1
|
Murphy BT, Wiepen JJ, Graham DE, Swanson SK, Kashipathy MM, Cooper A, Battaile KP, Johnson DK, Florens L, Blevins JS, Lovell S, Zückert WR. Borrelia burgdorferi BB0346 is an Essential, Structurally Variant LolA Homolog that is Primarily Required for Homeostatic Localization of Periplasmic Lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606844. [PMID: 39149330 PMCID: PMC11326224 DOI: 10.1101/2024.08.06.606844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In diderm bacteria, the Lol pathway canonically mediates the periplasmic transport of lipoproteins from the inner membrane (IM) to the outer membrane (OM) and therefore plays an essential role in bacterial envelope homeostasis. After extrusion of modified lipoproteins from the IM via the LolCDE complex, the periplasmic chaperone LolA carries lipoproteins through the periplasm and transfers them to the OM lipoprotein insertase LolB, itself a lipoprotein with a LolA-like fold. Yet, LolB homologs appear restricted to γ-proteobacteria and are missing from spirochetes like the tick-borne Lyme disease pathogen Borrelia burgdorferi, suggesting a different hand-off mechanism at the OM. Here, we solved the crystal structure of the B. burgdorferi LolA homolog BB0346 (LolABb) at 1.9 Å resolution. We identified multiple structural deviations in comparative analyses to other solved LolA structures, particularly a unique LolB-like protruding loop domain. LolABb failed to complement an Escherichia coli lolA knockout, even after codon optimization, signal I peptide adaptation, and a C-terminal chimerization which had allowed for complementation with an α-proteobacterial LolA. Analysis of a conditional B. burgdorferi lolA knockout strain indicated that LolABb was essential for growth. Intriguingly, protein localization assays indicated that initial depletion of LolABb led to an emerging mislocalization of both IM and periplasmic OM lipoproteins, but not surface lipoproteins. Together, these findings further support the presence of two separate primary secretion pathways for periplasmic and surface OM lipoproteins in B. burgdorferi and suggest that the distinct structural features of LolABb allow it to function in a unique LolB-deficient lipoprotein sorting system.
Collapse
Affiliation(s)
- Bryan T. Murphy
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics & Immunology, Kansas City, Kansas
| | - Jacob J. Wiepen
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics & Immunology, Kansas City, Kansas
| | - Danielle E. Graham
- University of Arkansas for Medical Sciences, Department of Microbiology & Immunology, Little Rock, Arkansas
| | | | - Maithri M. Kashipathy
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, 98109, USA
| | - Anne Cooper
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, 98109, USA
- University of Kansas, Protein Structure and X-ray Crystallography Laboratory, Lawrence, Kansas
| | | | - David K. Johnson
- University of Kansas, Protein Structure and X-ray Crystallography Laboratory, Lawrence, Kansas
| | | | - Jon S. Blevins
- University of Arkansas for Medical Sciences, Department of Microbiology & Immunology, Little Rock, Arkansas
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, 98109, USA
- University of Kansas, Protein Structure and X-ray Crystallography Laboratory, Lawrence, Kansas
| | - Wolfram R. Zückert
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics & Immunology, Kansas City, Kansas
| |
Collapse
|
2
|
Kelly PH, Tan Y, Yan Q, Shafquat M, Davidson A, Xu Q, Major M, Halsby K, Grajales A, Davis J, Angulo FJ, Moïsi JC, Stark JH. Borrelia burgdorferi sensu lato prevalence in Ixodes scapularis from Canada: A thirty-year summary and meta-analysis (1990-2020). Acta Trop 2024; 256:107268. [PMID: 38782109 DOI: 10.1016/j.actatropica.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Borrelia burgdorferi sensu lato (Bb) are a complex of bacteria genospecies that can cause Lyme disease (LD) in humans after the bite of an infected Ixodes spp. vector tick. In Canada, incidence of LD is increasing in part due to the rapid geographic expansion of Ixodes scapularis across the southcentral and eastern provinces. To better understand temporal and spatial (provincial) prevalence of Bb infection of I. scapularis and how tick surveillance is utilized in Canada to assess LD risk, a literature review was conducted. Tick surveillance studies published between January 1975 to November 2023, that measured the prevalence of Bb in I. scapularis via "passive surveillance" from the public citizenry or "active surveillance" by drag or flag sampling of host-seeking ticks in Canada were included for review. Meta-analyses were conducted via random effects modeling. Forty-seven articles, yielding 26 passive and 28 active surveillance studies, met inclusion criteria. Mean durations of collection for I. scapularis were 2.1 years in active surveillance studies (1999-2020) and 5.5 years by passive surveillance studies (1990-2020). Collectively, data were extracted on 99,528 I. scapularis nymphs and adults collected between 1990-2020 across nine provinces, including Newfoundland & Labrador (33 ticks) and Alberta (208 ticks). More studies were conducted in Ontario (36) than any other province. Across nine provinces, the prevalence of Bb infection in I. scapularis collected by passive surveillance was 14.6% with the highest prevalence in Nova Scotia at 20.5% (minimum studies >1). Among host-seeking I. scapularis collected via active surveillance, Bb infection prevalence was 10.5% in nymphs, 31.9% in adults, and 23.8% across both life stages. Host-seeking I. scapularis nymphs and adults from Ontario had the highest Bb prevalence at 13.6% and 34.8%, respectively. Between 2007-2019, Bb infection prevalence in host-seeking I. scapularis was positively associated over time (p<0.001) which is concurrent with a ∼25-fold increase in the number of annually reported LD cases in Canada over the same period. The prevalence of Bb-infection in I. scapularis has rapidly increased over three decades as reported by tick surveillance studies in Canada which coincides with increasing human incidence for LD. The wide-ranging distribution and variable prevalence of Bb-infected I. scapularis ticks across provinces demonstrates the growing need for long-term standardized tick surveillance to monitor the changing trends in I. scapularis populations and best define LD risk areas in Canada.
Collapse
Affiliation(s)
- Patrick H Kelly
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., New York City, NY, USA.
| | - Ye Tan
- Medical Affairs, Evidence Generation Statistics Pfizer Inc., Cambridge, MA, USA
| | - Qi Yan
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., Collegeville, PA, USA
| | - Madiha Shafquat
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., New York City, NY, USA
| | - Alexander Davidson
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., New York City, NY, USA
| | - Qiaoyi Xu
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., New York City, NY, USA
| | - Maria Major
- Vaccines Medical Affairs Pfizer Canada ULC, Kirkland, QC, Canada
| | - Kate Halsby
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., Walton Oaks, Surrey, UK
| | - Ana Grajales
- Vaccines Medical Affairs Pfizer Canada ULC, Kirkland, QC, Canada
| | - Julie Davis
- Life Sciences, Clarivate Analytics, 3133 W. Frye Road Suite 401, Chandler, AZ, USA
| | - Frederick J Angulo
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., Collegeville, PA, USA
| | - Jennifer C Moïsi
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., Paris, France
| | - James H Stark
- Medical Affairs, Vaccines and Antivirals, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
3
|
Masséglia S, René-Martellet M, Rates M, Hizo-Teufel C, Fingerle V, Margos G, Bailly X. Development and validation of a multi-target TaqMan qPCR method for detection of Borrelia burgdorferi sensu lato. J Microbiol Methods 2024; 222:106941. [PMID: 38714225 DOI: 10.1016/j.mimet.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Reliable detection of bacteria belonging to the Borrelia burgdorferi sensu lato species complex in vertebrate reservoirs, tick vectors, and patients is key to answer questions regarding Lyme borreliosis epidemiology. Nevertheless, the description of characteristics of qPCRs for the detection of B. burgdorferi s. l. are often limited. This study covers the development and validation of two duplex taqman qPCR assays used to target four markers on the chromosome of genospecies of B. burgdorferi s. l. Analytical specificity was determined with a panel of spirochete strains. qPCR characteristics were specified using water or tick DNA spiked with controlled quantities of the targeted DNA sequences of B. afzelii, B. burgdorferi sensu stricto or B. bavariensis. The effectiveness of detection results was finally evaluated using DNA extracted from ticks and biopsies from mammals whose infectious status had been determined by other detection assays. The developed qPCR assays allow exclusive detection of B. burgdorferi s. l. with the exception of the M16 marker which also detect relapsing fever Borreliae. The limit of detection is between 10 and 40 copies per qPCR reaction depending on the sample type, the B. burgdorferi genospecies and the targeted marker. Detection tests performed on various kind of samples illustrated the accuracy and robustness of our qPCR assays. Within the defined limits, this multi-target qPCR method allows a versatile detection of B. burgdorferi s. l., regardless of the genospecies and the sample material analyzed, with a sensitivity that would be compatible with most applications and a reproducibility of 100% under measurement conditions of limits of detection, thereby limiting result ambiguities.
Collapse
Affiliation(s)
- Sébastien Masséglia
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122 Saint-Genès-Champanelle, France.
| | - Magalie René-Martellet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122 Saint-Genès-Champanelle, France; Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, F-69280 Marcy l'Etoile, France
| | - Maxime Rates
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122 Saint-Genès-Champanelle, France; Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, F-69280 Marcy l'Etoile, France
| | - Cecilia Hizo-Teufel
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Xavier Bailly
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
4
|
Blažeková V, Stanko M, Sprong H, Kohl R, Zubriková D, Vargová L, Bona M, Miklisová D, Víchová B. Ixodiphagus hookeri (Hymenoptera: Encyrtidae) and Tick-Borne Pathogens in Ticks with Sympatric Occurrence (and Different Activities) in the Slovak Karst National Park (Slovakia), Central Europe. Pathogens 2024; 13:385. [PMID: 38787237 PMCID: PMC11123704 DOI: 10.3390/pathogens13050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Ticks are involved in the transmission a plethora of pathogens. To effectively control ticks and mitigate the risks associated with tick-borne diseases, it is important to implement tick control measures. These may include the use of acaricides as well as the development and implementation of an alternative, environmentally friendly tick management program that include practices such as habitat modification or establishing biological control. Ixodiphagus hookeri Howard is a tick-specific parasitoid wasp that predates on several species of ixodid ticks and could contribute to the control of the tick population. This work aimed to detect the presence of parasitoid wasps in ticks (Ixodidae) using genetic approaches. Several tick species of the genera Ixodes, Haemaphysalis, and Dermacentor, with a sympatric occurrence in the Slovak Karst National Park in southeastern Slovakia, were screened for the presence of wasps of the genus Ixodiphagus. The DNA of the parasitoids was detected in four tick species from three genera. This work presents the first molecular detection of parasitoids in two Dermacentor tick species, as well as the first molecular identification of Ixodiphagus wasps in Ixodes ricinus and Haemaphysalis concinna ticks from the Karst area. In the given area, it was observed that I. ricinus and H. concinna ticks are hyper-parasitized by wasps. Moreover, it was observed that wasps here can parasitize several tick species, some of which are of less significance for human and animal health (as they transmit fewer pathogens).
Collapse
Affiliation(s)
- Veronika Blažeková
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 040 81 Košice, Slovakia
| | - Michal Stanko
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
- Institute of Zoology Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (H.S.); (R.K.)
| | - Robert Kohl
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (H.S.); (R.K.)
| | - Dana Zubriková
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| | - Lucia Vargová
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Dana Miklisová
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| | - Bronislava Víchová
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| |
Collapse
|
5
|
Skarstein I, Ulvestad E, Solheim AM, Vedeler C, Ljøstad U, Mygland Å, Eikeland R, Reiso H, Lorentzen ÅR, Bos SD. Serum neurofilament light chain associates with symptom burden in Lyme neuroborreliosis patients: a longitudinal cohort study from Norway. J Neurol 2024; 271:2768-2775. [PMID: 38407594 PMCID: PMC11055709 DOI: 10.1007/s00415-024-12237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES Serum neurofilament light chain (sNfL), an indicator of neuronal damage, is increasingly recognized as a potential biomarker for disease activity in neurodegenerative disorders. In this study, we wanted to investigate sNfL as a prognostic marker in a large, well-defined population of 90 patients with Lyme neuroborreliosis (LNB). In addition, we sought to explore associations between symptoms and sNfL levels during the acute phase of LNB. MATERIALS AND METHODS Patients diagnosed with definite or possible LNB were recruited from a double-blinded, placebo-controlled, multi-center trial, in which the participants were randomly assigned to 2 or 6 weeks of oral doxycycline treatment. The sNfL levels were measured using a single molecule array assay at both diagnosis and 6-month follow-up, and analysed against clinical parameters, variations in symptom burden and long-term complaints as assessed by a composite clinical score. RESULTS At the time of diagnosis, approximately 60% of the patients had elevated sNfL levels adjusted for age. Notably, mean sNfL levels were significantly higher at diagnosis (52 pg/ml) compared to 6 months after treatment (12 pg/ml, p < 0.001), when sNfL levels had normalized in the majority of patients. Patients with objective signs of spinal radiculitis had significantly higher baseline sNfL levels compared to patients without spinal radiculitis (p = 0.033). CONCLUSION Our findings suggest that sNfL can serve as a biomarker for peripheral nerve tissue involvement in the acute phase of LNB. As found in an earlier study, we confirm normalization of sNfL levels in blood after treatment. We found no prognostic value of acute-phase sNfL levels on patient outcome.
Collapse
Affiliation(s)
- Ingerid Skarstein
- Department of Microbiology, Haukeland University Hospital, Post Box 1400, 5021, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Elling Ulvestad
- Department of Microbiology, Haukeland University Hospital, Post Box 1400, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anne Marit Solheim
- Department of Neurology, Sørlandet Hospital Trust, Kristiansand, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Unn Ljøstad
- Department of Neurology, Sørlandet Hospital Trust, Kristiansand, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Åse Mygland
- Department of Neurology, Sørlandet Hospital Trust, Kristiansand, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Section of Habilitation, Sørlandet Hospital Trust, Kristiansand, Norway
| | - Randi Eikeland
- Norwegian National Advisory Unit on Tick-Borne Diseases, Sørlandet Hospital Trust, Kristiansand, Norway
- Faculty of Health and Sport Sciences, University of Agder, Grimstad, Norway
| | - Harald Reiso
- Norwegian National Advisory Unit on Tick-Borne Diseases, Sørlandet Hospital Trust, Kristiansand, Norway
| | - Åslaug Rudjord Lorentzen
- Department of Neurology, Sørlandet Hospital Trust, Kristiansand, Norway
- Norwegian National Advisory Unit on Tick-Borne Diseases, Sørlandet Hospital Trust, Kristiansand, Norway
| | - Steffan Daniel Bos
- Department of Microbiology, Haukeland University Hospital, Post Box 1400, 5021, Bergen, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Cancer Registry of Norway, The Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
6
|
Leth TA, Nymark A, Knudtzen FC, Larsen SL, Skov MN, Jensen TG, Bek-Thomsen M, Jensen HB, Hovius JW, Skarphédinsson S, Møller JK, Andersen NS. Detection of Borrelia burgdorferi sensu lato DNA in cerebrospinal fluid samples following pre-enrichment culture. Ticks Tick Borne Dis 2023; 14:102138. [PMID: 36746091 DOI: 10.1016/j.ttbdis.2023.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/06/2023]
Abstract
Molecular methods for diagnosing Lyme neuroborreliosis (LNB) have shown suboptimal diagnostic sensitivities. The objective of this study was to improve the clinical sensitivity of PCR detection of Borrelia burgdorferi sensu lato spirochetes by inoculating cerebrospinal fluid (CSF) from patients suspected of LNB directly into culture medium at the time of lumbar puncture, with this pursuing enrichment of Borrelia spirochetes before PCR analysis. Adult patients with symptoms suggestive of LNB were prospectively enrolled at two hospitals in the Region of Southern Denmark. The CSF-culture samples were incubated for at least eight weeks. During this period, culture sample aliquots were analysed for the presence of Borrelia DNA by separate PCR protocols in two independent clinical laboratories. The included patients were diagnosed with definite (n=12) or possible (n=2) LNB, and non-LNB (n=171) based on clinical and paraclinical findings. Patients in the LNB and the non-LNB group had a median duration from symptom onset to lumbar puncture of 40 days (IQR [23-90] days) and 120 days (IQR [32-365] days), respectively. Pre-enrichment growth of Borrelia spirochetes was accomplished from three patients (21 %) in the LNB group. The positive culture samples were confirmed by both the digital droplet PCR and the real-time PCR methods employed. All CSF samples were PCR negative in the non-LNB group. The results of this study do not support the use of Borrelia-specific PCR as a general routine diagnostic tool in adults. Still, they suggest it may prove of additional value in selected patients with a limited time from symptom onset to sample collection.
Collapse
Affiliation(s)
- Trine Andreasen Leth
- Department of Clinical Microbiology, Lillebaelt Hospital - University Hospital of Southern Denmark, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Anita Nymark
- Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, J.B. Winsløwsvej 21. 2., Odense DK-5000, Denmark; Department of Infectious Diseases, Odense University Hospital, Odense, Denmark; Research Unit of Infectious Diseases, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark; Research Unit for Clinical Microbiology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Fredrikke Christie Knudtzen
- Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, J.B. Winsløwsvej 21. 2., Odense DK-5000, Denmark; Department of Infectious Diseases, Odense University Hospital, Odense, Denmark; Research Unit of Infectious Diseases, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Sanne Løkkegaard Larsen
- Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, J.B. Winsløwsvej 21. 2., Odense DK-5000, Denmark; Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark; Research Unit for Clinical Microbiology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Marianne N Skov
- Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, J.B. Winsløwsvej 21. 2., Odense DK-5000, Denmark; Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark; Research Unit for Clinical Microbiology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Thøger Gorm Jensen
- Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, J.B. Winsløwsvej 21. 2., Odense DK-5000, Denmark; Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark; Research Unit for Clinical Microbiology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Malene Bek-Thomsen
- Department of Clinical Microbiology, Lillebaelt Hospital - University Hospital of Southern Denmark, Denmark
| | - Henrik Boye Jensen
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Denmark; Department of Neurology, Lillebaelt Hospital - University Hospital of Southern Denmark, Denmark
| | - Joppe W Hovius
- Amsterdam UMC, location AMC, Center for Experimental and Molecular Medicine, Amsterdam Multidisciplinary Lyme Borreliosis Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sigurdur Skarphédinsson
- Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, J.B. Winsløwsvej 21. 2., Odense DK-5000, Denmark; Department of Infectious Diseases, Odense University Hospital, Odense, Denmark; Research Unit of Infectious Diseases, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jens Kjølseth Møller
- Department of Clinical Microbiology, Lillebaelt Hospital - University Hospital of Southern Denmark, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Nanna Skaarup Andersen
- Department of Clinical Microbiology, Lillebaelt Hospital - University Hospital of Southern Denmark, Denmark; Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, J.B. Winsløwsvej 21. 2., Odense DK-5000, Denmark; Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark; Research Unit for Clinical Microbiology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
7
|
Inducible CRISPRi-Based Operon Silencing and Selective in Trans Gene Complementation in Borrelia burgdorferi. J Bacteriol 2023; 205:e0046822. [PMID: 36719218 PMCID: PMC9945571 DOI: 10.1128/jb.00468-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To accelerate genetic studies on the Lyme disease pathogen Borrelia burgdorferi, we developed an enhanced CRISPR interference (CRISPRi) approach for isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible repression of specific B. burgdorferi genes. The entire system is encoded on a compact 11-kb shuttle vector plasmid that allows for inducible expression of both the sgRNA module and a nontoxic codon-optimized dCas9 protein. We validated this CRISPRi system by targeting the genes encoding OspA and OspB, abundant surface lipoproteins coexpressed by a single operon, and FlaB, the major subunit forming the periplasmic flagella. As in other systems, single guide RNAs (sgRNAs) complementary to the nontemplate strand were consistently effective in gene repression, with 4- to 994-fold reductions in targeted transcript levels and concomitant reductions of protein levels. Furthermore, we showed that ospAB knockdowns could be selectively complemented in trans for OspA expression via the insertion of CRISPRi-resistant, synonymously or nonsynonymously mutated protospacer adjacent motif (PAM*) ospA alleles into a unique site within the CRISPRi plasmid. Together, this establishes CRISPRi PAM* as a robust new genetic tool to simplify the study of B. burgdorferi genes, bypassing the need for gene disruptions by allelic exchange and avoiding rare codon toxicity from the heterologous expression of dCas9. IMPORTANCE Borrelia burgdorferi, the spirochetal bacterium causing Lyme disease, is a tick-borne pathogen of global importance. Here, we expand the genetic toolbox for studying B. burgdorferi physiology and pathogenesis by establishing a single plasmid-based, fully inducible, and nontoxic CRISPR interference (CRISPRi) system for transcriptional silencing of B. burgdorferi genes and operons. We also show that alleles of CRISPRi-targeted genes with mutated protospacer-adjacent motif (PAM*) sites are CRISPRi resistant and can be used for simultaneous in trans gene complementation. The CRISPRi PAM* system will streamline the study of essential Borrelia proteins and accelerate investigations into their structure-function relationships.
Collapse
|
8
|
Leth TA, Joensen SM, Bek-Thomsen M, Møller JK. Establishment of a digital PCR method for detection of Borrelia burgdorferi sensu lato complex DNA in cerebrospinal fluid. Sci Rep 2022; 12:19991. [PMID: 36411296 PMCID: PMC9678864 DOI: 10.1038/s41598-022-24041-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Direct detection of Borrelia burgdorferi sensu lato bacteria in patient samples for diagnosis of Lyme neuroborreliosis (LNB) is hampered by low diagnostic sensitivity, due to few bacteria in cerebrospinal fluids (CSF) samples. Evaluation of novel molecular methods, including digital PCR (dPCR), as future tools in diagnostics of LNB is desirable. This study aimed to establish a dPCR assay and validate pre-PCR procedures for detection of Borrelia in CSF. Synthetic DNA fragments and cultured Borrelia reference strains were used during optimisation experiments. In addition, 59 CSF specimens from patients examined for LNB were included for clinical validation. The results showed that the pre-PCR parameters with the highest impact on Borrelia-specific dPCR method performance were incubation of the PCR-plate at 4 °C for stabilization of droplets, centrifugation for target concentration, quick-spin for dPCR rain reduction, and PCR inhibition by matrix components. Borrelia DNA in CSF was detected in one out of nine patients with LNB. Diagnostic sensitivity was determined to be 11.1% and specificity 100%. In conclusion, this study reports an optimized Borrelia-specific dPCR method for direct detection of Borrelia in CSF samples. The present study does not support the use of Borrelia-specific dPCR as a routine method for diagnosing LNB.
Collapse
Affiliation(s)
- Trine Andreasen Leth
- grid.459623.f0000 0004 0587 0347Department of Clinical Microbiology, Lillebaelt Hospital – University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark ,grid.10825.3e0000 0001 0728 0170Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Vejle, Denmark
| | - Sara Moeslund Joensen
- grid.459623.f0000 0004 0587 0347Department of Clinical Microbiology, Lillebaelt Hospital – University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| | - Malene Bek-Thomsen
- grid.154185.c0000 0004 0512 597XDepartment of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Kjølseth Møller
- grid.459623.f0000 0004 0587 0347Department of Clinical Microbiology, Lillebaelt Hospital – University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark ,grid.10825.3e0000 0001 0728 0170Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Vejle, Denmark
| |
Collapse
|
9
|
Kight E, Alfaro R, Gadila SKG, Chang S, Evans D, Embers M, Haselton F. Direct Capture and Early Detection of Lyme Disease Spirochete in Skin with a Microneedle Patch. BIOSENSORS 2022; 12:819. [PMID: 36290956 PMCID: PMC9599122 DOI: 10.3390/bios12100819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Borrelia burgdorferi sensu lato family of spirochetes causes Lyme disease (LD) in animals and humans. As geographic territory of ticks expands across the globe, surveillance measures are needed to measure transmission rates and provide early risk testing of suspected bites. The current standard testing of LD uses an indirect two-step serological assay that detects host immune reactivity. Early detection remains a challenge because the host antibody response develops several weeks after infection. A microneedle (MN) device was developed to sample interstitial fluid (ISF) and capture spirochetes directly from skin. After sampling, the MN patch is easily dissolved in water or TE buffer, and the presence of spirochete DNA is detected by PCR. Performance was tested by spiking porcine ear skin with inactivated Borrelia burgdorferi, which had an approximate recovery of 80% of spirochetes. With further development, this simple direct PCR method could be a transformative approach for early detection of the causative agent of Lyme disease and enable rapid treatment to patients when infection is early, and numbers of systemic spirochetes are low.
Collapse
Affiliation(s)
- Emily Kight
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37211, USA
| | - Rosana Alfaro
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37211, USA
| | - Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Shuang Chang
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37211, USA
| | - David Evans
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37211, USA
| | - Monica Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | | |
Collapse
|
10
|
Co-infections with multiple pathogens in natural populations of Ixodes persulcatus ticks in Mongolia. Parasit Vectors 2022; 15:236. [PMID: 35765092 PMCID: PMC9238073 DOI: 10.1186/s13071-022-05356-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022] Open
Abstract
Background In Mongolia, the taiga tick Ixodes persulcatus is the major vector of tick-borne pathogens. Knowledge about co-infections of these pathogens in ticks is necessary both for understanding their persistence in nature and for diagnosing and treating tick-borne diseases. Methods The prevalence of seven tick-borne infections in 346 I. persulcatus collected from the Selenge and Bulgan provinces of Mongolia was evaluated using real-time PCR. Quantification of Borrelia spp. was performed using multiplex quantitative PCR targeting the 16S rRNA gene. Genetic analysis of Borrelia spp. in 11 ticks infected with Borrelia miyamotoi, including six ticks co-infected with Borrelia burgdorferi sensu lato (s.l.), was performed by high-throughput sequencing of the flaB gene fragment. Results Six ticks (1.7%) were infected with tick-borne encephalitis virus (TBEV); 171 (49.4%), with B. burgdorferi sensu lato; 17 (4.9%), with B. miyamotoi; 47 (13.6%), with Anaplasma phagocytophilum; and 56 (16.2%), with Ehrlichia sp. Neither Rickettsia sibirica nor R. heilongjiangensis were detected. Borrelia burgdorferi s.l. occurred as co-infection in 55 (32.2%) of all infected ticks. The other pathogens co-infected ticks in 58.8–70.2% of cases. No pairwise associations between co-infecting pathogens were observed, with the exception of a positive association between A. phagocytophilum and Ehrlichia sp. infections. The spirochete loads of B. miyamotoi were significantly higher than those of B. burgdorferi s.l. (mean: 5.2 vs 4.0 log10 genome copies/tick, respectively). Ten isolates of B. miyamotoi belonged to the Siberian lineage. Borrelia burgdorferi s.l was represented by nine isolates of B. afzelii, B. bavariensis and B. garinii. Conclusions In populations of I. persulcatus inhabiting the Selenge and Bulgan provinces of Mongolia, five vector-borne pathogens, i.e. TBEV, B. burgdorferi s.l., B. miyamotoi, A. phagocytophilum and Ehrlichia sp., persist independently from each other, with the exception of A. phagocytophilum and Ehrlichia sp. which seem to share the circulation mode. The discrepancies in B. burgdorferi s.l. and B. miyamotoi prevalence and spirochete load per tick suggest that different ecological niches are occupied by Lyme disease and relapsing fever agents. High-throughput sequencing allows genetic identification of borreliae species in co-infected ticks. Graphical Abstract ![]()
Collapse
|
11
|
Chou E, Minor A, Cady NC. Quantitative multiplexed strategies for human Lyme disease serological testing. Exp Biol Med (Maywood) 2021; 246:1388-1399. [PMID: 33794698 PMCID: PMC8243215 DOI: 10.1177/15353702211003496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lyme disease, which is primarily caused by infection with the bacterium Borrelia burgdorferi in the United States or other Borrelia species internationally, presents an ongoing challenge for diagnostics. Serological testing is the primary means of diagnosis but testing approaches differ widely, with varying degrees of sensitivity and specificity. Moreover, there is currently no reliable test to determine disease resolution following treatment. A distinct challenge in Lyme disease diagnostics is the variable patterns of human immune response to a plurality of antigens presented by Borrelia spp. during the infection. Thus, multiplexed testing approaches that capture these patterns and detect serological response against multiple antigens may be the key to prompt, accurate Lyme disease diagnosis. In this review, current state-of-the-art multiplexed diagnostic approaches are presented and compared with respect to their diagnostic accuracy and their potential for monitoring response to treatment.
Collapse
Affiliation(s)
- Eunice Chou
- Nanobioscience Constellation, College of Nanoscale Science &
Engineering, State University of New York Polytechnic Institute, Albany, NY
12203, USA
- College of Medicine, State University of New York, Downstate
Medical Center, Brooklyn, NY 11203, USA
| | - Armond Minor
- Nanobioscience Constellation, College of Nanoscale Science &
Engineering, State University of New York Polytechnic Institute, Albany, NY
12203, USA
| | - Nathaniel C Cady
- Nanobioscience Constellation, College of Nanoscale Science &
Engineering, State University of New York Polytechnic Institute, Albany, NY
12203, USA
| |
Collapse
|
12
|
Trevisan G, Bonin S, Ruscio M. A Practical Approach to the Diagnosis of Lyme Borreliosis: From Clinical Heterogeneity to Laboratory Methods. Front Med (Lausanne) 2020; 7:265. [PMID: 32793606 PMCID: PMC7390863 DOI: 10.3389/fmed.2020.00265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/14/2020] [Indexed: 12/05/2022] Open
Abstract
Clinical evaluation of Lyme Borreliosis (LB) is the starting point for its diagnosis. The patient's medical history and clinical symptoms are fundamental for disease recognition. The heterogeneity in clinical manifestations of LB can be related to different causes, including the different strains of Borrelia, possible co-infection with other tick transmitted pathogens, and its interactions with the human host. This review aims at describing the heterogeneous symptoms of Lyme Borreliosis, as well as offering a practical approach for recognition of the disease, both in terms of clinical features and diagnostic/research tools.
Collapse
Affiliation(s)
- Giusto Trevisan
- DSM-Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Serena Bonin
- DSM-Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Ruscio
- ASU GI-Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| |
Collapse
|
13
|
Abstract
Lyme disease (LD) is the most common tick-borne disease in the Northern Hemisphere. As the most prevalent vector-borne disease in the USA, LD affects 300,000 human cases each year. LD is caused by inoculation of the bacterial spirochete, Borrelia burgdorferi sensu lato, from an infected tick. If not treated quickly and completely, the bacteria disseminate from the tick's biting site into multiple organs including the joints, heart, and brain. Thus, the best outcome from medical intervention can be expected with early detection and treatment with antibiotics, prior to multi-organ dissemination. In the absence of a characteristic rash, LD is diagnosed using serological testing involving enzyme-linked immunosorbent assay (ELISA) followed by western blotting, which is collectively known as the two-tier algorithm. These assays detect host antibodies against the bacteria, but are hampered by low sensitivity, which can miss early LD cases. This review discusses the application of some current assays for diagnosing LD clinically, thus providing a foundation for exploring newer techniques being developed in the laboratory for more sensitive detection of early LD.
Collapse
Affiliation(s)
- Eunice Chou
- Vassar College in Poughkeepsie, NY SUNY Downstate Medical School and SUNY Polytechnic Institute
| | - Yi-Pin Lin
- University in Ithaca, NY and postdoctoral training from Tufts University in Boston, MA
| | | |
Collapse
|
14
|
Direct Molecular Detection and Genotyping of Borrelia burgdorferi Sensu Lato in Cerebrospinal Fluid of Children with Lyme Neuroborreliosis. J Clin Microbiol 2018; 56:JCM.01868-17. [PMID: 29467195 DOI: 10.1128/jcm.01868-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/17/2018] [Indexed: 01/01/2023] Open
Abstract
The current diagnostic marker of Lyme neuroborreliosis (LNB), the Borrelia burgdorferisensu lato antibody index (AI) in the cerebrospinal fluid (CSF), has insufficient sensitivity in the early phase of LNB. We aimed to elucidate the diagnostic value of PCR for B. burgdorferisensu lato in CSF from children with symptoms suggestive of LNB and to explore B. burgdorferisensu lato genotypes associated with LNB in children. Children were prospectively included in predefined groups with a high or low likelihood of LNB based on diagnostic guidelines (LNB symptoms, CSF pleocytosis, and B. burgdorferisensu lato antibodies) or the detection of other causative agents. CSF samples were analyzed by two B. burgdorferisensu lato-specific real-time PCR assays and, if B. burgdorferisensu lato DNA was detected, were further analyzed by five singleplex real-time PCR assays for genotype determination. For children diagnosed as LNB patients (58 confirmed and 18 probable) (n = 76) or non-LNB controls (n = 28), the sensitivity and specificity of PCR for B. burgdorferisensu lato in CSF were 46% and 100%, respectively. B. burgdorferisensu lato DNA was detected in 26/58 (45%) children with AI-positive LNB and in 7/12 (58%) children with AI-negative LNB and symptoms of short duration. Among 36 children with detectable B. burgdorferisensu lato DNA, genotyping indicated Borrelia garinii (n = 27) and non-B. garinii (n = 1) genotypes, while 8 samples remained untyped. Children with LNB caused by B. garinii did not have a distinct clinical picture. The rate of detection of B. burgdorferisensu lato DNA in the CSF of children with LNB was higher than that reported previously. PCR for B. burgdorferisensu lato could be a useful supplemental diagnostic tool in unconfirmed LNB cases with symptoms of short duration. B. garinii was the predominant genotype in children with LNB.
Collapse
|
15
|
Lager M, Faller M, Wilhelmsson P, Kjelland V, Andreassen Å, Dargis R, Quarsten H, Dessau R, Fingerle V, Margos G, Noraas S, Ornstein K, Petersson AC, Matussek A, Lindgren PE, Henningsson AJ. Molecular detection of Borrelia burgdorferi sensu lato - An analytical comparison of real-time PCR protocols from five different Scandinavian laboratories. PLoS One 2017; 12:e0185434. [PMID: 28937997 PMCID: PMC5609768 DOI: 10.1371/journal.pone.0185434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022] Open
Abstract
Introduction Lyme borreliosis (LB) is the most common tick transmitted disease in Europe. The diagnosis of LB today is based on the patient´s medical history, clinical presentation and laboratory findings. The laboratory diagnostics are mainly based on antibody detection, but in certain conditions molecular detection by polymerase chain reaction (PCR) may serve as a complement. Aim The purpose of this study was to evaluate the analytical sensitivity, analytical specificity and concordance of eight different real-time PCR methods at five laboratories in Sweden, Norway and Denmark. Method Each participating laboratory was asked to analyse three different sets of samples (reference panels; all blinded) i) cDNA extracted and transcribed from water spiked with cultured Borrelia strains, ii) cerebrospinal fluid spiked with cultured Borrelia strains, and iii) DNA dilution series extracted from cultured Borrelia and relapsing fever strains. The results and the method descriptions of each laboratory were systematically evaluated. Results and conclusions The analytical sensitivities and the concordance between the eight protocols were in general high. The concordance was especially high between the protocols using 16S rRNA as the target gene, however, this concordance was mainly related to cDNA as the type of template. When comparing cDNA and DNA as the type of template the analytical sensitivity was in general higher for the protocols using DNA as template regardless of the use of target gene. The analytical specificity for all eight protocols was high. However, some protocols were not able to detect Borrelia spielmanii, Borrelia lusitaniae or Borrelia japonica.
Collapse
Affiliation(s)
- Malin Lager
- Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| | - Maximilian Faller
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Peter Wilhelmsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Clinical Microbiology, Laboratory Medicine, Region Jönköping County, Sweden
| | - Vivian Kjelland
- Faculty of Engineering and Science, Department of Natural Sciences, University of Agder, Kristiansand, Norway
- Research Unit, Hospital of Southern Norway Trust, Kristiansand, Norway
| | - Åshild Andreassen
- Division of Infectious Disease Control, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Rimtas Dargis
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | - Hanne Quarsten
- Department of Medical Microbiology, Hospital of Southern Norway Trust, Kristiansand, Norway
| | - Ram Dessau
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Gabriele Margos
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Sølvi Noraas
- Department of Medical Microbiology, Hospital of Southern Norway Trust, Kristiansand, Norway
| | | | | | - Andreas Matussek
- Clinical Microbiology, Laboratory Medicine, Region Jönköping County, Sweden
- Karolinska University Laboratory, Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Per-Eric Lindgren
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Clinical Microbiology, Laboratory Medicine, Region Jönköping County, Sweden
| | | |
Collapse
|
16
|
Abstract
INTRODUCTION Current laboratory testing of Lyme borreliosis mostly relies on serological methods with known limitations. Diagnostic modalities enabling direct detection of pathogen at the onset of the clinical signs could overcome some of the limitations. Molecular methods detecting borrelial DNA seem to be the ideal solution, although there are some aspects that need to be considered. Areas covered: This review represent summary and discussion of the published data obtained from literature searches from PubMed and The National Library of Medicine (USA) together with our own experience on molecular diagnosis of Lyme disease. Expert commentary: Molecular methods are promising and currently serve as supporting diagnostic testing in Lyme borreliosis. Since the field of molecular diagnostics is under rapid development, molecular testing could become an important diagnostic modality.
Collapse
Affiliation(s)
- Eva Ružić-Sabljić
- a Institute of Microbiology ansd Immunology, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Tjaša Cerar
- a Institute of Microbiology ansd Immunology, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
17
|
Kazi H, de Groot-Mijnes JDF, Ten Dam-van Loon NH, Ossewaarde-van Norel J, Oosterheert JJ, de Boer JH. No Value for Routine Serologic Screening for Borrelia burgdorferi in Patients With Uveitis in the Netherlands. Am J Ophthalmol 2016; 166:189-193. [PMID: 27080573 DOI: 10.1016/j.ajo.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE To determine whether routine serologic screening for Borrelia burgdorferi and subsequent aqueous or vitreous humor analysis is useful in patients with uveitis. DESIGN Cross-sectional study. METHODS All patients referred to our tertiary uveitis referral clinic in the period of from January 1, 2004 to October 31, 2014, in whom routine serologic screening for Borrelia burgdorferi (IgG as determined by enzyme-linked immunosorbent assay and confirmed by immunoblot) was performed were retrospectively reviewed. In patients with an unclassified uveitis, aqueous and vitreous humor and cerebrospinal fluid were also analyzed. Local antibody production was determined by Goldmann-Witmer coefficient calculation or polymerase chain reaction for B burgdorferi. The seroprevalence of B burgdorferi among patients with uveitis was compared to the general population. RESULTS Borrelia burgdorferi screening was performed in 1126 uveitis patients (44.3% male, mean age 45.9 ± 19.6 years). The seroprevalence of B burgdorferi among uveitis patients was 3.7% (95% confidence interval 2.6%-4.8%) (n = 42) as compared to 5%-10% in the general Dutch population. Of these 42 patients, 14 (1.2% of all uveitis patients) had an unclassified uveitis, 7 of whom underwent aqueous humor (n = 5) or vitreous humor (n = 2) analysis and cerebrospinal fluid analysis (n = 2). None of the patients had local antibody production in either ocular or cerebrospinal fluid. CONCLUSION The prevalence of immunoblot-confirmed B burgdorferi IgG seropositivity in our uveitis patients is only slightly lower as compared to the general Dutch population. Intraocular antibody production and DNA was absent in all tested patients. These findings do not support routine serologic examination for Borrelia in uveitis patients.
Collapse
Affiliation(s)
- Hawkar Kazi
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jolanda D F de Groot-Mijnes
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | - Jan Jelrik Oosterheert
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|