1
|
Donchev D, Stoikov I, Diukendjieva A, Ivanov IN. Assessment of Skimmed Milk Flocculation for Bacterial Enrichment from Water Samples, and Benchmarking of DNA Extraction and 16S rRNA Databases for Metagenomics. Int J Mol Sci 2024; 25:10817. [PMID: 39409144 PMCID: PMC11477342 DOI: 10.3390/ijms251910817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Water samples for bacterial microbiome studies undergo biomass concentration, DNA extraction, and taxonomic identification steps. Through benchmarking, we studied the applicability of skimmed milk flocculation (SMF) for bacterial enrichment, an adapted in-house DNA extraction protocol, and six 16S rRNA databases (16S-DBs). Surface water samples from two rivers were treated with SMF and vacuum filtration (VF) and subjected to amplicon or shotgun metagenomics. A microbial community standard underwent five DNA extraction protocols, taxonomical identification with six different 16S-DBs, and evaluation by the Measurement Integrity Quotient (MIQ) score. In SMF samples, the skimmed milk was metabolized by members of lactic acid bacteria or genera such as Polaromonas, Macrococcus, and Agitococcus, resulting in increased relative abundance (p < 0.5) up to 5.0 log fold change compared to VF, rendering SMF inapplicable for bacterial microbiome studies. The best-performing DNA extraction protocols were FastSpin Soil, the in-house method, and EurX. All 16S-DBs yielded comparable MIQ scores within each DNA extraction kit, ranging from 61-66 (ZymoBIOMICs) up to 80-82 (FastSpin). DNA extraction kits exert more bias toward the composition than 16S-DBs. This benchmarking study provided valuable information to inform future water metagenomic study designs.
Collapse
Affiliation(s)
- Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (D.D.)
| | - Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (D.D.)
| | | | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (D.D.)
| |
Collapse
|
2
|
Sekgobela JM, Khabo-Mmekoa CM, Momba MNB. Tracking enteric pathogen contamination from on-site sanitation facilities to groundwater in selected rural areas of Vhembe District Municipality, Limpopo Province, South Africa. Heliyon 2024; 10:e27271. [PMID: 38486784 PMCID: PMC10937690 DOI: 10.1016/j.heliyon.2024.e27271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Groundwater is valued as a source of potable water, although it is vulnerable to environmental pollution. The aim of this study was to track enteric pathogen contamination from on-site sanitation (OSS) facilities to 70 household boreholes used by four villages of the Vhembe District Municipality. Two objectives were pursued: to measure the lateral distance between the borehole and the sanitation facilities in household yards, and to track the enteric pathogens. The borehole abstraction point and OSS system distance were determined using a steel measuring tape. Real-time PCR was used to track Shigella flexneri, Salmonella typhimurium, Campylobacter jejuni, and enterotoxigenic Escherichia coli (ETEC) from Wastewater (WW) from domestic septic tank and sludge from pit latrines to boreholes. Escherichia coli was used as an indicator of faecal contamination. Results showed that 25% of households kept a distance of ≥50 m between the OSS facilities and the boreholes. In total, 87.5% of household boreholes in the rainy season and 72.5% in the dry season were contaminated with E. coli and pathogenic bacteria: Shigella flexneri, Salmonella typhimurium, and ETEC. The concentrations of the pathogens ranged from 2.03 to 2.12 LogEGC/100 mL. A very weak (r = -0.093) to moderate (r = -0.541) association was found between pathogens in groundwater and on-site sanitation systems (WW from septic tank and sludge from pit latrine). This suggests that the pathogens were not present in the sanitation compartment when they were found in the groundwater and vice versa. Moreover, a very weak (r = 0.007) to moderate (r = 0.525) association was found between the detected contaminants in groundwater and the lateral distance between the OSS facilities and the boreholes. The pathogens detected in all samples showed consistent concentrations, suggesting potential contamination from OSS systems' waste, possibly in groundwater, indicating potential contamination. The siting of OSS facilities at the yards in this study appeared to have a slight influence on the contaminants detected in groundwater. This study calls for an education program to be implemented by the Water and Sanitation Services Authorities to prevent contamination of groundwater and the risk of waterborne diseases.
Collapse
Affiliation(s)
- Jeridah Matlhokha Sekgobela
- Tshwane University of Technology, Department of Environmental, Water and Earth Sciences, Arcadia Campus, P/B X 680, Pretoria, 0001, South Africa
| | - Colette Mmapenya Khabo-Mmekoa
- Tshwane University of Technology, Department of Biomedical Sciences, Arcadia Campus, P/B X 680, Pretoria, 0001, South Africa
| | - Maggy Ndombo Benteke Momba
- Tshwane University of Technology, Department of Environmental, Water and Earth Sciences, Arcadia Campus, P/B X 680, Pretoria, 0001, South Africa
| |
Collapse
|
3
|
Nnadozie CF, Ngoni N. A method of recovering the very low concentration of pathogens in river water by combining centrifugation and membrane filtration. MethodsX 2023; 11:102291. [PMID: 37560404 PMCID: PMC10407429 DOI: 10.1016/j.mex.2023.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Waterborne pathogens present major public health concerns because of the associated high mortality, morbidity and cost of treatment. Consumption of and contact with water contaminated by faeces is a significant risk factor for transmitting these organisms to humans. Their detection in a water sample is critical to ascertain potential risks to humans. They are relatively low in concentrations in surface waters, making their detection a challenge. Campylobacter is targeted here because it is one of the leading causes of enteric diseases globally, and consensus on the superiority of centrifugation over filtration, and vice versa, to recover Campylobacter spp. from river water samples for detection, has yet to be. Therefore, for this study river water sample was processed by combining both methods in a single set-up to concentrate Campylobacter spp. cells from water samples. This method of combining centrifugation and filtration can be expanded to other bacterial waterborne pathogens of public health importance.•Concentrating cells by centrifugation (14,000 × g for 30 min) to collect the pellets, followed by membrane filtration (using 0.45 µm) of the supernatant to trap any remaining suspended cells, and then pooling both pellet and residue presents an effective method for obtaining a satisfactory quantitative recovery of waterborne pathogens, such as Campylobacter spp. from environmental waters.•This is a critical need for quantitative microbial risk assessment studies.
Collapse
Affiliation(s)
- Chika F. Nnadozie
- Institute for Water Research, Rhodes University, P.O Box 94, Grahamstown 6140, South Africa
| | - Nandipha Ngoni
- Institute for Water Research, Rhodes University, P.O Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
4
|
Chen SH, Fegan N, Kocharunchitt C, Bowman JP, Duffy LL. Impact of Poultry Processing Operating Parameters on Bacterial Transmission and Persistence on Chicken Carcasses and Their Shelf Life. Appl Environ Microbiol 2020; 86:e00594-20. [PMID: 32276979 PMCID: PMC7267199 DOI: 10.1128/aem.00594-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 01/23/2023] Open
Abstract
It is important for the poultry industry to maximize product safety and quality by understanding the connection between bacterial diversity on chicken carcasses throughout poultry processing to the end of shelf life and the impact of the local processing environment. Enumeration of total aerobic bacteria, Campylobacter and Pseudomonas, and 16S rRNA gene amplicon sequencing were used to evaluate the processing line by collecting 10 carcasses from five processing steps: prescald, postplucker, pre- and post-immersion chill, and post-air chill. The diversity throughout a 12-day shelf life was also determined by examining 30 packaged carcasses. To identify the sources of possible contamination, scald water tank, immersion chilling water tank, air samples, and wall surfaces in the air-chill room were analyzed. Despite bacterial reductions on carcasses (>5 log10 CFU/ml) throughout the process, each step altered the bacterial diversity. Campylobacter was a minor but persistent component in the bacterial community on carcasses. The combination of scalding, defeathering, and plucking distributed thermophilic spore-forming Anoxybacillus to carcasses, which remained at a high abundance on carcasses throughout subsequent processes. Pseudomonas was not isolated from carcasses after air chilling but was abundant on the wall of the air-chill room and became the predominant taxon at the end of shelf life, suggesting possible contamination through air movement. The results suggest that attention is needed at each processing step, regardless of bacterial reductions on carcasses. Changing scalding water regularly, maintaining good hygiene practices during processing, and thorough disinfection at the end of each processing day are important to minimize bacterial transmission.IMPORTANCE Culture-based and culture-independent approaches were utilized to reveal bacterial community changes on chicken carcasses at different processing steps and potential routes from the local processing environment. Current commercial processing effectively reduced bacterial loads on carcasses. Poultry processes have similar processes across facilities, but various processing arrangements and operating parameters could impact the bacterial transmission and persistence on carcasses differently. This study showed the use of a single tunnel incorporating scalding, defeathering and plucking may undesirably distribute the thermoduric bacteria, e.g., Campylobacter and Anoxybacillus, between the local environment and carcasses, whereas this does not occur when these steps are separated. The length of immersion and air chilling also impacted bacterial diversity on carcasses. Air chilling can transfer Pseudomonas from wall surfaces onto carcasses; this may subsequently influence chicken product shelf life. This study helps poultry processors understand the impact of current commercial processing and improve the chicken product quality and safety.
Collapse
Affiliation(s)
- Stanley H Chen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, Queensland, Australia
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Narelle Fegan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, Queensland, Australia
| | - Chawalit Kocharunchitt
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Lesley L Duffy
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, Queensland, Australia
| |
Collapse
|
5
|
Chen SH, Fegan N, Kocharunchitt C, Bowman JP, Duffy LL. Changes of the bacterial community diversity on chicken carcasses through an Australian poultry processing line. Food Microbiol 2020; 86:103350. [DOI: 10.1016/j.fm.2019.103350] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
6
|
Kim J, Oh E, Banting GS, Braithwaite S, Chui L, Ashbolt NJ, Neumann NF, Jeon B. An Improved Culture Method for Selective Isolation of Campylobacter jejuni from Wastewater. Front Microbiol 2016; 7:1345. [PMID: 27617011 PMCID: PMC4999441 DOI: 10.3389/fmicb.2016.01345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023] Open
Abstract
Campylobacter jejuni is one of the leading foodborne pathogens worldwide. C. jejuni is isolated from a wide range of foods, domestic animals, wildlife, and environmental sources. The currently available culture-based isolation methods are not highly effective for wastewater samples due to the low number of C. jejuni in the midst of competing bacteria. To detect and isolate C. jejuni from wastewater samples, in this study, we evaluated a few different enrichment conditions using five different antibiotics (i.e., cefoperazone, vancomycin, trimethoprim, polymyxin B, and rifampicin), to which C. jejuni is intrinsically resistant. The selectivity of each enrichment condition was measured with Ct value using quantitative real-time PCR, and multiplex PCR to determine Campylobacter species. In addition, the efficacy of Campylobacter isolation on different culture media after selective enrichment was examined by growing on Bolton and Preston agar plates. The addition of polymyxin B, rifampicin, or both to the Bolton selective supplements enhanced the selective isolation of C. jejuni. The results of 16S rDNA sequencing also revealed that Enterococcus spp. and Pseudomonas aeruginosa are major competing bacteria in the enrichment conditions. Although it is known to be difficult to isolate Campylobacter from samples with heavy contamination, this study well exhibited that the manipulation of antibiotic selective pressure improves the isolation efficiency of fastidious Campylobacter from wastewater.
Collapse
Affiliation(s)
- Jinyong Kim
- School of Public Health, University of Alberta, Edmonton, AB Canada
| | - Euna Oh
- School of Public Health, University of Alberta, Edmonton, AB Canada
| | - Graham S Banting
- School of Public Health, University of Alberta, Edmonton, ABCanada; Provincial Laboratory for Public Health, Alberta Health Services, Edmonton, ABCanada
| | - Shannon Braithwaite
- School of Public Health, University of Alberta, Edmonton, ABCanada; Provincial Laboratory for Public Health, Alberta Health Services, Edmonton, ABCanada
| | - Linda Chui
- Provincial Laboratory for Public Health, Alberta Health Services, Edmonton, ABCanada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABCanada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, ABCanada; Provincial Laboratory for Public Health, Alberta Health Services, Edmonton, ABCanada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Edmonton, ABCanada; Provincial Laboratory for Public Health, Alberta Health Services, Edmonton, ABCanada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
7
|
Bonetta S, Pignata C, Lorenzi E, De Ceglia M, Meucci L, Bonetta S, Gilli G, Carraro E. Detection of pathogenic Campylobacter, E. coli O157:H7 and Salmonella spp. in wastewater by PCR assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15302-15309. [PMID: 27106076 DOI: 10.1007/s11356-016-6682-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was the evaluation of the occurrence of pathogenic Campylobacter, Escherichia coli O157:H7, E. coli virulence genes and Salmonella spp. in different wastewater treatment plants (WWTPs) using a method based on an enrichment step and PCR. This method was sensitive enough to detect low levels (∼2 CFU100 ml(-1) of raw sewage) of all the investigated pathogens. In the WWTP samples, E. coli O157:H7 DNA and the eae gene were never found, but 33 % of influents and effluents exhibited amplicons corresponding to Shiga-like toxin I. Twenty-five percent of the influent and 8 % of the effluent exhibited the presence of Shiga-like toxin II. Campylobacter jejuni and C. coli DNA were identified in 50 and 25 % of the influents and in 8 and 25 % of the effluents, respectively. Salmonella spp. DNA was present in all the samples. Considering the results obtained, the method tested here offers a reliable and expeditious tool for evaluating the efficiency of the effluent treatment in order to mitigate contamination risk. Influent contamination by Salmonella spp. and Campylobacter spp. provides indirect information about their circulation; moreover, their presence in effluents underlines the role of WWTPs in the contamination of the receiving surface waters, which affects public health directly or indirectly.
Collapse
Affiliation(s)
- Si Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - C Pignata
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - E Lorenzi
- Società Metropolitana Acque Torino S.p.A., C.so XI Febbraio, 14, Torino, 10152, Italy
| | - M De Ceglia
- Società Metropolitana Acque Torino S.p.A., C.so XI Febbraio, 14, Torino, 10152, Italy
| | - L Meucci
- Società Metropolitana Acque Torino S.p.A., C.so XI Febbraio, 14, Torino, 10152, Italy
| | - Sa Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - G Gilli
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - E Carraro
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy.
| |
Collapse
|
8
|
Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number-qPCR Assay. Appl Environ Microbiol 2016; 82:4743-4756. [PMID: 27235434 PMCID: PMC4984289 DOI: 10.1128/aem.00077-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/23/2016] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)-quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053-1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari Campylobacters in raw sewage were present at ∼10(2)/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing Campylobacter prevalence in Canada utilized primers that we have determined to be nonspecific due to their cross-amplification of Arcobacter spp. As such, Campylobacter prevalence may have been vastly overestimated in other studies. Additionally, the development of a quantitative assay described in this study will allow accurate determination of Campylobacter concentrations in environmental water samples, allowing more informed decisions to be made about water usage based on quantitative microbial risk assessment.
Collapse
|
9
|
Huang H, Brooks BW, Lowman R, Carrillo CD. Campylobacter species in animal, food, and environmental sources, and relevant testing programs in Canada. Can J Microbiol 2015; 61:701-21. [DOI: 10.1139/cjm-2014-0770] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Campylobacter species, particularly thermophilic campylobacters, have emerged as a leading cause of human foodborne gastroenteritis worldwide, with Campylobacter jejuni, Campylobacter coli, and Campylobacter lari responsible for the majority of human infections. Although most cases of campylobacteriosis are self-limiting, campylobacteriosis represents a significant public health burden. Human illness caused by infection with campylobacters has been reported across Canada since the early 1970s. Many studies have shown that dietary sources, including food, particularly raw poultry and other meat products, raw milk, and contaminated water, have contributed to outbreaks of campylobacteriosis in Canada. Campylobacter spp. have also been detected in a wide range of animal and environmental sources, including water, in Canada. The purpose of this article is to review (i) the prevalence of Campylobacter spp. in animals, food, and the environment, and (ii) the relevant testing programs in Canada with a focus on the potential links between campylobacters and human health in Canada.
Collapse
Affiliation(s)
- Hongsheng Huang
- Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - Brian W. Brooks
- Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - Ruff Lowman
- Food Safety Risk Analysis, Food Policy Coordination, Policy and Programs, Canadian Food Inspection Agency, 1400 Merivale Road, Tower 2, Ottawa, Ontario, Canada
| | | |
Collapse
|
10
|
Henry R, Schang C, Chandrasena GI, Deletic A, Edmunds M, Jovanovic D, Kolotelo P, Schmidt J, Williamson R, McCarthy D. Environmental monitoring of waterborne Campylobacter: evaluation of the Australian standard and a hybrid extraction-free MPN-PCR method. Front Microbiol 2015; 6:74. [PMID: 25709604 PMCID: PMC4321596 DOI: 10.3389/fmicb.2015.00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
Campylobacter is the leading agent of diarrheal disease worldwide. This study evaluates a novel culture-PCR hybrid (MPN-PCR) assay for the rapid enumeration of Campylobacter spp. from estuarine and wastewater systems. To first evaluate the current, culture-based, Australian standard, an inter-laboratory study was conducted on 69 subsampled water samples. The proposed Most-Probable Number (MPN)-PCR method was then evaluated, by analysing 147 estuarine samples collected over a 2 year period. Data for 14 different biological, hydrological and climatic parameters were also collated to identify pathogen-environment relationships and assess the potential for method specific bias. The results demonstrated that the intra-laboratory performance of the MPN-PCR was superior to that of AS/NZS (σ = 0.7912, P < 0.001; κ = 0.701, P < 0.001) with an overall diagnostic accuracy of ~94%. Furthermore, the analysis of both MPN-PCR and AS/NZS identified the potential for the introduction of method specific bias during assessment of the effects of environmental parameters on Campylobacter spp. numbers.
Collapse
Affiliation(s)
- Rebekah Henry
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Christelle Schang
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Gayani I. Chandrasena
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Ana Deletic
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Mark Edmunds
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Dusan Jovanovic
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Peter Kolotelo
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | | | - Richard Williamson
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - David McCarthy
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
11
|
Seinige D, von Köckritz-Blickwede M, Krischek C, Klein G, Kehrenberg C. Influencing factors and applicability of the viability EMA-qPCR for a detection and quantification of Campylobacter cells from water samples. PLoS One 2014; 9:e113812. [PMID: 25412499 PMCID: PMC4239115 DOI: 10.1371/journal.pone.0113812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/01/2014] [Indexed: 12/04/2022] Open
Abstract
In recent years, increasing numbers of human campylobacteriosis cases caused by contaminated water have been reported. As the culture-based detection of Campylobacter is time consuming and can yield false-negative results, the suitability of a quantitative real-time PCR method in combination with an ethidium monoazide pretreatment of samples (EMA-qPCR) for the rapid, quantitative detection of viable Campylobacter cells from water samples was investigated. EMA-qPCR has been shown to be a promising rapid method for the detection of viable Campylobacter spp. from food samples. Application of membrane filtration and centrifugation, two methods frequently used for the isolation of bacteria from water, revealed a mean loss of up to 1.08 log10 cells/ml from spiked samples. Both methods used alone lead to a loss of dead bacteria and accumulation of viable bacteria in the sample as shown by fluorescence microscopy. After filtration of samples, no significant differences could be detected in subsequent qPCR experiments with and without EMA pretreatment compared to culture-based enumeration. High correlations (R(2)= 0.942 without EMA, R(2) = 0.893 with EMA) were obtained. After centrifugation of samples, qPCR results overestimated Campylobacter counts, whereas results from both EMA-qPCR and the reference method were comparable. As up to 81.59% of nonviable cells were detected in pond water, EMA-qPCR failed to detect correct quantities of viable cells. However, analyses of spiked tap water samples revealed a high correlation (R(2) = 0.863) between results from EMA-qPCR and the reference method. After membrane filtration, EMA-qPCR was successfully applied to Campylobacter field isolates, and results indicated an advantage over qPCR by analysing defined mixtures of viable and nonviable cells. In conclusion, EMA-qPCR is a suitable method to detect viable Campylobacter from water samples, but the isolation technique and the type/quality of the water sample impact the results.
Collapse
Affiliation(s)
- Diana Seinige
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute for Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Carsten Krischek
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Günter Klein
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Corinna Kehrenberg
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
12
|
Yuan M, Zeng YH, Chen ZG, Li J, Zhao X. Epidemiological investigation of Campylobacte jejuni and its detection in patients with summer diarrhea. Shijie Huaren Xiaohua Zazhi 2014; 22:3705-3709. [DOI: 10.11569/wcjd.v22.i24.3705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the detection of Campylobacte jejuni in patients with diarrhea.
METHODS: The detection of Campylobacte jejuni in patients with diarrhea was analyzed retrospectively. The clinical characteristics including patient sex, age, area for examination, and month distribution were analyzed.
RESULTS: The positive rate of Campylobacte jejuni was higher than that of Campylobacter coli in the years of 2012 and 2013 (6.14% vs 0.16%, 6.20% vs 0.14, P < 0.05). There was no significant difference for the detection rate of Campylobacte jejuni between the years of 2012 and 2013 (6.14% vs 6.20%, P > 0.05). The positive rates of Campylobacte jejuni in males were higher than those in females in patients with summer diarrhea in the years of 2012 and 2013, but the differences were not significant (6.46% vs 5.60%, 6.52% vs 5.62%, P > 0.05). The detection of Campylobacte jejuni in patients with summer diarrhea in the years of 2012 and 2013 was mainly distributed in the age groups of < 1 and 16-45 years, although there were no significant differences in the positive rates between different age groups (9.33%, 3.31%, 6.25%, 6.60% , 2.44% vs 2.17%; 9.36%, 2.84%, 6.35%, 6.72%, 1.96% vs 0.00%, P > 0.05). The positive rates of Campylobacte jejuni in the years of 2012 and 2013 were significantly higher in out-patients than in inpatients (7.56% vs 2.37%, 7.82% vs 2.40%, P < 0.05). The positive rates of Campylobacte jejuni in the years of 2012 and 2013 showed no significant differences among different months (6.00%, 6.28% vs 6.14%; 6.09%, 6.33% vs 6.17%, P > 0.05). The positive rates of Campylobacte jejuni in summer in the years of 2012 and 2013 were significantly higher than those in the winter of 2012 (1.82%, 6.14% vs 1.82%, 6.20% vs 1.82%, P < 0.05).
CONCLUSION: Campylobacte jejuni was one of the major pathogens of summer diarrhea.
Collapse
|
13
|
Ryu H, Elk M, Khan IUH, Harwood VJ, Molina M, Edge TA, Domingo JS. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp. WATER RESEARCH 2014; 48:613-621. [PMID: 24169514 DOI: 10.1016/j.watres.2013.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/18/2013] [Accepted: 10/06/2013] [Indexed: 06/02/2023]
Abstract
Chicken feces commonly contain human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a previously developed SYBR green qPCR assay (LA35) to a novel TaqMan qPCR assay (CL) for the environmental detection of poultry-associated fecal pollution. We tested both assays against chicken litter (n = 40), chicken fecal samples (n = 186), non-chicken fecal sources (n = 484), and environmental water samples (n = 323). Most chicken litter samples (i.e., ≥ 98%) were positive for both assays with relatively high signal intensities, whereas only 23% and 12% of poultry fecal samples (n = 186) were positive with the LA35 and the CL assays, respectively. Data using fecal samples from non-target animal species showed that the assays are highly host-associated (≥ 95%). Bayesian statistical models showed that the two assays are associated with relatively low probability of false-positive and false-negative signals in water samples. The CL marker had a lower prevalence than the LA35 assay when tested against environmental water samples (i.e., 21% vs. 31% positive signals). However, by combining the results from the two assays the detection levels increased to 41%, suggesting that using multiple assays can improve the detection of chicken-fecal pollution in environmental waters.
Collapse
Affiliation(s)
- Hodon Ryu
- National Risk Management Research Laboratory, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Pitkänen T. Review of Campylobacter spp. in drinking and environmental waters. J Microbiol Methods 2013; 95:39-47. [DOI: 10.1016/j.mimet.2013.06.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/15/2013] [Accepted: 06/10/2013] [Indexed: 01/07/2023]
|
15
|
Effect of incubation temperature on the detection of thermophilic campylobacter species from freshwater beaches, nearby wastewater effluents, and bird fecal droppings. Appl Environ Microbiol 2013; 79:7639-45. [PMID: 24077717 DOI: 10.1128/aem.02324-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This large-scale study compared incubation temperatures (37°C versus 42°C) to study the detection of thermophilic Campylobacter species, including Campylobacter jejuni, C. coli, and C. lari, in various surface water samples and bird fecal droppings around Hamilton Harbor, Lake Ontario. The putative culture isolates obtained from incubation temperatures of 37 and 42°C were confirmed by Campylobacter genus- and species-specific triplex PCR assays targeting the 16S rRNA gene and the 16S-23S rRNA gene internal transcribed spacer (ITS) region. A total of 759 water, wastewater, and bird fecal dropping samples were tested. Positive amplification reactions for the genus Campylobacter were found for 454 (60%) samples incubated at 37°C, compared to 258 (34%) samples incubated at 42°C. C. jejuni (16%) and C. lari (12%) were detected significantly more frequently at the 42°C incubation temperature than at 37°C (8% and 5%, respectively). In contrast, significantly higher rates of C. coli (14%) and other Campylobacter spp. (36%) were detected at the 37°C incubation temperature than at 42°C (8% and 7%, respectively). These results were consistent across surface water, wastewater, and bird fecal dropping samples. At times, Campylobacter spp. were recovered and detected at 37°C (3% for C. jejuni, 10% for C. coli, and 3% for C. lari) when the same samples incubated at 42°C were negative. A significantly higher rate of other Campylobacter spp. was detected only at 37°C (32%) than only at 42°C (3%). These results indicate that incubation temperature can significantly influence the culturability and detection of thermophilic and other fastidious Campylobacter spp. and that a comprehensive characterization of the Campylobacter spp. in surface water, wastewaters, or bird fecal droppings will require incubation at both 37 and 42°C.
Collapse
|
16
|
An enhanced technique combining pre-enrichment and passive filtration increases the isolation efficiency of Campylobacter jejuni and Campylobacter coli from water and animal fecal samples. J Microbiol Methods 2012; 91:506-13. [DOI: 10.1016/j.mimet.2012.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 11/19/2022]
|
17
|
McAllister TA, Topp E. Role of livestock in microbiological contamination of water: Commonly the blame, but not always the source. Anim Front 2012. [DOI: 10.2527/af.2012-0039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- T. A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403-1st Ave. South, Lethbridge, Alberta,T1J 4B1, Canada
| | - E. Topp
- Agriculture and Agri-Food Canada, London Research Centre, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada
| |
Collapse
|
18
|
Development of a rapid and sensitive method combining a cellulose ester microfilter and a real-time quantitative PCR assay to detect Campylobacter jejuni and Campylobacter coli in 20 liters of drinking water or low-turbidity waters. Appl Environ Microbiol 2011; 78:839-45. [PMID: 22138985 DOI: 10.1128/aem.06754-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter.
Collapse
|
19
|
Lévesque S, St-Pierre K, Frost E, Arbeit RD, Michaud S. Determination of the optimal culture conditions for detecting thermophilic campylobacters in environmental water. J Microbiol Methods 2011; 86:82-8. [PMID: 21504767 DOI: 10.1016/j.mimet.2011.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 04/03/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
This study evaluated alternative protocols for culturing thermophilic campylobacters in environmental water. All samples were filtered through a sterile 0.45μm pore-size membrane, which was then incubated in Preston enrichment broth. Four variables were compared: water sample volume (2000mL vs. 500mL), enrichment broth volume (25mL vs. 100mL), enrichment incubation duration (24h vs. 48h), and number of enrichment passages (one vs. two). In addition, DNA extracts were prepared from all final broths and analyzed using three rRNA PCR assays. River water was collected at 3 sampling sites weekly for 9 weeks. Among these 27 collections, 25 (93%) yielded Campylobacter spp. under at least one of the 16 culture conditions. By univariate analysis, yields were significantly better for the 2000mL sample volume (68.5% vs. 43.0%, p<0.0001) and the 25mL enrichment broth volume (64.5% vs. 47.0%, p<0.0004). Neither of the enrichment period had a significant effect, although there was a trend in favor of 48h incubation (59.5% vs. 52.0%, p=0.13). The three PCR methods gave concordant results for 66 (33%) of the culture-negative samples and 103 (50%) of the culture-positive samples. Compared with culture results, Lubeck's 16S PCR assay had the best performance characteristics, with a sensitivity of 82% and a specificity of 94%. Of the 12 culture-negative samples positive by Lubeck's PCR assay, 11 (92%) samples were also positive by Denis' 16S PCR assay, suggesting that in these cases the culture might have been falsely negative. Based on our results, we conclude that the optimal conditions for detecting Campylobacter spp. in natural waters include 2000mL sample volume and a single enrichment broth of 25mL PB incubated for 48h.
Collapse
Affiliation(s)
- Simon Lévesque
- Department of Microbiology and Infectious Diseases, Faculté de Médecine de l'Université de Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|