DOI: 10.3389/fmicb.2019.01607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022] Open
Abstract
Soil microbial communities have an integral association with plants and play an important role in shaping plant nutrition, health, crop productivity and product quality. The influence of bacteria and fungi on wine fermentation is well known. However, little is known about the role of soil microbes, other than microbial pathogens, on grape composition or their role in vintage or site (terroir) impacts on grape composition. In this study, we used an amplicon sequencing approach to investigate the potential relationships between soil microbes and inherent spatial variation in grape metabolite composition – specifically, the concentration of the ‘impact aroma compound’ rotundone in Shiraz grapes (Vitis vinifera L.) grown in a 6.1 ha vineyard in the Grampians region of Victoria, Australia. Previous work had demonstrated temporal stability in patterns of within-vineyard spatial variation in rotundone concentration, enabling identification of defined ‘zones’ of inherently ‘low’ or ‘high’ concentration of this grape metabolite. 16S rRNA and ITS region-amplicon sequencing analysis of microbial communities in the surface soils collected from these zones indicated marked differences between zones in the genetic diversity and composition of the soil bacterial and fungal microbiome. Soils in the High rotundone zone exhibited higher diversity of bacteria, but lower diversity of fungi, compared to the soils in the Low rotundone zone. In addition, the network analysis of the microbial community in the High rotundone zone soils appeared well structured, especially with respect to the bacterial community, compared to that in the Low rotundone zone soils. The key differences in the microbial community structure between the rotundone zones are obvious for taxa/groups of both bacteria and fungi, particularly for bacteria belonging to Acidobacteria-GP4 and GP7, Rhizobiales, Gaiellaceae, Alphaproteobacteria and the Nectriaceae and Tremellaceae families of fungi. Although mulching in some parts of the vineyard caused changes in bacterial and fungal composition and overall microbial catabolic diversity and activity, its effects did not mask the rotundone zone-based variation. This finding of a systematic rotundone zone-based variation in soil microbiomes suggests an opportunity to bring together understanding of microbial ecology, plant biochemistry, and viticultural management for improved management of grape metabolism, composition and wine flavor.
Collapse
Affiliation(s)
| | | | | | - Julian Yu
- School of Life Sciences, Arizona State University, Mesa, AZ, United States
| | | |
Collapse
|
12
|
Avila-Arias H, Nies LF, Gray MB, Turco RF. Impacts of molybdenum-, nickel-, and lithium- oxide nanomaterials on soil activity and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:202-211. [PMID: 30366321 DOI: 10.1016/j.scitotenv.2018.10.189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The nano forms of the metals molybdenum oxide (MoO3), nickel oxide (NiO) and lithium oxide (Li2O) are finding wide application in advanced technologies including batteries and fuel cells. We evaluated soil responses to nanoMoO3, nanoNiO, and nanoLi2O as some environmental release of the materials, either directly or following the land application of biosolids, is expected. Using Drummer soil (Fine-silty, mixed, superactive, mesic Typic Endoaquolls), we evaluated the impacts of the three nanometals on soil gas (N2O, CH4, and CO2) emissions, enzyme activities (β-glucosidase and urease), and microbial community structure (bacterial, archaeal, and eukaryal) in a 60 day microcosms incubation. Soil treated with nanoLi2O at 474 μg Li/g soil, released 3.45 times more CO2 with respect to the control. Additionally, β-glucosidase activity was decreased while urease activity increased following nanoLi2O treatment. While no clear patterns were observed for gas emissions in soils exposed to nanoMoO3 and nanoNiO, we observed a temporary suppression of β-glucosidase activity in soil treated with either metal. All three domains of microbial community were affected by increasing metal concentrations. This is the first evaluation of soil responses to nanoMoO3, nanoNiO, or nanoLi2O.
Collapse
Affiliation(s)
- Helena Avila-Arias
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Loring F Nies
- Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
13
|
Eom YB. Microbial Forensics: Human Identification. BIOMEDICAL SCIENCE LETTERS 2018; 24:292-304. [DOI: 10.15616/bsl.2018.24.4.292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 09/01/2023]
Affiliation(s)
- Yong-Bin Eom
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Korea
| |
Collapse
|
14
|
Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from Avicennia schaueriana. Braz J Microbiol 2018; 49:757-769. [PMID: 29866608 PMCID: PMC6175736 DOI: 10.1016/j.bjm.2018.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/01/2018] [Accepted: 02/14/2018] [Indexed: 11/23/2022] Open
Abstract
Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study.
Collapse
|
15
|
Song X, Pan Y, Li L, Wu X, Wang Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS One 2018. [PMID: 29538438 PMCID: PMC5851603 DOI: 10.1371/journal.pone.0193811] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.
Collapse
Affiliation(s)
- Xuhong Song
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Longyun Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
- * E-mail:
| | - Xiaoli Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| |
Collapse
|
16
|
Rummens K, De Meester L, Souffreau C. Inoculation history affects community composition in experimental freshwater bacterioplankton communities. Environ Microbiol 2018; 20:1120-1133. [DOI: 10.1111/1462-2920.14053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Koen Rummens
- Laboratory of Aquatic Ecology, Evolution & Conservation; KU Leuven, Charles Deberiotstraat 32; 3000 Leuven Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution & Conservation; KU Leuven, Charles Deberiotstraat 32; 3000 Leuven Belgium
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution & Conservation; KU Leuven, Charles Deberiotstraat 32; 3000 Leuven Belgium
| |
Collapse
|
17
|
Quambusch M, Winkelmann T. Bacterial Endophytes in Plant Tissue Culture: Mode of Action, Detection, and Control. Methods Mol Biol 2018; 1815:69-88. [PMID: 29981114 DOI: 10.1007/978-1-4939-8594-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endophytic bacteria have been increasingly in the focus of research projects during the last decade. This has changed the view on bacteria in plant tissue culture and led to the differentiation between artificially introduced contaminations and naturally occurring endophytes with neutral, negative, or positive impact on the plant propagation process. This review chapter gives an overview on recent findings about the impact that bacteria have on the plant physiology in general and during micropropagation. Additionally, methods for the detection and identification of bacteria in plant tissue are described and, finally, suggestions of how to deal with bacterial endophytes in in vitro culture are given.
Collapse
Affiliation(s)
- Mona Quambusch
- Abteilung Waldgenressourcen, Nordwestdeutsche Forstliche Versuchsanstalt, Hann. Münden, Germany.
| | - Traud Winkelmann
- Institut für Gartenbauliche Produktionssysteme, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
18
|
Holmsgaard PN, Dealtry S, Dunon V, Heuer H, Hansen LH, Springael D, Smalla K, Riber L, Sørensen SJ. Response of the bacterial community in an on-farm biopurification system, to which diverse pesticides are introduced over an agricultural season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:854-862. [PMID: 28734695 DOI: 10.1016/j.envpol.2017.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
A biopurification system (BPS) is used on-farm to clean pesticide-contaminated wastewater. Due to high pesticide loads, a BPS represents a hot spot for the proliferation and selection as well as the genetic adaptation of discrete pesticide degrading microorganisms. However, while considerable knowledge exists on the biodegradation of specific pesticides in BPSs, the bacterial community composition of these systems has hardly been explored. In this work, the Shannon diversity, the richness and the composition of the bacterial community within an operational BPS receiving wastewater contaminated with various pesticides was, for the first time, elucidated over the course of an agricultural season, using DGGE profiling and pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. During the agricultural season, an increase in the concentration of pesticides in the BPS was observed along with the detection of significant community changes including a decrease in microbial diversity. Additionally, a significant increase in the relative abundance of Proteobacteria, mainly the Gammaproteobacteria, was found, and OTUs (operational taxonomic units) affiliated to Pseudomonas responded positively during the course of the season. Furthermore, a banding-pattern analysis of 16S rRNA gene-based DGGE fingerprinting, targeting the Alpha- and Betaproteobacteria as well as the Actinobacteria, indicated that the Betaproteobacteria might play an important role. Interestingly, a decrease of Firmicutes and Bacteroidetes was observed, indicating their selective disadvantage in a BPS, to which pesticides have been introduced.
Collapse
Affiliation(s)
- Peter N Holmsgaard
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Simone Dealtry
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany; Civil Engineering Department, Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225/301-L, Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Vincent Dunon
- Division of Soil and Water Management, KULeuven, 3001 Leuven, Belgium
| | - Holger Heuer
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany
| | - Lars H Hansen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Dirk Springael
- Division of Soil and Water Management, KULeuven, 3001 Leuven, Belgium
| | - Kornelia Smalla
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany
| | - Leise Riber
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Søren J Sørensen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Durán P, Jorquera M, Viscardi S, Carrion VJ, Mora MDLL, Pozo MJ. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities. Front Microbiol 2017; 8:1552. [PMID: 28861064 PMCID: PMC5559505 DOI: 10.3389/fmicb.2017.01552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
Wheat production around the world is severely compromised by the occurrence of "take-all" disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous "Mapuche" communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.
Collapse
Affiliation(s)
- Paola Durán
- Scientific and Technological Bioresource Nucleus, Universidad de La FronteraTemuco, Chile
- Biocontrol Research Laboratory, Universidad de La FronteraTemuco, Chile
| | - Milko Jorquera
- Scientific and Technological Bioresource Nucleus, Universidad de La FronteraTemuco, Chile
- Applied Microbial Ecology Laboratory, Department of Chemical Sciences and Natural Resources, Universidad de La FronteraTemuco, Chile
| | - Sharon Viscardi
- Scientific and Technological Bioresource Nucleus, Universidad de La FronteraTemuco, Chile
- Biocontrol Research Laboratory, Universidad de La FronteraTemuco, Chile
| | - Victor J. Carrion
- Netherlands Institute of Ecology, (NIOO-KNAW)Wageningen, Netherlands
| | - María de la Luz Mora
- Scientific and Technological Bioresource Nucleus, Universidad de La FronteraTemuco, Chile
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC)Granada, Spain
| |
Collapse
|
20
|
Andrei AŞ, Păuşan MR, Tămaş T, Har N, Barbu-Tudoran L, Leopold N, Banciu HL. Diversity and Biomineralization Potential of the Epilithic Bacterial Communities Inhabiting the Oldest Public Stone Monument of Cluj-Napoca (Transylvania, Romania). Front Microbiol 2017; 8:372. [PMID: 28326074 PMCID: PMC5339310 DOI: 10.3389/fmicb.2017.00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/22/2017] [Indexed: 01/22/2023] Open
Abstract
In this study, we investigated the biomineralization potential and diversity of the epilithic bacterial communities dwelling on the limestone statue of Saint Donatus, the oldest public monument of Cluj-Napoca city (Transylvania region, NW Romania). Their spatial distribution together with phylogenetic and metabolic diversity, as well as their capacity to precipitate calcium carbonate was evaluated by combining molecular and phenotypic fingerprinting methods with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron-microscopy analyses. The results of real-time quantitative PCR, molecular fingerprinting and community-level physiological profiling showed that diverse and abundant bacterial assemblages that differ in relation to their collection site colonized the statue. The cultivation and molecular identification procedures allowed the characterization of 79 bacterial isolates belonging to Proteobacteria (73.4%), Firmicutes (19%), and Actinobacteria (7.6%). Amongst them, the 22 strains identified as being capable of calcium carbonate precipitation were found to belong mostly to Bacillus and Pseudomonas genera. We found that bacteria acted as nucleation sites, inducing the formation of nanoscale aggregates that were shown to be principally composed of vaterite. Furthermore, we expanded the current knowledge on culturable diversity of carbonatogenic bacteria by providing evidence for biogenic vaterite/calcite formation mediated by: Pseudomonas synxantha, P. graminis, Brevibacterium iodinum, Streptomyces albidoflavus, and Stenotrophomonas chelatiphaga. Overall, this study highlights the need to evaluate the carbonatogenetic potential of all the bacterial communities present on stone artwork prior to designing an efficient conservation treatment based on biomineralization.
Collapse
Affiliation(s)
- Adrian-Ştefan Andrei
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai UniversityCluj-Napoca, Romania; Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech RepublicČeské Budějovice, Czechia
| | - Manuela R Păuşan
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai UniversityCluj-Napoca, Romania; Department for Internal Medicine, Medical University of GrazGraz, Austria
| | - Tudor Tămaş
- Department of Geology, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Nicolae Har
- Department of Geology, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai UniversityCluj-Napoca, Romania; Electron Microscopy Center, Babeş-Bolyai UniversityCluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai UniversityCluj-Napoca, Romania; Center for Systems Biology, Biodiversity, and Bioresources, Babeş-Bolyai UniversityCluj-Napoca, Romania
| |
Collapse
|
21
|
Faissal A, Ouazzani N, Parrado JR, Dary M, Manyani H, Morgado BR, Barragán MD, Mandi L. Impact of fertilization by natural manure on the microbial quality of soil: Molecular approach. Saudi J Biol Sci 2017; 24:1437-1443. [PMID: 28855843 PMCID: PMC5562461 DOI: 10.1016/j.sjbs.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/09/2016] [Accepted: 01/02/2017] [Indexed: 11/30/2022] Open
Abstract
The quality of soil is strongly bound by several interactions between chemical and biological components, including microbial composition, which are a key importance for soil performance. Cultural activities have a huge induction on soil health, through both modification of physicochemical proprieties and changing on soil microbial communities. This usually affects the safety of soil, and then the crop production and water. In the present work, the information on bacterial community composition was determined from a set of 6 soils collected from 2 farms in agricultural land of Marrakech (Morocco), one of which used poultry manure (PM) and the other cow manure (CM) as fertilizers. To profile this structure of the bacterial community Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA fragments has been used. These amendments resulted in the appearance of several novel bands and different relative intensities of bands between the control station and other sites studied. The stations most affected are those receiving a supply of manure rather high, which results in an organic and bacterial load in the soil. The results showed a bacterial diversity very important indicating a fecal contamination like Bacteroides, Pseudomonas, Staphylococcus,… etc. Bacteria pertain to the phylum Firmicutes and Bacteroidetes were noted to be the dominant ribotype in amended soil. Moreover, this work demonstrates also the existence of pathogens strains in soil amended by poultry manure (PM) belonging to the Clostridiales order and Pseudomonadales. The pathogenic bacteria detected posing a hazard of human contagion when they are used for soil practice.
Collapse
Affiliation(s)
- Aziz Faissal
- Environment and Health Team, Department of Biology, Faculty Poly-disciplinary of Safi, University Cadi Ayyad, Safi, Morocco.,National Center for Research and Study on Water and Energy, University Cadi Ayyad, Marrakech, Morocco
| | - N Ouazzani
- National Center for Research and Study on Water and Energy, University Cadi Ayyad, Marrakech, Morocco.,Laboratory of Hydrobiology, Ecotoxicology & Sanitation (LHEA, URAC 33), Faculty of Sciences Semlalia, Marrakech, Morocco
| | - J R Parrado
- Department of Biochemical and Molecular Biology, Faculty of Pharmacy, University of Seville, Spain
| | - M Dary
- Resbioagro, Company of Biotechnology, University of Seville, Spain
| | - H Manyani
- Resbioagro, Company of Biotechnology, University of Seville, Spain
| | - B R Morgado
- Department of Biochemical and Molecular Biology, Faculty of Pharmacy, University of Seville, Spain
| | - M D Barragán
- Department of Biochemical and Molecular Biology, Faculty of Pharmacy, University of Seville, Spain
| | - L Mandi
- National Center for Research and Study on Water and Energy, University Cadi Ayyad, Marrakech, Morocco.,Laboratory of Hydrobiology, Ecotoxicology & Sanitation (LHEA, URAC 33), Faculty of Sciences Semlalia, Marrakech, Morocco
| |
Collapse
|
22
|
Habtom H, Demanèche S, Dawson L, Azulay C, Matan O, Robe P, Gafny R, Simonet P, Jurkevitch E, Pasternak Z. Soil characterisation by bacterial community analysis for forensic applications: A quantitative comparison of environmental technologies. Forensic Sci Int Genet 2017; 26:21-29. [DOI: 10.1016/j.fsigen.2016.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 12/01/2022]
|
23
|
Jorquera MA, Maruyama F, Ogram AV, Navarrete OU, Lagos LM, Inostroza NG, Acuña JJ, Rilling JI, de La Luz Mora M. Rhizobacterial Community Structures Associated with Native Plants Grown in Chilean Extreme Environments. MICROBIAL ECOLOGY 2016; 72:633-646. [PMID: 27406732 DOI: 10.1007/s00248-016-0813-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Chile is topographically and climatically diverse, with a wide array of diverse undisturbed ecosystems that include native plants that are highly adapted to local conditions. However, our understanding of the diversity, activity, and role of rhizobacteria associated with natural vegetation in undisturbed Chilean extreme ecosystems is very poor. In the present study, the combination of denaturing gradient gel electrophoresis and 454-pyrosequencing approaches was used to describe the rhizobacterial community structures of native plants grown in three representative Chilean extreme environments: Atacama Desert (ATA), Andes Mountains (AND), and Antarctic (ANT). Both molecular approaches revealed the presence of Proteobacteria, Bacteroidetes, and Actinobacteria as the dominant phyla in the rhizospheres of native plants. Lower numbers of operational taxonomic units (OTUs) were observed in rhizosphere soils from ATA compared with AND and ANT. Both approaches also showed differences in rhizobacterial community structures between extreme environments and between plant species. The differences among plant species grown in the same environment were attributed to the higher relative abundance of classes Gammaproteobacteria and Alphaproteobacteria. However, further studies are needed to determine which environmental factors regulate the structures of rhizobacterial communities, and how (or if) specific bacterial groups may contribute to the growth and survival of native plants in each Chilean extreme environments.
Collapse
Affiliation(s)
- Milko A Jorquera
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Ave. Francisco Salazar, 01145, Temuco, Chile.
| | - Fumito Maruyama
- Section of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Andrew V Ogram
- Soil and Water Science Department, University of Florida, 2181 McCarty Hall, PO Box 110290, Gainesville, FL, 32611, USA
| | - Oscar U Navarrete
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Lorena M Lagos
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Nitza G Inostroza
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jacquelinne J Acuña
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Joaquín I Rilling
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - María de La Luz Mora
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Ave. Francisco Salazar, 01145, Temuco, Chile
| |
Collapse
|
24
|
Leiva D, Clavero-León C, Carú M, Orlando J. Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota. FEMS Microbiol Ecol 2016; 92:fiw178. [PMID: 27543320 DOI: 10.1093/femsec/fiw178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 01/07/2023] Open
Abstract
Definition of lichens has evolved from bi(tri)partite associations to multi-species symbioses, where bacteria would play essential roles. Besides, although soil bacterial communities are known to be affected by edaphic factors, when lichens grow upon them these could become less preponderant. We hypothesized that the structure of both the lichen microbiota and the microbiota in the soil underneath lichens is shaped by lichen intrinsic and extrinsic factors. In this work, intrinsic factors corresponded to mycobiont and cyanobiont identities of Peltigera lichens, metabolite diversity and phenoloxidase activity and extrinsic factors involved the site of the forest where lichens grow. Likewise, the genetic and metabolic structure of the lichen and soil bacterial communities were analyzed by fingerprinting. Among the results, metabolite diversity was inversely related to the genetic structure of bacterial communities of lichens and soils, highlighting the far-reaching effect of these substances; while phenoloxidase activity was inversely related to the metabolic structure only of the lichen bacterial microbiota, presuming a more limited effect of the products of these enzymes. Soil bacterial microbiota was different depending on the site and, strikingly, according to the cyanobiont present in the lichen over them, which could indicate an influence of the photobiont metabolism on the availability of soil nutrients.
Collapse
Affiliation(s)
- Diego Leiva
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile
| | - Claudia Clavero-León
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile
| | - Margarita Carú
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile
| | - Julieta Orlando
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile
| |
Collapse
|
25
|
Abstract
ABSTRACT
Soil microbial forensics can be defined as the study of how microorganisms can be applied to forensic investigations. The field of soil microbial forensics is of increasing interest and applies techniques commonly used in diverse disciplines in order to identify microbes and determine their abundances, complexities, and interactions with soil and surrounding objects. Emerging new techniques are also providing insights into the complexity of microbes in soil. Soil may harbor unique microbes that may reflect specific physical and chemical characteristics indicating site specificity. While applications of some of these techniques in the field of soil microbial forensics are still in early stages, we are still gaining insight into how microorganisms may be more robustly used in forensic investigations.
Collapse
|
26
|
Aszalós JM, Krett G, Anda D, Márialigeti K, Nagy B, Borsodi AK. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes. Extremophiles 2016; 20:603-20. [PMID: 27315168 DOI: 10.1007/s00792-016-0849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.
Collapse
Affiliation(s)
- Júlia Margit Aszalós
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Dóra Anda
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Balázs Nagy
- Department of Physical Geography, Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
27
|
Kim K, Islam R, Benson A, Joe MM, Denver W, Chanratan M, Chatterjee P, Kang Y, Sa T. An Overview of Different Techniques on the Microbial Community Structure, and Functional Diversity of Plant Growth Promoting Bacteria. ACTA ACUST UNITED AC 2016. [DOI: 10.7745/kjssf.2016.49.2.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Aschenbrenner IA, Cernava T, Berg G, Grube M. Understanding Microbial Multi-Species Symbioses. Front Microbiol 2016; 7:180. [PMID: 26925047 PMCID: PMC4757690 DOI: 10.3389/fmicb.2016.00180] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/02/2016] [Indexed: 11/13/2022] Open
Abstract
Lichens are commonly recognized as a symbiotic association of a fungus and a chlorophyll containing partner, either green algae or cyanobacteria, or both. The fungus provides a suitable habitat for the partner, which provides photosynthetically fixed carbon as energy source for the system. The evolutionary result of the self-sustaining partnership is a unique joint structure, the lichen thallus, which is indispensable for fungal sexual reproduction. The classical view of a dual symbiosis has been challenged by recent microbiome research, which revealed host-specific bacterial microbiomes. The recent results about bacterial associations with lichens symbioses corroborate their notion as a multi-species symbiosis. Multi-omics approaches have provided evidence for functional contribution by the bacterial microbiome to the entire lichen meta-organism while various abiotic and biotic factors can additionally influence the bacterial community structure. Results of current research also suggest that neighboring ecological niches influence the composition of the lichen bacterial microbiome. Specificity and functions are here reviewed based on these recent findings, converging to a holistic view of bacterial roles in lichens. Finally we propose that the lichen thallus has also evolved to function as a smart harvester of bacterial symbionts. We suggest that lichens represent an ideal model to study multi-species symbiosis, using the recently available omics tools and other cutting edge methods.
Collapse
Affiliation(s)
- Ines A. Aschenbrenner
- Institute of Environmental Biotechnology, Graz University of TechnologyPetersgasse, Graz, Austria
- Institute of Plant Sciences, University of GrazGraz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of TechnologyPetersgasse, Graz, Austria
- Austrian Centre of Industrial Biotechnology – Gesellschaft mit beschränkter HaftungGraz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of TechnologyPetersgasse, Graz, Austria
| | - Martin Grube
- Institute of Plant Sciences, University of GrazGraz, Austria
| |
Collapse
|
29
|
Shin HC, Ju DH, Jeon BS, Choi O, Kim HW, Um Y, Lee DH, Sang BI. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane. PLoS One 2015; 10:e0144999. [PMID: 26694756 PMCID: PMC4687861 DOI: 10.1371/journal.pone.0144999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 11/25/2015] [Indexed: 12/02/2022] Open
Abstract
Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR) for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5–5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE) was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens.
Collapse
Affiliation(s)
- Hyun Chul Shin
- Clean Energy Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, South Korea
- Department of Environmental Engineering, University of Seoul, Dongdaemun-Ku, Seoul, South Korea
| | - Dong-Hun Ju
- Clean Energy Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, South Korea
| | - Byoung Seung Jeon
- Department of Chemical Engineering, Hanyang University, Seongdong-Ku, Seoul, South Korea
| | - Okkyoung Choi
- The Research Institute of Industrial Science, Hanyang University, Seongdong-Ku, Seoul, South Korea
- * E-mail: (OC); (BIS)
| | - Hyun Wook Kim
- Department of Environmental Engineering, University of Seoul, Dongdaemun-Ku, Seoul, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, South Korea
| | - Dong-Hoon Lee
- Department of Environmental Engineering, University of Seoul, Dongdaemun-Ku, Seoul, South Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seongdong-Ku, Seoul, South Korea
- * E-mail: (OC); (BIS)
| |
Collapse
|
30
|
Suseela V, Alpert P, Nakatsu CH, Armstrong A, Tharayil N. Plant–soil interactions regulate the identity of soil carbon in invaded ecosystems: implication for legacy effects. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12591] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vidya Suseela
- Department of Agricultural and Environmental Sciences Clemson University Clemson South Carolina29634 USA
| | - Peter Alpert
- Biology Department University of Massachusetts Amherst Massachusetts01003 USA
| | - Cindy H. Nakatsu
- Department of Agronomy Purdue University West Lafayette Indiana47907 USA
| | - Arthur Armstrong
- Department of Agronomy Purdue University West Lafayette Indiana47907 USA
| | - Nishanth Tharayil
- Department of Agricultural and Environmental Sciences Clemson University Clemson South Carolina29634 USA
| |
Collapse
|
31
|
Ge S, Wang S, Yang X, Qiu S, Li B, Peng Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. CHEMOSPHERE 2015; 140:85-98. [PMID: 25796420 DOI: 10.1016/j.chemosphere.2015.02.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/14/2014] [Accepted: 02/01/2015] [Indexed: 06/04/2023]
Abstract
Partial nitrification has gained broad interests in the biological nitrogen removal (BNR) from wastewater, since it alleviates carbon limitation issues and acts as a shortcut nitrogen removal system combined with anaerobic ammonium oxidation (Anammox) process. The occurrence and maintenance of partial nitrification relies on various conditions, which favor ammonium oxidizing bacteria (AOB) but inhibit or limit nitrite oxidizing bacteria (NOB). The studies of the AOB and NOB activities have been conducted by state-of-the-art molecular techniques, such as Polymerase Chain Reaction (PCR), Quantitative PCR, denaturing gradient gel electrophoresis (DGGE), Fluorescence in situ hybridization (FISH) technique, Terminal Restriction Fragment Length Polymorphism (T-RFLP), Live/Dead BacLight, and quinone profile. Furthermore, control strategies for obtaining partial nitrification are mainly focused on the pH, temperature, dissolved oxygen concentration, real-time aeration control, sludge retention time, substrate concentration, alternating anoxic and aerobic operation, inhibitor and ultrasonic treatment. Existing problems and further perspectives for the scale-up of partial nitrification are also proposed and suggested.
Collapse
Affiliation(s)
- Shijian Ge
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Shanyun Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiong Yang
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuang Qiu
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yongzhen Peng
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
32
|
Bai L, Cui J, Jie W, Cai B. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiol Res 2015; 180:49-56. [PMID: 26505311 DOI: 10.1016/j.micres.2015.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/10/2015] [Accepted: 07/21/2015] [Indexed: 01/10/2023]
Abstract
We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields.
Collapse
Affiliation(s)
- Li Bai
- College of Life Science, Heilongjiang University, Harbin 150080, China; Food and Environmental Engineering Department, East University of Heilongjiang, Harbin 150086, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, China
| | - Jiaqi Cui
- College of Life Science, Heilongjiang University, Harbin 150080, China; Food and Environmental Engineering Department, East University of Heilongjiang, Harbin 150086, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, China
| | - Weiguang Jie
- College of Life Science, Heilongjiang University, Harbin 150080, China; Food and Environmental Engineering Department, East University of Heilongjiang, Harbin 150086, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, China
| | - Baiyan Cai
- College of Life Science, Heilongjiang University, Harbin 150080, China; Food and Environmental Engineering Department, East University of Heilongjiang, Harbin 150086, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, China.
| |
Collapse
|
33
|
Rodríguez-Ruano SM, Martín-Vivaldi M, Martín-Platero AM, López-López JP, Peralta-Sánchez JM, Ruiz-Rodríguez M, Soler JJ, Valdivia E, Martínez-Bueno M. The Hoopoe's Uropygial Gland Hosts a Bacterial Community Influenced by the Living Conditions of the Bird. PLoS One 2015; 10:e0139734. [PMID: 26445111 PMCID: PMC4596831 DOI: 10.1371/journal.pone.0139734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022] Open
Abstract
Molecular methods have revealed that symbiotic systems involving bacteria are mostly based on whole bacterial communities. Bacterial diversity in hoopoe uropygial gland secretion is known to be mainly composed of certain strains of enterococci, but this conclusion is based solely on culture-dependent techniques. This study, by using culture-independent techniques (based on the 16S rDNA and the ribosomal intergenic spacer region) shows that the bacterial community in the uropygial gland secretion is more complex than previously thought and its composition is affected by the living conditions of the bird. Besides the known enterococci, the uropygial gland hosts other facultative anaerobic species and several obligated anaerobic species (mostly clostridia). The bacterial assemblage of this community was largely invariable among study individuals, although differences were detected between captive and wild female hoopoes, with some strains showing significantly higher prevalence in wild birds. These results alter previous views on the hoopoe-bacteria symbiosis and open a new window to further explore this system, delving into the possible sources of symbiotic bacteria (e.g. nest environments, digestive tract, winter quarters) or the possible functions of different bacterial groups in different contexts of parasitism or predation of their hoopoe host.
Collapse
Affiliation(s)
| | | | | | | | | | - Magdalena Ruiz-Rodríguez
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| | - Juan J Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
34
|
Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiol Res 2015; 182:21-30. [PMID: 26686610 DOI: 10.1016/j.micres.2015.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/16/2015] [Accepted: 09/26/2015] [Indexed: 11/21/2022]
Abstract
Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines.
Collapse
|
35
|
Becker AAMJ, Janssens GPJ, Snauwaert C, Hesta M, Huys G. Integrated community profiling indicates long-term temporal stability of the predominant faecal microbiota in captive cheetahs. PLoS One 2015; 10:e0123933. [PMID: 25905625 PMCID: PMC4408007 DOI: 10.1371/journal.pone.0123933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/09/2015] [Indexed: 12/14/2022] Open
Abstract
Understanding the symbiotic relationship between gut microbes and their animal host requires characterization of the core microbiota across populations and in time. Especially in captive populations of endangered wildlife species such as the cheetah (Acinonyx jubatus), this knowledge is a key element to enhance feeding strategies and reduce gastrointestinal disorders. In order to investigate the temporal stability of the intestinal microbiota in cheetahs under human care, we conducted a longitudinal study over a 3-year period with bimonthly faecal sampling of 5 cheetahs housed in two European zoos. For this purpose, an integrated 16S rRNA DGGE-clone library approach was used in combination with a series of real-time PCR assays. Our findings disclosed a stable faecal microbiota, beyond intestinal community variations that were detected between zoo sample sets or between animals. The core of this microbiota was dominated by members of Clostridium clusters I, XI and XIVa, with mean concentrations ranging from 7.5-9.2 log10 CFU/g faeces and with significant positive correlations between these clusters (P<0.05), and by Lactobacillaceae. Moving window analysis of DGGE profiles revealed 23.3-25.6% change between consecutive samples for four of the cheetahs. The fifth animal in the study suffered from intermediate episodes of vomiting and diarrhea during the monitoring period and exhibited remarkably more change (39.4%). This observation may reflect the temporary impact of perturbations such as the animal’s compromised health, antibiotic administration or a combination thereof, which temporarily altered the relative proportions of Clostridium clusters I and XIVa. In conclusion, this first long-term monitoring study of the faecal microbiota in feline strict carnivores not only reveals a remarkable compositional stability of this ecosystem, but also shows a qualitative and quantitative similarity in a defined set of faecal bacterial lineages across the five animals under study that may typify the core phylogenetic microbiome of cheetahs.
Collapse
Affiliation(s)
- Anne A. M. J. Becker
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| | - Geert P. J. Janssens
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cindy Snauwaert
- BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Myriam Hesta
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert Huys
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
- BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. J Microbiol Methods 2015; 113:50-6. [PMID: 25863142 DOI: 10.1016/j.mimet.2015.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 01/19/2023]
Abstract
Universal primers targeting the bacterial 16S-rRNA-gene allow quantification of the total bacterial load in variable sample types by qPCR. However, many universal primer pairs also amplify DNA of plants or even of archaea and other eukaryotic cells. By using these primers, the total bacterial load might be misevaluated, whenever samples contain high amounts of non-target DNA. Thus, this study aimed to provide primer pairs which are suitable for quantification and identification of bacterial DNA in samples such as feed, spices and sample material from digesters. For 42 primers, mismatches to the sequence of chloroplasts and mitochondria of plants were evaluated. Six primer pairs were further analyzed with regard to the question whether they anneal to DNA of archaea, animal tissue and fungi. Subsequently they were tested with sample matrix such as plants, feed, feces, soil and environmental samples. To this purpose, the target DNA in the samples was quantified by qPCR. The PCR products of plant and feed samples were further processed for the Single Strand Conformation Polymorphism method followed by sequence analysis. The sequencing results revealed that primer pair 335F/769R amplified only bacterial DNA in samples such as plants and animal feed, in which the DNA of plants prevailed.
Collapse
|
37
|
Campbell AH, Marzinelli EM, Gelber J, Steinberg PD. Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed. Front Microbiol 2015; 6:230. [PMID: 25859245 PMCID: PMC4374473 DOI: 10.3389/fmicb.2015.00230] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/09/2015] [Indexed: 11/13/2022] Open
Abstract
Macroalgal surfaces support abundant and diverse microorganisms within biofilms, which are often involved in fundamental functions relating to the health and defense of their seaweed hosts, including algal development, facilitation of spore release, and chemical antifouling. Given these intimate and important interactions, environmental changes have the potential to negatively impact macroalgae by disrupting seaweed-microbe interactions. We used the disappearance of the dominant canopy-forming fucoid Phyllospora comosa from the metropolitan coast of Sydney, NSW, Australia as a model system to study these interactions. We transplanted Phyllospora individuals from nearby, extant populations back onto reefs in Sydney to test whether bacterial assemblages associated with seaweed surfaces would be influenced by (i) the host itself, independently of where it occurs, (ii) the type of habitat where the host occurs, or (iii) site-specific differences. Analyses of bacterial DNA fingerprints (terminal fragment length polymorphisms) indicated that assemblages of bacteria on Phyllospora were not habitat-specific. Rather, they were primarily influenced by local, site-specific conditions with some evidence for host-specificity in some cases. This could suggest a lottery model of host-surface colonization, by which hosts are colonized by 'suitable' bacteria available in the local species pool, resulting in high variability in assemblage structure across sites, but where some species in the community are specific to the host and possibly influenced by differences in host traits.
Collapse
Affiliation(s)
- Alexandra H Campbell
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW, Australia ; Sydney Institute of Marine Science, Mosman NSW, Australia
| | - Ezequiel M Marzinelli
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW, Australia ; Sydney Institute of Marine Science, Mosman NSW, Australia
| | - Jon Gelber
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW, Australia
| | - Peter D Steinberg
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW, Australia ; Sydney Institute of Marine Science, Mosman NSW, Australia
| |
Collapse
|
38
|
Kraemer SA, Kassen R. Patterns of Local Adaptation in Space and Time among Soil Bacteria. Am Nat 2015; 185:317-31. [DOI: 10.1086/679585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Piasecka A, Bernstein R, Ollevier F, Meersman F, Souffreau C, Bilad RM, Cottenie K, Vanysacker L, Denis C, Vankelecom I. Study of biofilms on PVDF membranes after chemical cleaning by sodium hypochlorite. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Lebuhn M, Weiß S, Munk B, Guebitz GM. Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:1-40. [PMID: 26337842 DOI: 10.1007/978-3-319-21993-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.
Collapse
Affiliation(s)
- Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 6, 85354, Freising, Germany
| | | | | | | |
Collapse
|
41
|
Kalle E, Kubista M, Rensing C. Multi-template polymerase chain reaction. BIOMOLECULAR DETECTION AND QUANTIFICATION 2014; 2:11-29. [PMID: 27896140 PMCID: PMC5121205 DOI: 10.1016/j.bdq.2014.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.
Collapse
Affiliation(s)
- Elena Kalle
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Allmas alle 5, 75007 Uppsala, Sweden
| | - Mikael Kubista
- TATAA Biocenter, Odinsgatan 28, 41103 Göteborg, Sweden; Institute of Biotechnology, Czech Academy of Sciences
| | - Christopher Rensing
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
42
|
Kim J, Lee C. Rapid fingerprinting of methanogenic communities by high-resolution melting analysis. BIORESOURCE TECHNOLOGY 2014; 174:321-327. [PMID: 25443624 DOI: 10.1016/j.biortech.2014.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Characterizing microbial community structure using molecular techniques is becoming a popular approach in studies of waste/wastewater treatment processes. A rapid and robust tool to analyze microbial communities is required for efficient process monitoring and control. In this study, a new community fingerprinting method based on high-resolution melting (HRM) analysis was developed and applied to compare methanogenic community structures of five different anaerobic digesters. The new method produced robust community clustering and ordination results comparable to the results from the commonly used denaturing gradient gel electrophoresis (DGGE) performed in parallel. This method transforms melting peak plots (MPs) of community DNA samples generated by HRM analysis to molecular fingerprints and estimates the relationships between the communities based on the fingerprints. The MP-based fingerprinting would provide a good alternative to monitor variations in microbial community structure especially when handling large sample numbers due to its high-throughput capacity and short analysis time.
Collapse
Affiliation(s)
- Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
43
|
Sun J, Zhang Q, Zhou J, Wei Q. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site. PLoS One 2014; 9:e111744. [PMID: 25360786 PMCID: PMC4216118 DOI: 10.1371/journal.pone.0111744] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/03/2014] [Indexed: 11/24/2022] Open
Abstract
We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant) and a new planting site (NewPlant) in Beijing. Dwarfing apple nurseries of 'Fuji'/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil) and from the new planting site (NewSoil) was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant). More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria). The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition.
Collapse
Affiliation(s)
- Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiang Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qinping Wei
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
44
|
Ramírez-Castrillón M, Mendes SDC, Inostroza-Ponta M, Valente P. (GTG)5 MSP-PCR fingerprinting as a technique for discrimination of wine associated yeasts? PLoS One 2014; 9:e105870. [PMID: 25171185 PMCID: PMC4149466 DOI: 10.1371/journal.pone.0105870] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022] Open
Abstract
In microbiology, identification of all isolates by sequencing is still unfeasible in small research laboratories. Therefore, many yeast diversity studies follow a screening procedure consisting of clustering the yeast isolates using MSP-PCR fingerprinting, followed by identification of one or a few selected representatives of each cluster by sequencing. Although this procedure has been widely applied in the literature, it has not been properly validated. We evaluated a standardized protocol using MSP-PCR fingerprinting with the primers (GTG)5 and M13 for the discrimination of wine associated yeasts in South Brazil. Two datasets were used: yeasts isolated from bottled wines and vineyard environments. We compared the discriminatory power of both primers in a subset of 16 strains, choosing the primer (GTG)5 for further evaluation. Afterwards, we applied this technique to 245 strains, and compared the results with the identification obtained by partial sequencing of the LSU rRNA gene, considered as the gold standard. An array matrix was constructed for each dataset and used as input for clustering with two methods (hierarchical dendrograms and QAPGrid layout). For both yeast datasets, unrelated species were clustered in the same group. The sensitivity score of (GTG)5 MSP-PCR fingerprinting was high, but specificity was low. As a conclusion, the yeast diversity inferred in several previous studies may have been underestimated and some isolates were probably misidentified due to the compliance to this screening procedure.
Collapse
Affiliation(s)
- Mauricio Ramírez-Castrillón
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, Brazil
| | - Sandra Denise Camargo Mendes
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, Brazil
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Laboratório de Análises de Vinhos e Derivados, Estação Experimental de Videira, Campo Experimental, Videira, Brazil
| | - Mario Inostroza-Ponta
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Patricia Valente
- Departamento de Microbiologia, Imunologia e Parasitologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, Brazil
- * E-mail:
| |
Collapse
|
45
|
Shoji T, Sueoka K, Satoh H, Mino T. Identification of the microbial community responsible for thiocyanate and thiosulfate degradation in an activated sludge process. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Chen J, Tang YQ, Li Y, Nie Y, Hou L, Li XQ, Wu XL. Impacts of different nanoparticles on functional bacterial community in activated sludge. CHEMOSPHERE 2014; 104:141-148. [PMID: 24280055 DOI: 10.1016/j.chemosphere.2013.10.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/22/2013] [Accepted: 10/30/2013] [Indexed: 06/02/2023]
Abstract
Rapidly developing industry raises concerns about the environmental impacts of nanoparticles, but the effects of inorganic nanoparticles on functional bacterial community in wastewater treatment remain unclear. The discriminated effects of silver nanoparticles (Ag-NP) and zinc oxide nanoparticles (ZnO-NP) in a simulated sequencing batch reactor (SBR) system were therefore evaluated by the RNA-based terminal restricted fragment length polymorphism (T-RFLP), 16S rcDNA gene clone library and real-time reverse transcription-PCR (RT-PCR) analyses. Although the COD and NH4-N removal efficiencies were not or slightly reduced by the addition of ZnO-NP and Ag-NP, the functional bacterial community changed remarkably. The denitrification related species were inhibited by high dosage of ZnO-NP and Ag-NP, including Diaphorobacter species, Thauera species and those in the Sphaerotilus-Leptothrix group. However, the bacteria related to sludge bulking, heavy metal resistant and biosorption were increased, especially by ZnO-NPs treatment, including those closely related to Haliscomenobacter hydrossis, Zoogloea ramigera and Methyloversatilis universalis. In addition, Ag-NP and ZnO-NP treatments influenced the functional bacterial community differently. Increasing of bulking related bacteria may help to compensate the COD removal efficiency and to maintain functional redundancy, but could lead to operation failure of activated sludge system when expose to ZnO-NPs.
Collapse
Affiliation(s)
- Jian Chen
- College of Engineering, Peking University, Beijing 100871, PR China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Yan Li
- College of Engineering, Peking University, Beijing 100871, PR China
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, PR China
| | - Linlin Hou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xi-Qing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
47
|
Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst Appl Microbiol 2014; 37:376-85. [PMID: 24958606 DOI: 10.1016/j.syapm.2014.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/22/2022]
Abstract
A diverse array of bacteria that inhabit the rhizosphere and different plant organs play a crucial role in plant health and growth. Therefore, a general understanding of these bacterial communities and their diversity is necessary. Using the 16S rRNA gene clone library technique, the bacterial community structure and diversity of the rhizosphere and endophytic bacteria in Stellera chamaejasme compartments were compared and clarified for the first time. Grouping of the sequences obtained showed that members of the Proteobacteria (43.2%), Firmicutes (36.5%) and Actinobacteria (14.1%) were dominant in both samples. Other groups that were consistently found, albeit at lower abundance, were Bacteroidetes (2.1%), Chloroflexi (1.9%), and Cyanobacteria (1.7%). The habitats (rhizosphere vs endophytes) and organs (leaf, stem and root) structured the community, since the Wilcoxon signed rank test indicated that more varied bacteria inhabited the rhizosphere compared to the organs of the plant. In addition, correspondence analysis also showed that differences were apparent in the bacterial communities associated with these distinct habitats. Moreover, principal component analysis revealed that the profiles obtained from the rhizosphere and roots were similar, whereas leaf and stem samples clustered together on the opposite side of the plot from the rhizosphere and roots. Taken together, these results suggested that, although the communities associated with the rhizosphere and organs shared some bacterial species, the associated communities differed in structure and diversity.
Collapse
|
48
|
Schogor ALB, Huws SA, Santos GTD, Scollan ND, Hauck BD, Winters AL, Kim EJ, Petit HV. Ruminal Prevotella spp. may play an important role in the conversion of plant lignans into human health beneficial antioxidants. PLoS One 2014; 9:e87949. [PMID: 24709940 PMCID: PMC3977842 DOI: 10.1371/journal.pone.0087949] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/30/2013] [Indexed: 01/21/2023] Open
Abstract
Secoisolariciresinol diglucoside (SDG), the most abundant lignan in flaxseed, is metabolized by the ruminal microbiota into enterolignans, which are strong antioxidants. Enterolactone (EL), the main mammalian enterolignan produced in the rumen, is transferred into physiological fluids, with potentially human health benefits with respect to menopausal symptoms, hormone-dependent cancers, cardiovascular diseases, osteoporosis and diabetes. However, no information exists to our knowledge on bacterial taxa that play a role in converting plant lignans into EL in ruminants. In order to investigate this, eight rumen cannulated cows were used in a double 4 × 4 Latin square design and fed with four treatments: control with no flax meal (FM), or 5%, 10% and 15% FM (on a dry matter basis). Concentration of EL in the rumen increased linearly with increasing FM inclusion. Total rumen bacterial 16S rRNA concentration obtained using Q-PCR did not differ among treatments. PCR-T-RFLP based dendrograms revealed no global clustering based on diet indicating between animal variation. PCR-DGGE showed a clustering by diet effect within four cows that had similar basal ruminal microbiota. DNA extracted from bands present following feeding 15% FM and absent with no FM supplementation were sequenced and it showed that many genera, in particular Prevotella spp., contributed to the metabolism of lignans. A subsequent in vitro study using selected pure cultures of ruminal bacteria incubated with SDG indicated that 11 ruminal bacteria were able to convert SDG into secoisolariciresinol (SECO), with Prevotella spp. being the main converters. These data suggest that Prevotella spp. is one genus playing an important role in the conversion of plant lignans to human health beneficial antioxidants in the rumen.
Collapse
Affiliation(s)
- Ana L. B. Schogor
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon A. Huws
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Geraldo T. D. Santos
- Departamento de Zootecnia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Nigel D. Scollan
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Barbara D. Hauck
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Ana L. Winters
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Eun J. Kim
- Department of Animal Science, Kyungpook National University, Sangju, Korea
| | - Hélène V. Petit
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| |
Collapse
|
49
|
Penton CR, Gupta VVSR, Tiedje JM, Neate SM, Ophel-Keller K, Gillings M, Harvey P, Pham A, Roget DK. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One 2014; 9:e93893. [PMID: 24699870 PMCID: PMC3974846 DOI: 10.1371/journal.pone.0093893] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼ 994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression.
Collapse
Affiliation(s)
- C. Ryan Penton
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | | | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Stephen M. Neate
- Department of Agriculture, Fisheries and Forestry, Queensland, Leslie Research Centre, Towoomba, Queensland, Australia
| | | | - Michael Gillings
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul Harvey
- CSIRO Ecosystem Sciences, Glen Osmond, South Australia, Australia
| | - Amanda Pham
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - David K. Roget
- CSIRO Ecosystem Sciences, Glen Osmond, South Australia, Australia
| |
Collapse
|
50
|
Fuentes S, Méndez V, Aguila P, Seeger M. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 2014; 98:4781-94. [PMID: 24691868 DOI: 10.1007/s00253-014-5684-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/22/2023]
Abstract
Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Sebastián Fuentes
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología & Center of Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | | | | |
Collapse
|