1
|
A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions. Microorganisms 2021; 9:microorganisms9091993. [PMID: 34576888 PMCID: PMC8468346 DOI: 10.3390/microorganisms9091993] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
The early colonization of surfaces and subsequent biofilm development have severe impacts in environmental, industrial, and biomedical settings since they entail high costs and health risks. To develop more effective biofilm control strategies, there is a need to obtain laboratory biofilms that resemble those found in natural or man-made settings. Since microbial adhesion and biofilm formation are strongly affected by hydrodynamics, the knowledge of flow characteristics in different marine, food processing, and medical device locations is essential. Once the hydrodynamic conditions are known, platforms for cell adhesion and biofilm formation should be selected and operated, in order to obtain reproducible biofilms that mimic those found in target scenarios. This review focuses on the most widely used platforms that enable the study of initial microbial adhesion and biofilm formation under controlled hydrodynamic conditions—modified Robbins devices, flow chambers, rotating biofilm devices, microplates, and microfluidic devices—and where numerical simulations have been used to define relevant flow characteristics, namely the shear stress and shear rate.
Collapse
|
2
|
Josephs-Spaulding J, Krogh TJ, Rettig HC, Lyng M, Chkonia M, Waschina S, Graspeuntner S, Rupp J, Møller-Jensen J, Kaleta C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front Cell Infect Microbiol 2021; 11:562525. [PMID: 34368008 PMCID: PMC8340884 DOI: 10.3389/fcimb.2021.562525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine and clinical markers of inflammation of the urinary tract. The bladder is constantly challenged by adverse environmental stimuli which influence urinary tract physiology, contributing to a dysbiotic environment. Simultaneously, pathogens are primed by environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in chronic illness. Due to different confounders for UTI onset, a greater understanding of the fundamental environmental mechanisms and microbial ecology of the human urinary tract is required. Such advancements could promote the tandem translation of bench and computational studies for precision treatments and clinical management of UTIs. Therefore, there is an urgent need to understand the ecological interactions of the human urogenital microbial communities which precede rUTIs. This review aims to outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the human microbiome and host physiology which predisposes humans to rUTIs. By assessing the applications of next generation and systems level methods, we also recommend novel approaches to elucidate the systemic consequences of rUTIs which requires an integrated approach for successful treatment. To this end, we will provide an outlook towards the so-called 'uncomplicated environment of UTIs', a holistic and systems view that applies ecological principles to define patient-specific UTIs. This perspective illustrates the need to withdraw from traditional reductionist perspectives in infection biology and instead, a move towards a systems-view revolving around patient-specific pathophysiology during UTIs.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mark Lyng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mariam Chkonia
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Nutriinformatics, Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
3
|
De-la-Pinta I, Cobos M, Ibarretxe J, Montoya E, Eraso E, Guraya T, Quindós G. Effect of biomaterials hydrophobicity and roughness on biofilm development. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:77. [PMID: 31218489 DOI: 10.1007/s10856-019-6281-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Most hospitalized patients are carriers of biomedical devices. Infections associated with these devices cause great morbidity and mortality, especially in patients in intensive care units. Numerous strategies have been designed to prevent biofilm development on biodevices. However, biofilm formation is a complex process not fully clarified. In the current study, roughness and hydrophobicity of different biomaterials was analyzed to assess their influences on the biofilm formation of four leading etiological causes of healthcare-associated infections, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Candida albicans, using a CDC biofilm reactor. Hydrophobic materials allowed the formation of more abundant and profuse biofilms. Roughness had effect on biofilm formation, but its influence was not significant when material hydrophobicity was considered.
Collapse
Affiliation(s)
- Iker De-la-Pinta
- Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Mónica Cobos
- Departamento de Ciencia y Tecnología de Polímeros, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, San Sebastián, Spain
| | - Julen Ibarretxe
- Departamento de Física aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | | | - Elena Eraso
- Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Teresa Guraya
- Departamento de Ingeniería Minera y Metalúrgica y Ciencia de los Materiales, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Guillermo Quindós
- Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain.
| |
Collapse
|
4
|
Biofilm Formation by Shiga Toxin-Producing Escherichia coli on Stainless Steel Coupons as Affected by Temperature and Incubation Time. Microorganisms 2019; 7:microorganisms7040095. [PMID: 30935149 PMCID: PMC6518284 DOI: 10.3390/microorganisms7040095] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
Forming biofilm is a strategy utilized by Shiga toxin-producing Escherichia coli (STEC) to survive and persist in food processing environments. We investigated the biofilm-forming potential of STEC strains from 10 clinically important serogroups on stainless steel at 22 °C or 13 °C after 24, 48, and 72 h of incubation. Results from crystal violet staining, plate counts, and scanning electron microscopy (SEM) identified a single isolate from each of the O113, O145, O91, O157, and O121 serogroups that was capable of forming strong or moderate biofilms on stainless steel at 22 °C. However, the biofilm-forming strength of these five strains was reduced when incubation time progressed. Moreover, we found that these strains formed a dense pellicle at the air-liquid interface on stainless steel, which suggests that oxygen was conducive to biofilm formation. At 13 °C, biofilm formation by these strains decreased (P < 0.05), but gradually increased over time. Overall, STEC biofilm formation was most prominent at 22 °C up to 24 h. The findings in this study identify the environmental conditions that may promote STEC biofilm formation in food processing facilities and suggest that the ability of specific strains to form biofilms contributes to their persistence within these environments.
Collapse
|
5
|
Bezek K, Nipič D, Torkar KG, Oder M, Dražić G, Abram A, Žibert J, Raspor P, Bohinc K. Biofouling of stainless steel surfaces by four common pathogens: the effects of glucose concentration, temperature and surface roughness. BIOFOULING 2019; 35:273-283. [PMID: 31025585 DOI: 10.1080/08927014.2019.1575959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
There is a wide range of factors affecting bacterial adhesion and biofilm formation. However, in both food processing and medical settings, it is very hard to obtain suitably controlled conditions so that the factors that reduce surface colonisation and biofouling can be studied. The aim of this study was to evaluate the effect of glucose concentration, temperature and stainless steel (SS) surface roughness on biofouling by four common pathogens (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and L. monocytogenes). Among the tested variables, the untreated SS surface (3C) was shown to be fouled more than 3D polished, brushed or electropolished SS surfaces. Although an array of parameters influenced biofouling, the most promising control measure was the influence of low temperature (4 °C) that reduced biofouling even in the case of the psychrophilic Listeria monocytogenes. The study findings could significantly contribute to the prevention of SS surface contamination and consequential biofouling by food and healthcare associated pathogens.
Collapse
Affiliation(s)
- Katja Bezek
- a Faculty of Health Sciences , University of Primorska , Izola , Slovenia
| | - Damjan Nipič
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| | - Karmen Godič Torkar
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| | - Martina Oder
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| | - Goran Dražić
- c Department of materials chemistry, National Institute of Chemistry , Ljubljana , Slovenia
| | - Anže Abram
- d Department for nanostructured materials, Jozef Stefan Institute , Ljubljana , Slovenia
| | - Janez Žibert
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| | - Peter Raspor
- e Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana , Ljubljana , Slovenia
| | - Klemen Bohinc
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
6
|
Van Dijck P, Sjollema J, Cammue BPA, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NA, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SA, Thevissen K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:300-326. [PMID: 29992128 PMCID: PMC6035839 DOI: 10.15698/mic2018.07.638] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, The Netherlands
| | - Bruno P. A. Cammue
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Belgium
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Dept. Microbiology and Molecular Biology, Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Emilia Cantón
- Severe Infection Research Group: Medical Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms, Switzerland
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY USA
| | | | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Re-serve University, Cleveland, OH, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Hubertus Haas
- Biocenter - Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, USA
| | - Elizabeth M. Johnson
- National Infection Service, Public Health England, Mycology Reference Laboratory, Bristol, UK
| | | | | | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium and Clinical Department of Haematology, UZ Leuven, Leuven, Belgium
| | - Carol A. Munro
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeniel E. Nett
- University of Wisconsin-Madison, Departments of Medicine and Medical Microbiology & Immunology, Madison, WI, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, USA
| | - Michael A. Pfaller
- Departments of Pathology and Epidemiology, University of Iowa, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | - Gordon Ramage
- ESCMID Study Group for Biofilms, Switzerland
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, IRCCS-Fondazione Policlinico "Agostino Gemelli", Rome, Italy
| | - Isabel Spriet
- Pharmacy Dpt, University Hospitals Leuven and Clinical Pharmacology and Pharmacotherapy, Dpt. of Pharmaceutical and Pharma-cological Sciences, KU Leuven, Belgium
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands (omit "Nijmegen" in Radboud University Medical Center)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Joost Wauters
- KU Leuven-University of Leuven, University Hospitals Leuven, Department of General Internal Medicine, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael R. Yeaman
- Geffen School of Medicine at the University of California, Los Angeles, Divisions of Molecular Medicine & Infectious Diseases, Har-bor-UCLA Medical Center, LABioMed at Harbor-UCLA Medical Center
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Am-sterdam, Netherlands
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Grønnemose RB, Saederup KL, Kolmos HJ, Hansen SWK, Asferg CA, Rasmussen KJ, Palarasah Y, Andersen TE. A novel in vitro model for haematogenous spreading ofS. aureusdevice biofilms demonstrating clumping dispersal as an advantageous dissemination mechanism. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/28/2017] [Indexed: 01/07/2023]
Affiliation(s)
- R. B. Grønnemose
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - K. L. Saederup
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - H. J. Kolmos
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - S. W. K. Hansen
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - C. A. Asferg
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - K. J. Rasmussen
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - Y. Palarasah
- Unit for Thrombosis Research, Department of Clinical Biochemistry; University of Southern Denmark; Esbjerg Denmark
| | - T. E. Andersen
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| |
Collapse
|
8
|
Controlled Release of Plectasin NZ2114 from a Hybrid Silicone-Hydrogel Material for Inhibition of Staphylococcus aureus Biofilm. Antimicrob Agents Chemother 2017; 61:AAC.00604-17. [PMID: 28507110 DOI: 10.1128/aac.00604-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen in catheter-related infections. Modifying catheter material with interpenetrating polymer networks is a novel material technology that allows for impregnation with drugs and subsequent controlled release. Here, we evaluated the potential for combining this system with plectasin derivate NZ2114 in an attempt to design an S. aureus biofilm-resistant catheter. The material demonstrated promising antibiofilm properties, including properties against methicillin-resistant S. aureus, thus suggesting a novel application of this antimicrobial peptide.
Collapse
|
9
|
Co-release of dicloxacillin and thioridazine from catheter material containing an interpenetrating polymer network for inhibiting device-associated Staphylococcus aureus infection. J Control Release 2016; 241:125-134. [PMID: 27663229 DOI: 10.1016/j.jconrel.2016.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022]
Abstract
Approximately half of all nosocomial bloodstream infections are caused by bacterial colonization of vascular catheters. Attempts have been made to improve devices using anti-adhesive or antimicrobial coatings; however, it is often difficult to bind coatings stably to catheter materials, and the low amounts of drug in thin-film coatings limit effective long-term release. Interpenetrating polymer networks (IPNs) are polymer hybrid materials with unique drug release properties. While IPNs have been extensively investigated for use in tablet- or capsule-based drug delivery systems, the potential for use of IPNs in drug release medical devices remains largely unexplored. Here, we investigated the use of silicone-hydrogel IPNs as a catheter material to provide slow anti-bacterial drug-release functionality. IPN catheters were produced by the sequential method, using supercritical CO2 as a solvent to polymerize and crosslink poly(2-hydroxyethyl methacrylate) (PHEMA) in silicone elastomer. The design was tested against Staphylococcus aureus colonization after loading with dicloxacillin (DCX) alone or in combination with thioridazine (TDZ), the latter of which is known to synergistically potentiate the antibacterial effect of DCX against both methicillin-sensitive and methicillin-resistant S. aureus. The hydrophilic PHEMA component allowed for drug loading in the catheters by passive diffusion and provided controlled release properties. The drug-loaded IPN material inhibited bacterial growth on agar plates for up to two weeks and in blood cultures for up to five days, and it withstood 24h of seeding with resilient biofilm aggregates. The combined loading of DCX+TDZ enhanced the antibacterial efficiency in static in vitro experiments, although release analyses revealed that this effect was due to an enhanced loading capacity of DCX when co-loaded with TDZ. Lastly, the IPN catheters were tested in a novel porcine model of central venous catheter-related infection, in which drug-loaded IPN catheters were found to significantly decrease the frequency of infection.
Collapse
|
10
|
Stærk K, Khandige S, Kolmos HJ, Møller-Jensen J, Andersen TE. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions. J Infect Dis 2015; 213:386-94. [PMID: 26290608 DOI: 10.1093/infdis/jiv422] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most uropathogenic Escherichia coli (UPEC) strains harbor genes encoding adhesive type 1 fimbria (T1F). T1F is a key factor for successful establishment of urinary tract infection. However, UPEC strains typically do not express T1F in the bladder urine, and little is understood about its induction in vivo. METHODS A flow chamber infection model was used to grow UPEC under conditions simulating distinct infection niches in the bladder. Type 1 fimbriation on isolated UPEC was subsequently determined by yeast cell agglutination and immunofluorescence microscopy, and the results were correlated with the ability to adhere to and invade cultured human bladder cells. RESULTS Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations enhances bladder cell adhesion and invasion potential. Only T1F-negative UPEC are subsequently released to the urine, thus limiting T1F expression to surface-associated UPEC alone. CONCLUSIONS Our results demonstrate that T1F expression is strictly regulated under physiological growth conditions with increased expression during surface growth adaptation and infection of uroepithelial cells. This leads to separation of UPEC into low-expression planktonic populations and high-expression sessile populations.
Collapse
Affiliation(s)
- Kristian Stærk
- Research Unit of Clinical Microbiology Odense University Hospital, Denmark
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology Odense University Hospital, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | | |
Collapse
|
11
|
Moreira J, Ponmozhi J, Campos J, Miranda J, Mergulhão F. Micro- and macro-flow systems to study Escherichia coli adhesion to biomedical materials. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.12.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Klein K, Palarasah Y, Kolmos HJ, Møller-Jensen J, Andersen TE. Quantification of filamentation by uropathogenic Escherichia coli during experimental bladder cell infection by using semi-automated image analysis. J Microbiol Methods 2014; 109:110-6. [PMID: 25546841 DOI: 10.1016/j.mimet.2014.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 01/03/2023]
Abstract
Several rod-shaped pathogens including Escherichia coli, Salmonella spp. and Klebsiella pneumonia are capable of adopting highly filamentous cell shapes under certain circumstances. This phenomenon occurs as a result of continued cell elongation during growth without the usual septation into single rod-shaped cells. Evidence has emerged over the past decade suggesting that this morphological transformation is controlled and reversible and provides selective advantages under certain growth conditions, such as during infection in humans. In order to identify the factors which induce filamentation of bacterial pathogens and study the advantages of bacterial morphological plasticity, methods are needed to accurately quantify changes in bacterial cell shape. In this study, we present a method for quantification of bacterial filamentation based on automatic detection and measurement of bacterial units in focus-stacked microscopy images. Used in combination with a flow-chamber based in vitro cystitis model, we study the factors involved in filament formation by uropathogenic E. coli (UPEC) during infection. The influence of substratum surface, intracellular proliferation and flow media on UPEC filamentation is evaluated. We show that reversible UPEC filamentation during cystitis is not dependent on intracellular infection, which previous studies have suggested. Instead, we find that filamentation can be induced by contact with surfaces, both biological and artificial. Lastly our data indicate that UPEC filamentation is induced by trace-amounts of specific components in urine, rather than being a generic stress-response to high urine salt concentrations. The study shows that the combined methodology is generally useful for investigation of bacterial morphological transitions during cell infection.
Collapse
Affiliation(s)
- Kasper Klein
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense C, Denmark
| | - Yaseelan Palarasah
- Research Unit of Immunology and Microbiology, University of Southern Denmark, 5000 Odense C, Denmark
| | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense C, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
13
|
Van Meervenne E, De Weirdt R, Van Coillie E, Devlieghere F, Herman L, Boon N. Biofilm models for the food industry: hot spots for plasmid transfer? Pathog Dis 2014; 70:332-8. [PMID: 24436212 DOI: 10.1111/2049-632x.12134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/26/2022] Open
Abstract
Biofilms represent a substantial problem in the food industry, with food spoilage, equipment failure, and public health aspects to consider. Besides, biofilms may be a hot spot for plasmid transfer, by which antibiotic resistance can be disseminated to potential foodborne pathogens. This study investigated biomass and plasmid transfer in dual-species (Pseudomonas putida and Escherichia coli) biofilm models relevant to the food industry. Two different configurations (flow-through and drip-flow) and two different inoculation procedures (donor-recipient and recipient-donor) were tested. The drip-flow configuration integrated stainless steel coupons in the setup while the flow-through configuration included a glass flow cell and silicone tubing. The highest biomass density [10 log (cells cm-²)] was obtained in the silicone tubing when first the recipient strain was inoculated. High plasmid transfer ratios, up to 1/10 (transconjugants/total bacteria), were found. Depending on the order of inoculation, a difference in transfer efficiency between the biofilm models could be found. The ease by which the multiresistance plasmid was transferred highlights the importance of biofilms in the food industry as hot spots for the acquisition of multiresistance plasmids. This can impede the treatment of foodborne illnesses if pathogens acquire this multiresistance in or from the biofilm.
Collapse
Affiliation(s)
- Eva Van Meervenne
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium; Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium; Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, Gent, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Gomes LC, Moreira JMR, Teodósio JS, Araújo JDP, Miranda JM, Simões M, Melo LF, Mergulhão FJ. 96-well microtiter plates for biofouling simulation in biomedical settings. BIOFOULING 2014; 30:535-46. [PMID: 24684538 DOI: 10.1080/08927014.2014.890713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Microtiter plates with 96 wells are routinely used in biofilm research mainly because they enable high-throughput assays. These platforms are used in a variety of conditions ranging from static to dynamic operation using different shaking frequencies and orbital diameters. The main goals of this work were to assess the influence of nutrient concentration and flow conditions on biofilm formation by Escherichia coli in microtiter plates and to define the operational conditions to be used in order to simulate relevant biomedical scenarios. Assays were performed in static mode and in incubators with distinct orbital diameters using different concentrations of glucose, peptone and yeast extract. Computational fluid dynamics (CFD) was used to simulate the flow inside the wells for shaking frequencies ranging from 50 to 200 rpm and orbital diameters from 25 to 100 mm. Higher glucose concentrations enhanced adhesion of E. coli in the first 24 h, but variation in peptone and yeast extract concentration had no significant impact on biofilm formation. Numerical simulations indicate that 96-well microtiter plates can be used to simulate a variety of biomedical scenarios if the operating conditions are carefully set.
Collapse
Affiliation(s)
- L C Gomes
- a LEPABE - Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Irwin NJ, McCoy CP, Jones DS, Gorman SP. Infection-Responsive Drug Delivery from Urinary Biomaterials Controlled by a Novel Kinetic and Thermodynamic Approach. Pharm Res 2012; 30:857-65. [DOI: 10.1007/s11095-012-0927-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/05/2012] [Indexed: 01/10/2023]
|
16
|
Cai W, Wu J, Xi C, Meyerhoff ME. Diazeniumdiolate-doped poly(lactic-co-glycolic acid)-based nitric oxide releasing films as antibiofilm coatings. Biomaterials 2012; 33:7933-44. [PMID: 22841918 DOI: 10.1016/j.biomaterials.2012.07.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/15/2012] [Indexed: 02/04/2023]
Abstract
Nitric oxide (NO) releasing films with a bilayer configuration are fabricated by doping dibutyhexyldiamine diazeniumdiolate (DBHD/N2O2) in a poly(lactic-co-glycolic acid) (PLGA) layer and further encapsulating this base layer with a silicone rubber top coating. By incorporating pH sensitive dyes within the films, pH changes in the PLGA layer are visualized and correlated with the NO release profiles (flux vs. time). It is demonstrated that PLGA acts as both a promoter and controller of NO release from the coating by providing protons through its intrinsic acid residues (both end groups and monomeric acid impurities) and hydrolysis products (lactic acid and glycolic acid). Control of the pH changes within the PLGA layer can be achieved by adjusting the ratio of DBHD/N2O2 and utilizing PLGAs with different hydrolysis rates. Coatings with a variety of NO release profiles are prepared with lifetimes of up to 15 d at room temperature (23 °C) and 10 d at 37 °C. When incubated in a CDC flow bioreactor for a one week period at RT or 37 °C, all the NO releasing films exhibit considerable antibiofilm properties against gram-positive Staphylococcus aureus and gram-negative Escherichia coli. In particular, compared to the silicone rubber surface alone, an NO releasing film with a base layer of 30 wt% DBHD/N2O2 mixed with poly(lactic acid) exhibits an ∼98.4% reduction in biofilm biomass of S. aureus and ∼99.9% reduction for E. coli at 37 °C. The new diazeniumdiolate-doped PLGA-based NO releasing coatings are expected to be useful antibiofilm coatings for a variety of indwelling biomedical devices (e.g., catheters).
Collapse
Affiliation(s)
- Wenyi Cai
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
17
|
Escherichia coli uropathogenesis in vitro: invasion, cellular escape, and secondary infection analyzed in a human bladder cell infection model. Infect Immun 2012; 80:1858-67. [PMID: 22354025 DOI: 10.1128/iai.06075-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains are capable of invading bladder epithelial cells (BECs) on the bladder luminal surface. Based primarily on studies in mouse models, invasion is proposed to trigger an intracellular uropathogenic cascade involving intracellular bacterial proliferation followed by escape of elongated, filamentous bacteria from colonized BECs. UPEC filaments on the mouse bladder epithelium are able to revert to rod-shaped bacteria, which are believed to invade neighboring cells to initiate new rounds of intracellular colonization. So far, however, these late-stage infection events have not been replicated in vitro. We have established an in vitro model of human bladder cell infection by the use of a flow chamber (FC)-based culture system, which allows investigation of steps subsequent to initial invasion. Short-term bacterial colonization on the FC-BEC layer led to intracellular colonization. Exposing invaded BECs to a flow of urine, i.e., establishing conditions similar to those faced by UPEC reemerging on the bladder luminal surface, led to outgrowth of filamentous bacteria similar to what has been reported to occur in mice. These filaments were capable of reverting to rods that could invade other BECs. Hence, under growth conditions established to resemble those present in vivo, the elements of the proposed uropathogenic cascade were inducible in a human BEC model system. Here, we describe the model and show how these characteristics are reproduced in vitro.
Collapse
|
18
|
Geng J, Henry N. Short time-scale bacterial adhesion dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:315-31. [PMID: 21557073 DOI: 10.1007/978-94-007-0940-9_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In natural conditions many bacterial populations are found as surface-attached communities exhibiting features distinct from those of planktonic cells. We focus here on the question of initial adhesion, the mechanisms of which are still far from being fully understood. Recently, the frontier between microbiologists and physicists has become increasingly permeable, boosting implementation of new methodological approaches for better elucidating the intricate aspects of initial bacterial adhesion. After discussing briefly the main sources of complexity that confuse the understanding of the early steps of cell-surface attachment, we present a selection of physical methods enabling real-time measurement of early adhesion kinetics in live cells. We also discuss the limitations and pitfalls that might appear when applying such methodologies - initially designed for studying physically ideal systems - to analysis of these, more complex, living systems. We address mainly on the use of dispersed-surfaces flow cytometry (DS-FCM), quartz microbalance (QCM) and surface plasmon resonance (SPR) approaches, and give a brief survey of new perspectives in optical microscopy. We conclude that the use of combined and multiparametric technical approaches will lead to significant advances in providing a comprehensive understanding of the early events in bacterial adhesion.
Collapse
Affiliation(s)
- Jing Geng
- Laboratoire Physico-chimie Curie (CNRS UMR 168), Université Paris VI Institut Curie, Paris Cedex 05, France.
| | | |
Collapse
|
19
|
Buchholz F, Harms H, Maskow T. Biofilm research using calorimetry - a marriage made in heaven? Biotechnol J 2010; 5:1339-50. [DOI: 10.1002/biot.201000287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|