1
|
Wu YF, Han BC, Lin WY, Wang SY, Linn TY, Hsu HW, Wen CC, Liu HY, Chen YH, Chang WJ. Efficacy of antimicrobial peptide P113 oral health care products on the reduction of oral bacteria number and dental plaque formation in a randomized clinical assessment. J Dent Sci 2024; 19:2367-2376. [PMID: 39347072 PMCID: PMC11437278 DOI: 10.1016/j.jds.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Dental plaque is the main cause leading to the dental caries and periodontal diseases. The main purpose of this study was to test the efficacy of oral spray containing the antimicrobial peptide P-113 on the reduction of oral bacteria number and dental plaque formation in a randomized clinical assessment. Materials and methods This study was divided into two parts. In Part A, we investigated the user experiences with the P-113 containing oral spray. In part B, 14 subjects in the experimental group used the P-113-containing oral spray, while 14 subjects in the control group used a placebo without the P-113 in a 4-week clinical trial. Participants were asked to use the P-113-containing oral spray or placebo 3 times per day and 5 times per use. Moreover, 3 check-ups and 2 washouts were carried out to evaluate the DMFT score, dental plaque weight, dental plaque index, and gingival index. Results In part A, up to 91.8% of the subjects in the experimental group were satisfied with the use of the P-113-containing oral spray. In part B, based on our PacBio SMRT sequencing platform and DADA2 analysis, the numbers of Streptococcus and Porphyromonas in the experimental group were lower than those in the control group. In addition, decreased dental plaque weight, dental plaque index, and gingival index were all observed in the experimental group. Conclusion The P-113-containing oral spray has the potential to reduce the dental caries and periodontal disease-related bacteria and to control the dental plaque formation.
Collapse
Affiliation(s)
- Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Bor-Cheng Han
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Yi Lin
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Sin-Yu Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thu Ya Linn
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsueh- Wen Hsu
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Chieh Wen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Liu
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Research Center of Health Equity, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Dental Department, Taipei Medical University, Shuang-Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
2
|
Isokääntä H, Tomnikov N, Vanhatalo S, Munukka E, Huovinen P, Hakanen AJ, Kallonen T. High-throughput DNA extraction strategy for fecal microbiome studies. Microbiol Spectr 2024; 12:e0293223. [PMID: 38747618 PMCID: PMC11237708 DOI: 10.1128/spectrum.02932-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Microbiome studies are becoming larger in size to detect the potentially small effect that environmental factors have on our gut microbiomes, or that the microbiome has on our health. Therefore, fast and reproducible DNA isolation methods are needed to handle thousands of fecal samples. We used the Chemagic 360 chemistry and Magnetic Separation Module I (MSMI) instrument to compare two sample preservatives and four different pre-treatment protocols to find an optimal method for DNA isolation from thousands of fecal samples. The pre-treatments included bead beating, sample handling in tube and plate format, and proteinase K incubation. The optimal method offers a sufficient yield of high-quality DNA without contamination. Three human fecal samples (adult, senior, and infant) with technical replicates were extracted. The extraction included negative controls (OMNIgeneGUT, DNA/RNA shield fluid, and Chemagic Lysis Buffer 1) to detect cross-contamination and ZymoBIOMICS Gut Microbiome Standard as a positive control to mimic the human gut microbiome and assess sensitivity of the extraction method. All samples were extracted using Chemagic DNA Stool 200 H96 kit (PerkinElmer, Finland). The samples were collected in two preservatives, OMNIgeneGUT and DNA/RNA shield fluid. DNA quantity was measured using Qubit-fluorometer, DNA purity and quality using gel electrophoresis, and taxonomic signatures with 16S rRNA gene-based sequencing with V3V4 and V4 regions. Bead beating increased bacterial diversity. The largest increase was detected in gram-positive genera Blautia, Bifidobacterium, and Ruminococcus. Preservatives showed minor differences in bacterial abundances. The profiles between the V3V4 and V4 regions differed considerably with lower diversity samples. Negative controls showed signs from genera abundant in fecal samples. Technical replicates of the Gut Standard and stool samples showed low variation. The selected isolation protocol included recommended steps from manufacturer as well as bead beating. Bead beating was found to be necessary to detect hard-to-lyse bacteria. The protocol was reproducible in terms of DNA yield among different stool replicates and the ZymoBIOMICS Gut Microbiome Standard. The MSM1 instrument and pre-treatment in a 96-format offered the possibility of automation and handling of large sample collections. Both preservatives were feasible in terms of sample handling and had low variation in taxonomic signatures. The 16S rRNA target region had a high impact on the composition of the bacterial profile. IMPORTANCE Next-generation sequencing (NGS) is a widely used method for determining the composition of the gut microbiota. Due to the differences in the gut microbiota composition between individuals, microbiome studies have expanded into large population studies to maximize detection of small effects on microbe-host interactions. Thus, the demand for a rapid and reliable microbial profiling is continuously increasing, making the optimization of high-throughput 96-format DNA extraction integral for NGS-based downstream applications. However, experimental protocols are prone to bias and errors from sample collection and storage, to DNA extraction, primer selection and sequencing, and bioinformatics analyses. Methodological bias can contribute to differences in microbiome profiles, causing variability across studies and laboratories using different protocols. To improve consistency and confidence of the measurements, the standardization of microbiome analysis methods has been recognized in many fields.
Collapse
Affiliation(s)
- Heidi Isokääntä
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku, Finland
| | - Natalie Tomnikov
- Department of Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
| | - Sanja Vanhatalo
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eveliina Munukka
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Pentti Huovinen
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti J. Hakanen
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu Kallonen
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
3
|
Liu MK, Tian XH, Liu CY, Liu Y, Tang YM. Microbiologic surveys for Baijiu fermentation are affected by experimental design. Int J Food Microbiol 2024; 413:110588. [PMID: 38266376 DOI: 10.1016/j.ijfoodmicro.2024.110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The traditional Chinese alcoholic beverage Baijiu is produced by spontaneous fermentation of grains under anaerobic conditions. While numerous studies have used metagenomic technology to investigate the microbiome of Baijiu brewing, the microbial succession mechanism of Baijiu brewing has not been fully clarified, and metagenomic strategies for microecology surveys have not been comprehensively evaluated. Using the fermentation process of strong-flavor Baijiu as a model, we compared the data for bacterial communities based on short read 16S rRNA variable regions, V3-V4, and full-length 16S regions, V1-V9, to whole metagenomic shotgun sequencing (WMS) to measure the effect of technology selection on phylogenetic and functional profiles. The results showed differences in bacterial compositions and their relation to volatiles and physicochemical variables between sequencing methods. Furthermore, the percentage of V3-V4 sequences assigned to species level was higher than the percentage of V1-V9 sequences according to SILVA taxonomy, but lower according to NCBI taxonomy (P < 0.05). In both SILVA and NCBI taxonomies, the relative abundances of bacterial communities at both the genus and family levels were more positively correlated with WMS data in the V3-V4 dataset than in the V1-V9 dataset. The WMS identified changes in abundances of multiple metabolic pathways during fermentation (P < 0.05), including "starch and sucrose metabolism," "galactose metabolism," and "fatty acid biosynthesis." Although functional predictions derived from 16S data show similar patterns to WMS, most metabolic pathway changes are uncorrelated (P > 0.05). This study provided new technical and biological insights into Baijiu production that may assist in selection of methodologies for studies of fermentation systems.
Collapse
Affiliation(s)
- Mao-Ke Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China.
| | - Xin-Hui Tian
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Cheng-Yuan Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Yao Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Yu-Ming Tang
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| |
Collapse
|
4
|
Majhi S, Kerry RG, Sahoo L. Profiling of microbiome diversity in cattle: present status and future prospectives. APPLICATIONS OF METAGENOMICS 2024:129-142. [DOI: 10.1016/b978-0-323-98394-5.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
|
5
|
Dixit S, Kumar S, Sharma R, Banakar PS, Singh M, Keshri A, Tyagi AK. Rumen multi-omics addressing diet-host-microbiome interplay in farm animals: a review. Anim Biotechnol 2023; 34:3187-3205. [PMID: 35713100 DOI: 10.1080/10495398.2022.2078979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Continuous improvement in the living standards of developing countries, calls for an urgent need of high quality meat and dairy products. The farm animals have a micro-ecosystem in gastro-intestinal tract, comprising of a wide variety of flora and fauna which converts roughages and agricultural byproducts as well as nutrient rich concentrate sources into the useful products such as volatile fatty acids and microbial crude proteins. The microbial diversity changes according to composition of the feed, host species/breed and host's individual genetic makeup. From culture methods to next-generation sequencing technologies, the knowledge has emerged a lot to know-how of microbial world viz. their identification, enzymatic activities and metabolites which are the keys of ruminant's successful existence. The structural composition of ruminal community revealed through metagenomics can be elaborated by metatranscriptomics and metabolomics through deciphering their functional role in metabolism and their responses to the external and internal stimuli. These highly sophisticated analytical tools have made possible to correlate the differences in the feed efficiency, nutrients utilization and methane emissions to their rumen microbiome. The comprehensively understood rumen microbiome will enhance the knowledge in the fields of animal nutrition, biotechnology and climatology through deciphering the significance of each and every domain of residing microbial entity. The present review undertakes the recent investigations regarding rumen multi-omics viz. taxonomic and functional potential of microbial populations, host-diet-microbiome interactions and correlation with metabolic dynamics.
Collapse
Affiliation(s)
- Sonam Dixit
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Sachin Kumar
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Ritu Sharma
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - P S Banakar
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Manvendra Singh
- Krishi Vigyan Kendra, Banda University of Agriculture and Technology, Banda, India
| | - Anchal Keshri
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - A K Tyagi
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
- Animal Nutrition and Physiology, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
6
|
Hu Z, Xiang Y, Wei Y, Gu X, Leng W, Xia L. Bacterial diversity in primary infected root canals of a Chinese cohort: analysis of 16 S rDNA sequencing. BMC Oral Health 2023; 23:932. [PMID: 38012618 PMCID: PMC10680180 DOI: 10.1186/s12903-023-03618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
PURPOSE To characterize the bacterial community in the primarily infected root canals. METHODS A total of 13 samples were collected from the primarily infected root canals. 16 S rDNA sequencing was performed to define bacterial community. Taxonomic annotation, bacterial hierarchical structures, community richness and diversity, and inter-subject variability of the bacterial community in the root canal samples were analyzed. Gender, age, and duration of the toothache-specific bacterial community associated with the patient groups were analyzed. RESULTS A total of 359 Species were annotated and identified in the whole study cohort. The Alpha diversity analysis showed that the species diversity and detection rate of the 13 samples were high, which reflected the authenticity of sequencing results. The Beta diversity analysis was used to compare the degree of difference between different root canal samples. The 13 samples were divided into two groups according to the results, group A was samples I1-I12, and group B was samples I13. The bacterial species of group A samples were analyzed with the clinical characteristics of patients, and it was found that gender, and duration specific differences in bacterial species, and there was no significant difference in species types among different ages of patients. CONCLUSION There were a wide diversity and inter-subject variability in the bacterial community in the primary infected root canals. While Porphyromonas gingivalis was the most abundant species, Fusobacterium nucleatum was the most variable species in the bacterial community of the root canal. The bacterial community at different taxonomic levels varied from sample to sample, despite consistent disease diagnoses. There was gender, duration-specific differences in the bacterial species in the primary infected root canals.
Collapse
Affiliation(s)
- Ziqiu Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, 442000, China
| | - Yonggang Xiang
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yanhong Wei
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, 442000, China
| | - Xinsheng Gu
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, 442000, China.
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
7
|
Ni J, Pan J, Wang Y, Chen T, Feng X, Li Y, Lin T, Lynch M, Long H, Li W. An integrative protocol for one-step PCR amplicon library construction and accurate demultiplexing of pooled sequencing data. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:564-572. [PMID: 38045552 PMCID: PMC10689312 DOI: 10.1007/s42995-023-00182-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/02/2023] [Indexed: 12/05/2023]
Abstract
High-throughput sequencing of amplicons has been widely used to precisely and efficiently identify species compositions and analyze community structures, greatly promoting biological studies involving large amounts of complex samples, especially those involving environmental and pathogen-monitoring ones. Commercial library preparation kits for amplicon sequencing, which generally require multiple steps, including adapter ligation and indexing, are expensive and time-consuming, especially for applications at a large scale. To overcome these limitations, a "one-step PCR approach" has been previously proposed for constructions of amplicon libraries using long fusion primers. However, efficient amplifications of target genes and accurate demultiplexing of pooled sequencing data remain to be addressed. To tackle these, we present an integrative protocol for one-step PCR amplicon library construction (OSPALC). High-quality reads have been generated by this approach to reliably identify species compositions of mock bacterial communities and environmental samples. With this protocol, the amplicon library is constructed through one regular PCR with long primers, and the total cost per DNA/cDNA sample decreases to just 7% of the typical cost via the multi-step PCR approach. Empirically tested primers and optimized PCR conditions to construct OSPALC libraries for 16S rDNA V4 regions are demonstrated as a case study. Tools to design primers targeting at any genomic regions are also presented. In principle, OSPALC can be readily applied to construct amplicon libraries of any target genes using DNA or RNA samples, and will facilitate research in numerous fields. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00182-1.
Collapse
Affiliation(s)
- Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Tianhao Chen
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Xinshi Feng
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Yichen Li
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281 USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Weiyi Li
- Department of Biology, Indiana University, Bloomington, IN 47401 USA
- Present Address: SLAC National Accelerator Laboratory, Stanford University, Stanford, 94305 USA
| |
Collapse
|
8
|
Wu L, Long H, Huang S, Niu X, Li S, Yu X, You L, Ran X, Wang J. Bacterial diversity in water from Xifeng Hot Spring in China. Braz J Microbiol 2023; 54:1943-1954. [PMID: 37594656 PMCID: PMC10484846 DOI: 10.1007/s42770-023-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
The Xifeng Hot Spring is one of the eight largest hot springs in China, which is rich in radon gas and sulphur in karst scenery. Little is known about the microbiota structure in the spring. The water was collected from three sites containing the outlet of spring water discharge site (OWD), spring pool for tourist (SPT) and sewage effluent pool (SEP) in the Xifeng Hot Spring and further analyzed by culture-independent technique and culture-dependent method. A total of 57 phyla were identified from the water samples. The dominate phyla at OWD was Bacteroidetes (46.93%), while it was Proteobacteria in both sites of SEP and SPT with relative richness of 61.9% and 94.9%, respectively. Two bacteria, Deinococcus and Hymenobacter, that confirmed to be radiation-resistant, seven sulphur bacteria and three thermophilic bacteria were detected from Xifeng Hot Spring. Furthermore, it was found that genus Flavobacterium was susceptible to environmental change with abundance of 11 ~ 2825 times higher in OWD than the other two groups. Compared bacteria from the OWD group with that from 14 hot springs in six countries, total 94 unique genera bacteria were found out from the Xifeng Hot Spring including four thiometabolism-related bacteria (Propionispira, Desulforegula, Desulfobacter and Desulfococcus) and the thermophilic bacterium (Symbiobacterium). Using microbial culturing and isolation technology, sixteen strains were isolated from the water samples of three sites. The diversity of microbiota was abundant and variable along with the niche changed in conditions and surroundings. It indicated that numbers of valuable bacteria resources could be explored from the special surroundings of Xifeng Hot Spring.
Collapse
Affiliation(s)
- Lijuan Wu
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Hong Long
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Shihui Huang
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Xi Niu
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Sheng Li
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Xing Yu
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Longjiang You
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Xueqin Ran
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China.
| | - Jiafu Wang
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China.
| |
Collapse
|
9
|
Saini N, Aamir M, Singh VK, Deepak B, Mona S. Unveiling the microbial diversity and functional dynamics of Shiv Kund, Sohna hot spring, India through a shotgun metagenomics approach. Arch Microbiol 2023; 205:323. [PMID: 37651004 DOI: 10.1007/s00203-023-03664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
In this research, we examined the microbial diversity in Sohna hot spring, Haryana, India using shotgun metagenome sequencing based on the Illumina Hiseq 4000 sequencing technology. The raw sequence data from metagenomic paired-end libraries were analysed for taxonomic classification, diversity, and functional annotation using MG-RAST online server. The results showed the presence of total of 57 phyla, 931 genera, and 2068 species, predominantly occupied by Moraxellaceae (Gammaproteobacteria). However, at the species level, we reported the presence of some representative pathogenic taxa, such as Acinetobacter baumannii and Moraxella osloensis. The functional annotation predicted at various levels based on SEED-based subsystem, KEGG ortholog identity (KO), Cluster of Orthologous Groups (COGs) database identified the predominance of genes associated with primary and secondary metabolism along with a crucial role in environmental and genetic signals, cellular communication, and cell signalling. Comparative Genome Analysis (CGA) using The Pathosystem Resource Integration Centre (PATRIC) tool based on genome annotation and assembly of the metagenomic libraries for representative taxon Acinetobacter baumannii (NCBI tax id:470) characterized the reads with a unique genome identifier of 470.20380 (A. baumannii DDLJ4) which is evolutionary closer to A. baumannii ATCC 470.17978 400667.7. In addition, the CARD database results about the presence of potential AMR pathotypes and the prevalence of adeABC, adeIJK, abeM gene-specific clusters that function as multidrug efflux pumps. Overall, the results provided a comprehensive insight into virulence and anti-microbial resistance mechanism and could be useful for developing potential drug targets against the possible AMR pathotypes.
Collapse
Affiliation(s)
- Neha Saini
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Mohd Aamir
- Division of Plant Pathology, ICAR-Indian Council of Agricultural Research, Pusa Campus, New Delhi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bansal Deepak
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sharma Mona
- Department of Environmental Studies, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India.
| |
Collapse
|
10
|
Zhang J, Feng Y, Hu Y. Integration of SNP genotyping and 16S rRNA amplicon sequencing to identify heritable gut microbes in chickens. STAR Protoc 2023; 4:102071. [PMID: 36853671 PMCID: PMC9922956 DOI: 10.1016/j.xpro.2023.102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
The effect of host genetics on the gut microbiota is not fully understood. Here, we introduce a protocol that describes the steps necessary to analyze the SNP genotyping and amplicon sequencing data to identify heritable microbes in chicken gut. We apply this protocol to infer the cecal heritable taxa and their associated SNPs in chicken genome sequence. This will be beneficial for the identification of gut microbes that are influenced by host genetics in both humans and animals. For complete details on the use and execution of this protocol, please refer to Feng et al. (2022).1.
Collapse
Affiliation(s)
- Jinxin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
11
|
Fregulia P, Campos MM, Dias RJP, Liu J, Guo W, Pereira LGR, Machado MA, Faza DRDLR, Guan LL, Garnsworthy PC, Neves ALA. Taxonomic and predicted functional signatures reveal linkages between the rumen microbiota and feed efficiency in dairy cattle raised in tropical areas. Front Microbiol 2022; 13:1025173. [PMID: 36523842 PMCID: PMC9745175 DOI: 10.3389/fmicb.2022.1025173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 08/27/2023] Open
Abstract
Ruminants digest plant biomass more efficiently than monogastric animals due to their symbiotic relationship with a complex microbiota residing in the rumen environment. What remains unclear is the relationship between the rumen microbial taxonomic and functional composition and feed efficiency (FE), especially in crossbred dairy cattle (Holstein x Gyr) raised under tropical conditions. In this study, we selected twenty-two F1 Holstein x Gyr heifers and grouped them according to their residual feed intake (RFI) ranking, high efficiency (HE) (n = 11) and low efficiency (LE) (n = 11), to investigate the effect of FE on the rumen microbial taxa and their functions. Rumen fluids were collected using a stomach tube apparatus and analyzed using amplicon sequencing targeting the 16S (bacteria and archaea) and 18S (protozoa) rRNA genes. Alpha-diversity and beta-diversity analysis revealed no significant difference in the rumen microbiota between the HE and LE animals. Multivariate analysis (sPLS-DA) showed a clear separation of two clusters in bacterial taxonomic profiles related to each FE group, but in archaeal and protozoal profiles, the clusters overlapped. The sPLS-DA also revealed a clear separation in functional profiles for bacteria, archaea, and protozoa between the HE and LE animals. Microbial taxa were differently related to HE (e.g., Howardella and Shuttleworthia) and LE animals (e.g., Eremoplastron and Methanobrevibacter), and predicted functions were significatively different for each FE group (e.g., K03395-signaling and cellular process was strongly related to HE animals, and K13643-genetic information processing was related to LE animals). This study demonstrates that differences in the rumen microbiome relative to FE ranking are not directly observed from diversity indices (Faith's Phylogenetic Diversity, Pielou's Evenness, Shannon's diversity, weighted UniFrac distance, Jaccard index, and Bray-Curtis dissimilarity), but from targeted identification of specific taxa and microbial functions characterizing each FE group. These results shed light on the role of rumen microbial taxonomic and functional profiles in crossbred Holstein × Gyr dairy cattle raised in tropical conditions, creating the possibility of using the microbial signature of the HE group as a biological tool for the development of biomarkers that improve FE in ruminants.
Collapse
Affiliation(s)
- Priscila Fregulia
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Magalhães Campos
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA), National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Junhong Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Luiz Gustavo Ribeiro Pereira
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA), National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Marco Antônio Machado
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA), National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Daniele Ribeiro de Lima Reis Faza
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA), National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Phil C. Garnsworthy
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
Costa-Roura S, Villalba D, Balcells J, De la Fuente G. First Steps into Ruminal Microbiota Robustness. Animals (Basel) 2022; 12:2366. [PMID: 36139226 PMCID: PMC9495070 DOI: 10.3390/ani12182366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Despite its central role in ruminant nutrition, little is known about ruminal microbiota robustness, which is understood as the ability of the microbiota to cope with disturbances. The aim of the present review is to offer a comprehensive description of microbial robustness, as well as its potential drivers, with special focus on ruminal microbiota. First, we provide a briefing on the current knowledge about ruminal microbiota. Second, we define the concept of disturbance (any discrete event that disrupts the structure of a community and changes either the resource availability or the physical environment). Third, we discuss community resistance (the ability to remain unchanged in the face of a disturbance), resilience (the ability to return to the initial structure following a disturbance) and functional redundancy (the ability to maintain or recover initial function despite compositional changes), all of which are considered to be key properties of robust microbial communities. Then, we provide an overview of the currently available methodologies to assess community robustness, as well as its drivers (microbial diversity and network complexity) and its potential modulation through diet. Finally, we propose future lines of research on ruminal microbiota robustness.
Collapse
|
13
|
Rabapane KJ, Ijoma GN, Matambo TS. Insufficiency in functional genomics studies, data, and applications: A case study of bio-prospecting research in ruminant microbiome. Front Genet 2022; 13:946449. [PMID: 36118848 PMCID: PMC9472250 DOI: 10.3389/fgene.2022.946449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last two decades, biotechnology has advanced at a rapid pace, propelled by the incorporation of bio-products into various aspects of pharmaceuticals, industry, and the environment. These developments have sparked interest in the bioprospecting of microorganisms and their products in a variety of niche environments. Furthermore, the use of omics technologies has greatly aided our analyses of environmental samples by elucidating the microbial ecological framework, biochemical pathways, and bio-products. However, the more often overemphasis on taxonomic identification in most research publications, as well as the data associated with such studies, is detrimental to immediate industrial and commercial applications. This review identifies several factors that contribute to the complexity of sequence data analysis as potential barriers to the pragmatic application of functional genomics, utilizing recent research on ruminants to demonstrate these limitations in the hopes of broadening our horizons and drawing attention to this gap in bioprospecting studies for other niche environments as well. The review also aims to emphasize the importance of routinely incorporating functional genomics into environmental metagenomics analyses in order to improve solutions that drive rapid industrial biocatalysis developments from derived outputs with the aim of achieving potential benefits in energy-use reduction and environmental considerations for current and future applications.
Collapse
|
14
|
SURVEILLANCE FOR AN EMERGENT HOOF DISEASE IN ELK (CERVUS ELAPHUS) IN THE US PACIFIC WEST SUPPLEMENTED BY 16S RRNA GENE AMPLICON SEQUENCING. J Wildl Dis 2022; 58:487-499. [PMID: 35417921 DOI: 10.7589/jwd-d-21-00119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
Abstract
A novel hoof disease of elk (Cervus elaphus) was described in southwestern Washington, US, in 2008 and was subsequently diagnosed in an adjacent area in northwestern Oregon in 2014. The disease, currently referred to as treponeme-associated hoof disease (TAHD), is characterized by lesions ranging from mild erosions, to severe ulcers with underrunning of the hoof capsule and heel-sole junction, to overgrown and avulsed hoof capsules. Histologically, lesions exhibit epithelial erosion or ulceration, suppurative inflammation, and the presence of argyrophilic spirochetes. We used data collected by the Washington Department of Fish and Wildlife and Oregon Department of Fish and Wildlife from 2008 to 2017 as reference for disease distribution. We then conducted enhanced surveillance in 2018-20 by obtaining 164 submissions from four US Pacific West states. We detected TAHD for the first time in Idaho and northern California, as well as in multiple counties in Washington and Oregon where it had not been previously reported. Given the unexpectedly broad disease distribution, continued surveillance is warranted to determine the full geographic extent of TAHD. From samples of 22 elk, we investigated 16S rRNA gene amplicon sequencing as a technique that could be used to supplement TAHD surveillance. Operational taxonomic units of the family Spirochaetaceae were identified in 10 of 12 histologically diagnosed TAHD-positive cases and two of 10 TAHD-negative cases. Phyla Spirochaetae (P<0.008), Fusobacteria (P<0.006), and Tenericutes (P<0.01) were overrepresented in samples from TAHD-positive feet when compared with TAHD-negative elk. A unique spirochete, PT19, was detected in hooves of 11 elk and from at least one elk in each state. Results support the use of 16S rRNA gene amplicon sequencing as a reliable and informative tool to supplement investigations into distribution and etiology of this presumed polybacterial disease.
Collapse
|
15
|
Miura H, Takeda M, Yamaguchi M, Ohtani Y, Endo G, Masuda Y, Ito K, Nagura Y, Iwashita K, Mitani T, Suzuki Y, Kobayashi Y, Koike S. Application of MinION Amplicon Sequencing to Buccal Swab Samples for Improving Resolution and Throughput of Rumen Microbiota Analysis. Front Microbiol 2022; 13:783058. [PMID: 35401463 PMCID: PMC8989143 DOI: 10.3389/fmicb.2022.783058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
The Illumina MiSeq platform has been widely used as a standard method for studying the rumen microbiota. However, the low resolution of taxonomic identification is the only disadvantage of MiSeq amplicon sequencing, as it targets a part of the 16S rRNA gene. In the present study, we performed three experiments to establish a high-resolution and high-throughput rumen microbial profiling approach using a combination of MinION platform and buccal swab sample, which is a proxy for rumen contents. In experiment 1, rumen contents and buccal swab samples were collected simultaneously from cannulated cattle (n = 6) and used for microbiota analysis using three different analytical workflows: amplicon sequencing of the V3–V4 region of the 16S rRNA gene using MiSeq and amplicon sequencing of near full-length 16S rRNA gene using MinION or PacBio Sequel II. All reads derived from the MinION and PacBio platforms were classified at the species-level. In experiment 2, rumen fluid samples were collected from beef cattle (n = 28) and used for 16S rRNA gene amplicon sequencing using the MinION platform to evaluate this sequencing platform for rumen microbiota analysis. We confirmed that the MinION platform allowed species-level taxa assignment for the predominant bacterial groups, which were previously identified at the family- and genus-level using the MiSeq platform. In experiment 3, buccal swab samples were collected from beef cattle (n = 30) and used for 16S rRNA gene amplicon sequencing using the MinION platform to validate the applicability of a combination of the MinION platform and buccal swab samples for rumen microbiota analysis. The distribution of predominant bacterial taxa in the buccal swab samples was similar to that in the rumen samples observed in experiment 2. Based on these results, we concluded that the combination of the MinION platform and buccal swab samples may be potentially applied for rumen microbial analysis in large-scale studies.
Collapse
Affiliation(s)
- Hiroto Miura
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | | | - Megumi Yamaguchi
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | | | - Go Endo
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Yasuhisa Masuda
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Kaede Ito
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Yoshio Nagura
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | | | - Tomohiro Mitani
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Yutaka Suzuki
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Satoshi Koike
- Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan
- *Correspondence: Satoshi Koike,
| |
Collapse
|
16
|
Yu T, Cheng L, Liu Q, Wang S, Zhou Y, Zhong H, Tang M, Nian H, Lian T. Effects of Waterlogging on Soybean Rhizosphere Bacterial Community Using V4, LoopSeq, and PacBio 16S rRNA Sequence. Microbiol Spectr 2022; 10:e0201121. [PMID: 35171049 PMCID: PMC8849089 DOI: 10.1128/spectrum.02011-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/16/2022] [Indexed: 12/26/2022] Open
Abstract
Waterlogging causes a significant reduction in soil oxygen levels, which in turn negatively affects soil nutrient use efficiency and crop yields. Rhizosphere microbes can help plants to better use nutrients and thus better adapt to this stress, while it is not clear how the plant-associated microbes respond to waterlogging stress. There are also few reports on whether this response is influenced by different sequencing methods and by different soils. In this study, using partial 16S rRNA sequencing targeting the V4 region and two full-length 16S rRNA sequencing approaches targeting the V1 to V9 regions, the effects of waterlogging on soybean rhizosphere bacterial structure in two types of soil were examined. Our results showed that, compared with the partial 16S sequencing, full-length sequencing, both LoopSeq and Pacific Bioscience (PacBio) 16S sequencing, had a higher resolution. On both types of soil, all the sequencing methods showed that waterlogging significantly affected the bacterial community structure of the soybean rhizosphere and increased the relative abundance of Geobacter. Furthermore, modular analysis of the cooccurrence network showed that waterlogging increased the relative abundance of some microorganisms related to nitrogen cycling when using V4 sequencing and increased the microorganisms related to phosphorus cycling when using LoopSeq and PacBio 16S sequencing methods. Core microorganism analysis further revealed that the enriched members of different species might play a central role in maintaining the stability of bacterial community structure and ecological functions. Together, our study explored the role of microorganisms enriched at the rhizosphere under waterlogging in assisting soybeans to resist stress. Furthermore, compared to partial and PacBio 16S sequencing, LoopSeq offers improved accuracy and reduced sequencing prices, respectively, and enables accurate species-level and strain identification from complex environmental microbiome samples. IMPORTANCE Soybeans are important oil-bearing crops, and waterlogging has caused substantial decreases in soybean production all over the world. The microbes associated with the host have shown the ability to promote plant growth, nutrient absorption, and abiotic resistance. High-throughput sequencing of partial 16S rRNA is the most commonly used method to analyze the microbial community. However, partial sequencing cannot provide correct classification information below the genus level, which greatly limits our research on microbial ecology. In this study, the effects of waterlogging on soybean rhizosphere microbial structure in two soil types were explored using partial 16S rRNA and full-length 16S gene sequencing by LoopSeq and Pacific Bioscience (PacBio). The results showed that full-length sequencing had higher classification resolution than partial sequencing. Three sequencing methods all indicated that rhizosphere bacterial community structure was significantly impacted by waterlogging, and the relative abundance of Geobacter was increased in the rhizosphere in both soil types after suffering waterlogging. Moreover, the core microorganisms obtained by different sequencing methods all contain species related to nitrogen cycling. Together, our study not only explored the role of microorganisms enriched at the rhizosphere level under waterlogging in assisting soybean to resist stress but also showed that LoopSeq sequencing is a less expensive and more convenient method for full-length sequencing by comparing different sequencing methods.
Collapse
Affiliation(s)
- Taobing Yu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Shasha Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yuan Zhou
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
17
|
Khatoon M, Patel SH, Pandit RJ, Jakhesara SJ, Rank D, Joshi CG, Kunjadiya AP. Rumen and fecal microbial profiles in cattle fed high lignin diets using metagenome analysis. Anaerobe 2022; 73:102508. [DOI: 10.1016/j.anaerobe.2021.102508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022]
|
18
|
Wang C, Yuan Z, Sun Y, Yao X, Li R, Li S. Effect of Chronic Exposure to Textile Wastewater Treatment Plant Effluents on Growth Performance, Oxidative Stress, and Intestinal Microbiota in Adult Zebrafish ( Danio rerio). Front Microbiol 2021; 12:782611. [PMID: 34899664 PMCID: PMC8656261 DOI: 10.3389/fmicb.2021.782611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 01/30/2023] Open
Abstract
The ever-increasing production and processing of textiles will lead to greater risks of releasing pollutants into the environment. Textile wastewater treatment plants (TWTPs) effluent are an important source of persistent toxic pollutants in receiving water bodies. The effects of specific pollutants on organisms are usually studied under laboratory conditions, and therefore, comprehensive results are not obtained regarding the chronic combined effects of pollutants under aquatic environmental conditions. Thus, this study aimed to determine the combined effects of TWTP effluents on the growth performance, oxidative stress, inflammatory response, and intestinal microbiota of adult zebrafish (Danio rerio). Exposure to TWTP effluents significantly inhibited growth, exacerbated the condition factor, and increased the mortality of adult zebrafish. Moreover, markedly decreases were observed in the activities of antioxidant enzymes, such as CAT, GSH, GSH-Px, MDA, SOD, and T-AOC, mostly in the intestine and muscle tissues of zebrafish after 1 and 4 months of exposure. In addition, the results demonstrated that TWTP effluent exposure affected the intestinal microbial community composition and decreased community diversity. Slight changes were found in the relative abundance of probiotic Lactobacillus, Akkermansia, and Lactococcus in zebrafish guts after chronic TWTP effluent exposure. The chronic toxic effects of slight increases in opportunistic pathogens, such as Mycoplasma, Stenotrophomonas, and Vibrio, deserve further attention. Our results reveal that TWTP effluent exposure poses potential health risks to aquatic organisms through growth inhibition, oxidative stress impairment of the intestine and muscles, and intestinal microbial community alterations.
Collapse
Affiliation(s)
- Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Zixi Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Ruixuan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
19
|
Park C, Kim SB, Choi SH, Kim S. Comparison of 16S rRNA Gene Based Microbial Profiling Using Five Next-Generation Sequencers and Various Primers. Front Microbiol 2021; 12:715500. [PMID: 34721319 PMCID: PMC8552068 DOI: 10.3389/fmicb.2021.715500] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial community analysis based on the 16S rRNA-gene is used to investigate both beneficial and harmful microorganisms in various fields and environments. Recently, the next-generation sequencing (NGS) technology has enabled rapid and accurate microbial community analysis. Despite these advantages of NGS based metagenomics study, sample transport, storage conditions, amplification, library preparation kits, sequencing, and bioinformatics procedures can bias microbial community analysis results. In this study, eight mock communities were pooled from genomic DNA of Lactobacillus acidophilus KCTC 3164T, Limosilactobacillus fermentum KCTC 3112T, Lactobacillus gasseri KCTC 3163T, Lacticaseibacillus paracasei subsp. paracasei KCTC 3510T, Limosilactobacillus reuteri KCTC 3594T, Lactococcus lactis subsp. lactis KCTC 3769T, Bifidobacterium animalis subsp. lactis KCTC 5854T, and Bifidobacterium breve KCTC 3220T. The genomic DNAs were quantified by droplet digital PCR (ddPCR) and were mixed as mock communities. The mock communities were amplified with various 16S rRNA gene universal primer pairs and sequenced by MiSeq, IonTorrent, MGIseq-2000, Sequel II, and MinION NGS platforms. In a comparison of primer-dependent bias, the microbial profiles of V1-V2 and V3 regions were similar to the original ratio of the mock communities, while the microbial profiles of the V1-V3 region were relatively biased. In a comparison of platform-dependent bias, the sequence read from short-read platforms (MiSeq, IonTorrent, and MGIseq-2000) showed lower bias than that of long-read platforms (Sequel II and MinION). Meanwhile, the sequences read from Sequel II and MinION platforms were relatively biased in some mock communities. In the data of all NGS platforms and regions, L. acidophilus was greatly underrepresented while Lactococcus lactis subsp. lactis was generally overrepresented. In all samples of this study, the bias index (BI) was calculated and PCA was performed for comparison. The samples with biased relative abundance showed high BI values and were separated in the PCA results. In particular, analysis of regions rich in AT and GC poses problems for genome assembly, which can lead to sequencing bias. According to this comparative analysis, the development of reference material (RM) material has been proposed to calibrate the bias in microbiome analysis.
Collapse
Affiliation(s)
- Changwoo Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Group for Biometrology, Korea Research Institute of Standards and Science, Daejeon, South Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Seung Bum Kim
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Seil Kim
- Group for Biometrology, Korea Research Institute of Standards and Science, Daejeon, South Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Department of Bio-Analysis Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
20
|
O’Dea C, Huerlimann R, Masters N, Kuballa A, Veal C, Fisher P, Stratton H, Katouli M. Microbial Diversity Profiling of Gut Microbiota of Macropus giganteus Using Three Hypervariable Regions of the Bacterial 16S rRNA. Microorganisms 2021; 9:microorganisms9081721. [PMID: 34442800 PMCID: PMC8400485 DOI: 10.3390/microorganisms9081721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
Animal faecal contamination of surface waters poses a human health risk, as they may contain pathogenic bacteria or viruses. Of the numerous animal species residing along surface waterways in Australia, macropod species are a top contributor to wild animals’ faecal pollution load. We characterised the gut microbiota of 30 native Australian Eastern Grey Kangaroos from six geographical regions (five kangaroos from each region) within South East Queensland in order to establish their bacterial diversity and identify potential novel species-specific bacteria for the rapid detection of faecal contamination of surface waters by these animals. Using three hypervariable regions (HVRs) of the 16S rRNA gene (i.e., V1–V3, V3–V4, and V5–V6), for their effectiveness in delineating the gut microbial diversity, faecal samples from each region were pooled and microbial genomic DNA was extracted, sequenced, and analysed. Results indicated that V1-V3 yielded a higher taxa richness due to its larger target region (~480 bp); however, higher levels of unassigned taxa were observed using the V1-V3 region. In contrast, the V3–V4 HVR (~569 bp) attained a higher likelihood of a taxonomic hit identity to the bacterial species level, with a 5-fold decrease in unassigned taxa. There were distinct dissimilarities in beta diversity between the regions, with the V1-V3 region displaying the highest number of unique taxa (n = 42), followed by V3–V4 (n = 11) and V5–V6 (n = 8). Variations in the gut microbial diversity profiles of kangaroos from different regions were also observed, which indicates that environmental factors may impact the microbial development and, thus, the composition of the gut microbiome of these animals.
Collapse
Affiliation(s)
- Christian O’Dea
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.O.); (N.M.); (A.K.)
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan;
| | - Nicole Masters
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.O.); (N.M.); (A.K.)
| | - Anna Kuballa
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.O.); (N.M.); (A.K.)
| | - Cameron Veal
- Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia; (C.V.); (P.F.)
| | - Paul Fisher
- Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia; (C.V.); (P.F.)
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia;
| | - Mohammad Katouli
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.O.); (N.M.); (A.K.)
- Correspondence: ; Tel.: +61-7-54302845
| |
Collapse
|
21
|
Accessing Dietary Effects on the Rumen Microbiome: Different Sequencing Methods Tell Different Stories. Vet Sci 2021; 8:vetsci8070138. [PMID: 34357930 PMCID: PMC8310016 DOI: 10.3390/vetsci8070138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/29/2022] Open
Abstract
The current study employed both amplicon and shotgun sequencing to examine and compare the rumen microbiome in Angus bulls fed with either a backgrounding diet (BCK) or finishing diet (HG), to assess if both methods produce comparable results. Rumen digesta samples from 16 bulls were subjected for microbial profiling. Distinctive microbial profiles were revealed by the two methods, indicating that choice of sequencing approach may be a critical facet in studies of the rumen microbiome. Shotgun-sequencing identified the presence of 303 bacterial genera and 171 archaeal species, several of which exhibited differential abundance. Amplicon-sequencing identified 48 bacterial genera, 4 archaeal species, and 9 protozoal species. Among them, 20 bacterial genera and 5 protozoal species were differentially abundant between the two diets. Overall, amplicon-sequencing showed a more drastic diet-derived effect on the ruminal microbial profile compared to shotgun-sequencing. While both methods detected dietary differences at various taxonomic levels, few consistent patterns were evident. Opposite results were seen for the phyla Firmicutes and Bacteroidetes, and the genus Selenomonas. This study showcases the importance of sequencing platform choice and suggests a need for integrative methods that allow robust comparisons of microbial data drawn from various omic approaches, allowing for comprehensive comparisons across studies.
Collapse
|
22
|
Yang X, He L, Yan S, Chen X, Que G. The impact of caries status on supragingival plaque and salivary microbiome in children with mixed dentition: a cross-sectional survey. BMC Oral Health 2021; 21:319. [PMID: 34172026 PMCID: PMC8229229 DOI: 10.1186/s12903-021-01683-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background Supragingival plaque and saliva are commonly used for microbiome analysis. Many epidemiological studies have identified deciduous teeth caries as a risk factor for caries development in first permanent molar (FPM); nevertheless, to the best of our knowledge, there are no reports on the effects of deciduous teeth caries on the microbiome of healthy FPM. Additionally, it remains unclear whether saliva can be used instead of supragingival plaque for caries microbial studies. Therefore, we aimed to elucidate this issue, and to characterize and compare the oral microbiome of healthy FPMs in children with different caries statuses and that from children with and without caries in a similar microhabitat, by PacBio sequencing. Currently, few studies have investigated the oral microbiome of children using this technique. Methods Thirty children (aged 7–9 years) with mixed dentition were enrolled; 15 had dental caries, and 15 did not. Supragingival plaques of deciduous molars and maxillary FPMs, and non-stimulating saliva samples were collected. DNA was extracted and the v1–v9 regions of 16S rRNA were amplified. Subsequently, PacBio sequencing and bioinformatic analyses were performed for microbiome identification. Results The microbial alpha diversity of the saliva samples was lower than that of the supragingival plaque (p < 0.05); however, no differences were detected between deciduous teeth and FPMs (p > 0.05). In addition, the alpha and beta diversity of children with and without caries was also similar (p > 0.05). Nonmetric multidimensional scaling and Adonis analyses indicated that the microbial structure of salivary and supragingival plaque samples differ (p < 0.05). Further analysis of deciduous teeth plaque showed that Streptococcus mutans, Propionibacterium acidifaciens, and Veillonella dispar were more abundant in children with caries than in those without (p < 0.05); while in FPMs plaque, Selenomonas noxia was more abundant in healthy children (p < 0.05). No differences in microorganisms abundance were found in the saliva subgroups (p > 0.05). Conclusion We have determined that supragingival plaque was the best candidate for studying carious microbiome. Furthermore, S. mutans, V. dispar, and P. acidifaciens were highly associated with deciduous teeth caries. S. noxia may be associated with the abiding health of FPM; however, this requires additional studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01683-0.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lidan He
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Siqi Yan
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xinyi Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Guoying Que
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
23
|
Ishaq SL, Hotopp A, Silverbrand S, Dumont JE, Michaud A, MacRae JD, Stock SP, Groden E. Bacterial transfer from Pristionchus entomophagus nematodes to the invasive ant Myrmica rubra and the potential for colony mortality in coastal Maine. iScience 2021; 24:102663. [PMID: 34169239 PMCID: PMC8209277 DOI: 10.1016/j.isci.2021.102663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
The necromenic nematode Pristionchus entomophagus has been frequently found in nests of the invasive European ant Myrmica rubra in coastal Maine, United States, and may contribute to ant mortality and collapse of colonies by transferring environmental bacteria. Paenibacillus and several other bacterial species were found in the digestive tracts of nematodes harvested from collapsed ant colonies. Serratia marcescens, Serratia nematodiphila, and Pseudomonas fluorescens were collected from the hemolymph of nematode-infected wax moth (Galleria mellonella) larvae. Virulence against waxworms varied by the site of origin of the nematodes. In adult nematodes, bacteria were highly concentrated in the digestive tract with none observed on the cuticle. In contrast, juveniles had more on the cuticle than in the digestive tract. Host species was the primary factor affecting bacterial community profiles, but Spiroplasma sp. and Serratia marcescens sequences were shared across ants, nematodes, and nematode-exposed G. mellonella larvae.
Collapse
Affiliation(s)
- Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
- Corresponding author
| | - Alice Hotopp
- School of Ecology and Environmental Sciences, University of Maine, Orono, ME 04469, USA
| | | | - Jonathan E. Dumont
- College of Science and Humanities, Husson University, Bangor, ME 04401, USA
| | - Amy Michaud
- Department of Entomology & Nematology, University of California, Davis, CA 95616, USA
| | - Jean D. MacRae
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, USA
| | - S. Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Eleanor Groden
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
- Corresponding author
| |
Collapse
|
24
|
Oral Microbiota Changes in Elderly Patients, an Indicator of Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084211. [PMID: 33921182 PMCID: PMC8071516 DOI: 10.3390/ijerph18084211] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that usually affects older individuals. Owing to the higher incidence of root caries and missing teeth in elderly individuals, the bacteria involved in these dental concerns might potentially deteriorate their cognitive function. Altered microbiota in the oral cavity may induce neuroinflammation through migration from the oral cavity to the brain. However, the correlation between the composition of the oral microbiota and neurodegenerative disease remains unclear. In this study, we evaluated sequence to determine the relative abundance and diversity of bacterial taxa in the dental plaque of elderly patients with AD and controls. Oral samples; the DMFT index; and other clinical examination data were collected from 17 patients with AD and 18 normal elderly individuals as the control group. Patients with AD had significantly more missing teeth and higher dental plaque weight but lower microbial diversity than controls. Significantly increased numbers of Lactobacillales, Streptococcaceae, and Firmicutes/Bacteroidetes and a significantly decreased number of Fusobacterium were observed in patients with AD. In conclusion, using the PacBio single-molecule real-time (SMRT) sequencing platform to survey the microbiota dysbiosis biomarkers in the oral cavity of elderly individuals could serve as a tool to identify patients with AD.
Collapse
|
25
|
Narsing Rao MP, Dong ZY, Luo ZH, Li MM, Liu BB, Guo SX, Hozzein WN, Xiao M, Li WJ. Physicochemical and Microbial Diversity Analyses of Indian Hot Springs. Front Microbiol 2021; 12:627200. [PMID: 33763045 PMCID: PMC7982846 DOI: 10.3389/fmicb.2021.627200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
In the present study, physicochemical and microbial diversity analyses of seven Indian hot springs were performed. The temperature at the sample sites ranged from 32 to 67°C, and pH remained neutral to slightly alkaline. pH and temperature influenced microbial diversity. Culture-independent microbial diversity analysis suggested bacteria as the dominant group (99.3%) when compared with the archaeal group (0.7%). Alpha diversity analysis showed that microbial richness decreased with the increase of temperature, and beta diversity analysis showed clustering based on location. A total of 131 strains (divided into 12 genera and four phyla) were isolated from the hot spring samples. Incubation temperatures of 37 and 45°C and T5 medium were more suitable for bacterial isolation. Some of the isolated strains shared low 16S rRNA gene sequence similarity, suggesting that they may be novel bacterial candidates. Some strains produced thermostable enzymes. Dominant microbial communities were found to be different depending on the culture-dependent and culture-independent methods. Such differences could be attributed to the fact that most microbes in the studied samples were not cultivable under laboratory conditions. Culture-dependent and culture-independent microbial diversities suggest that these springs not only harbor novel microbial candidates but also produce thermostable enzymes, and hence, appropriate methods should be developed to isolate the uncultivated microbial taxa.
Collapse
Affiliation(s)
- Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou-Yan Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bing-Bing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Shu-Xian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
26
|
Chen G, Zhang R, Wu J, Shang Y, Li X, Qiong M, Wang P, Li S, Gao Y, Xiong X. Effects of soybean lecithin supplementation on growth performance, serum metabolites, ruminal fermentation and microbial flora of beef steers. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Böhmer M, Smoľak D, Ženišová K, Čaplová Z, Pangallo D, Puškárová A, Bučková M, Cabicarová T, Budiš J, Šoltýs K, Rusňáková D, Kuchta T, Szemes T. Comparison of microbial diversity during two different wine fermentation processes. FEMS Microbiol Lett 2020; 367:5902846. [PMID: 32897314 DOI: 10.1093/femsle/fnaa150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Wine production is a complex procedure in which an important role is played by many microorganisms, particularly yeasts and bacteria. In modern wineries, alcoholic fermentation is usually carried out by adding microbial starter cultures of Saccharomyces cerevisiae strains for precisely controlled production. Nowadays, in the Slovak Republic, autochthonous vinification is getting more popular. The present article deals with the comparison of two vinification approaches, namely spontaneous fermentation and fermentation controlled by a standard commercial S. cerevisiae starter, from the point of view of microbiota dynamics and the chemical characteristics of the wines produced. The dynamics of microbial populations were determined during the fermentation process by a 16S and 28S rRNA next-generation sequencing approach. A profile of the volatile compounds during these fermentation processes was identified by solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS). In summary, the microbial diversity in the m1 phase (initial must) was higher, despite the presence of the starter culture. In the m3 phase (young wine), the microbiome profiles of both batches were very similar. It seems that the crucial phase in order to study the relationship of the microbiome and the resulting product should be based on the m2 phase (fermented must), where the differences between the autochthonous and inoculated batches were more evident.
Collapse
Affiliation(s)
- Miroslav Böhmer
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Science park, Comenius University in Bratislava, Ilkovičova 8, 841 04 Bratislava, Slovakia
| | - Dávid Smoľak
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Katarína Ženišová
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75 Bratislava, Slovakia
| | - Zuzana Čaplová
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Tereza Cabicarová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Jaroslav Budiš
- Science park, Comenius University in Bratislava, Ilkovičova 8, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia.,Slovak Centre of Scientific and Technical Information, Lamačská cesta 8/A, 811 04 Bratislava, Slovakia
| | - Katarína Šoltýs
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Science park, Comenius University in Bratislava, Ilkovičova 8, 841 04 Bratislava, Slovakia
| | - Diana Rusňáková
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Tomáš Kuchta
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75 Bratislava, Slovakia
| | - Tomáš Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Science park, Comenius University in Bratislava, Ilkovičova 8, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia
| |
Collapse
|
28
|
Ji B, Wang S, Guo D, Pang H. Comparative and comprehensive analysis on bacterial communities of two full-scale wastewater treatment plants by second and third-generation sequencing. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Brede M, Orton T, Pinior B, Roch FF, Dzieciol M, Zwirzitz B, Wagner M, Breves G, Wetzels SU. PacBio and Illumina MiSeq Amplicon Sequencing Confirm Full Recovery of the Bacterial Community After Subacute Ruminal Acidosis Challenge in the RUSITEC System. Front Microbiol 2020; 11:1813. [PMID: 32849420 PMCID: PMC7426372 DOI: 10.3389/fmicb.2020.01813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
The impact of subacute rumen acidosis (SARA) on the rumen bacterial community has been frequently studied in in vivo trials. Here we investigated whether these alterations can be mirrored by using the rumen simulation technique (RUSITEC) as an in vitro model for this disease. We hypothezised that the bacterial community fully recovers after a subacute ruminal acidosis challenge. We combined a PacBio nearly full-length 16S rRNA gene analysis with 16S rRNA gene Illumina MiSeq sequencing of the V4 hypervariable region. With this hybrid approach, we aimed to get an increased taxonomic resolution of the most abundant bacterial groups and an overview of the total bacterial diversity. The experiment consisted of a control period I and a SARA challenge and ended after a control period II, of which each period lasted 5 d. Subacute acidosis was induced by applying two buffer solutions, which were reduced in their buffering capacity (SARA buffers) during the SARA challenge. Two control groups were constantly infused with the standard buffer solution. Furthermore, the two SARA buffers were combined with three different feeding variations, which differed in their concentrate-to-hay ratio. The induction of SARA led to a decrease in pH below 5.8, which then turned into a steady-state SARA. Decreasing pH values led to a reduction in bacterial diversity and richness. Moreover, the diversity of solid-associated bacteria was lower for high concentrate groups throughout all experimental periods. Generally, Firmicutes and Bacteroidetes were the predominant phyla in the solid and the liquid phase. During the SARA period, we observed a decrease in fibrolytic bacteria although lactate-producing and -utilizing families increased in certain treatment groups. The genera Lactobacillus and Prevotella dominated during the SARA period. With induction of the second control period, most bacterial groups regained their initial abundance. In conclusion, this in vitro model displayed typical bacterial alterations related to SARA and is capable of recovery from bouts of SARA. Therefore, this model can be used to mimic SARA under laboratory conditions and may contribute to a reduction in animal experiments.
Collapse
Affiliation(s)
- Melanie Brede
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Hanover, Germany
| | - Theresa Orton
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Hanover, Germany
| | - Beate Pinior
- Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franz-Ferdinand Roch
- Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Dzieciol
- Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benjamin Zwirzitz
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Martin Wagner
- Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Hanover, Germany
| | - Stefanie U Wetzels
- Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| |
Collapse
|
30
|
Myer PR, McDaneld TG, Kuehn LA, Dedonder KD, Apley MD, Capik SF, Lubbers BV, Harhay GP, Harhay DM, Keele JW, Henniger MT, Clemmons BA, Smith TPL. Classification of 16S rRNA reads is improved using a niche-specific database constructed by near-full length sequencing. PLoS One 2020; 15:e0235498. [PMID: 32658916 PMCID: PMC7357769 DOI: 10.1371/journal.pone.0235498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Surveys of microbial populations in environmental niches of interest often utilize sequence variation in the gene encoding the ribosomal small subunit (the 16S rRNA gene). Generally, these surveys target the 16S genes using semi-degenerate primers to amplify portions of a subset of bacterial species, sequence the amplicons in bulk, and assign to putative taxonomic categories by comparison to databases purporting to connect specific sequences in the main variable regions of the gene to specific organisms. Due to sequence length constraints of the most popular bulk sequencing platforms, the primers selected amplify one to three of the nine variable regions, and taxonomic assignment is based on relatively short stretches of sequence (150-500 bases). We demonstrate that taxonomic assignment is improved through reduced unassigned reads by including a survey of near-full-length sequences specific to the target environment, using a niche of interest represented by the upper respiratory tract (URT) of cattle. We created a custom Bovine URT database from these longer sequences for assignment of shorter, less expensive reads in comparisons of the upper respiratory tract among individual animals. This process improves the ability to detect changes in the microbial populations of a given environment, and the accuracy of defining the content of that environment at increasingly higher taxonomic resolution.
Collapse
Affiliation(s)
- Phillip R. Myer
- Department of Animal Science, University of Tennessee Institute of Agriculture, University of Tennessee, Knoxville, TN, United States of America
| | - Tara G. McDaneld
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - Larry A. Kuehn
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - Keith D. Dedonder
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Michael D. Apley
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Sarah F. Capik
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Brian V. Lubbers
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Gregory P. Harhay
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - Dayna M. Harhay
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - John W. Keele
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - Madison T. Henniger
- Department of Animal Science, University of Tennessee Institute of Agriculture, University of Tennessee, Knoxville, TN, United States of America
| | - Brooke A. Clemmons
- Department of Animal Science, University of Tennessee Institute of Agriculture, University of Tennessee, Knoxville, TN, United States of America
| | - Timothy P. L. Smith
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| |
Collapse
|
31
|
Microbial patterns in rumen are associated with gain of weight in beef cattle. Antonie Van Leeuwenhoek 2020; 113:1299-1312. [PMID: 32577920 DOI: 10.1007/s10482-020-01440-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Ruminal microorganisms play a pivotal role in cattle nutrition. The discovery of the main microbes or of a microbial community responsible for enhancing the gain of weight in beef cattle might be used in therapeutic approaches to increase animal performance and cause less environmental damages. Here, we examined the differences in bacterial and fungal composition of rumen samples of Braford heifers raised in natural grassland of the Pampa Biome in Brazil. We aimed to detect microbial patterns in the rumen that could be correlated with the gain of weight. We hypothesized that microorganisms important to digestion process are increased in animals with a higher gain of weight. The gain of weight of seventeen healthy animals was monitored for 60 days. Ruminal samples were obtained and the 16S and ITS1 genes were amplified and sequenced to identify the closest microbial relatives within the microbial communities. A predictive model based on microbes responsible for the gain of weight was build and further tested using the entire dataset., The main differential abundant microbes between groups included the bacterial taxa RFN20, Prevotella, Anaeroplasma and RF16 and the fungal taxa Aureobasidium, Cryptococcus, Sarocladium, Pleosporales and Tremellales. The predictive model detected some of these taxa associated with animals with the high gain of weight group, most of them being organisms that have been correlated to the production of substances that improve the ruminal digestion process. These findings provide new insights about cattle nutrition and suggest the use of these microbes to improve beef cattle breeding.
Collapse
|
32
|
Shimokawa C, Kato T, Takeuchi T, Ohshima N, Furuki T, Ohtsu Y, Suzue K, Imai T, Obi S, Olia A, Izumi T, Sakurai M, Arakawa H, Ohno H, Hisaeda H. CD8 + regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat Commun 2020; 11:1922. [PMID: 32321922 PMCID: PMC7176710 DOI: 10.1038/s41467-020-15857-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing pancreatic β-cells are destroyed. Intestinal helminths can cause asymptomatic chronic and immunosuppressive infections and suppress disease in rodent models of T1D. However, the underlying regulatory mechanisms for this protection are unclear. Here, we report that CD8+ regulatory T (Treg) cells prevent the onset of streptozotocin -induced diabetes by a rodent intestinal nematode. Trehalose derived from nematodes affects the intestinal microbiota and increases the abundance of Ruminococcus spp., resulting in the induction of CD8+ Treg cells. Furthermore, trehalose has therapeutic effects on both streptozotocin-induced diabetes and in the NOD mouse model of T1D. In addition, compared with healthy volunteers, patients with T1D have fewer CD8+ Treg cells, and the abundance of intestinal Ruminococcus positively correlates with the number of CD8+ Treg cells in humans. Helminth infections are associated with a reduction in inflammatory pathology in rodent models of type 1 diabetes. Here, the authors show patient data and that trehalose (produced by H. polygyrus) can alter the microbiome of mice, inducing regulatory CD8+ T cells and reducing susceptibility to autoimmune diabetes.
Collapse
Affiliation(s)
- Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan. .,Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan. .,Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Immunobiolgy Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Grauduate School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Yoshiaki Ohtsu
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Takashi Imai
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Seiji Obi
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Alex Olia
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan.,Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Takashi Izumi
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Hirokazu Arakawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Immunobiolgy Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan. .,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Ebina, 243-0435, Japan.
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan. .,Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan.
| |
Collapse
|
33
|
Santos A, van Aerle R, Barrientos L, Martinez-Urtaza J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput Struct Biotechnol J 2020; 18:296-305. [PMID: 32071706 PMCID: PMC7013242 DOI: 10.1016/j.csbj.2020.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Assessment of bacterial diversity through sequencing of 16S ribosomal RNA (16S rRNA) genes has been an approach widely used in environmental microbiology, particularly since the advent of high-throughput sequencing technologies. An additional innovation introduced by these technologies was the need of developing new strategies to manage and investigate the massive amount of sequencing data generated. This situation stimulated the rapid expansion of the field of bioinformatics with the release of new tools to be applied to the downstream analysis and interpretation of sequencing data mainly generated using Illumina technology. In recent years, a third generation of sequencing technologies has been developed and have been applied in parallel and complementarily to the former sequencing strategies. In particular, Oxford Nanopore Technologies (ONT) introduced nanopore sequencing which has become very popular among molecular ecologists. Nanopore technology offers a low price, portability and fast sequencing throughput. This powerful technology has been recently tested for 16S rRNA analyses showing promising results. However, compared with previous technologies, there is a scarcity of bioinformatic tools and protocols designed specifically for the analysis of Nanopore 16S sequences. Due its notable characteristics, researchers have recently started performing assessments regarding the suitability MinION on 16S rRNA sequencing studies, and have obtained remarkable results. Here we present a review of the state-of-the-art of MinION technology applied to microbiome studies, the current possible application and main challenges for its use on 16S rRNA metabarcoding.
Collapse
Affiliation(s)
- Andres Santos
- Applied and Molecular Biology Laboratory, Centre of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Leticia Barrientos
- Applied and Molecular Biology Laboratory, Centre of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
34
|
Combination of probiotics with different functions alleviate DSS-induced colitis by regulating intestinal microbiota, IL-10, and barrier function. Appl Microbiol Biotechnol 2019; 104:335-349. [PMID: 31758237 DOI: 10.1007/s00253-019-10259-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
The potential of probiotics for treating ulcerative colitis (UC) has attracted increasing attention. However, more studies are still needed to guide physicians on the proper selection and use of probiotics. Here, we propose that combination of multiple probiotics with different functions can reduce intestinal inflammation. In this study, the effects of probiotics (Lactobacillus reuteri, Bacillus coagulans, Bifidobacterium longum, and Clostridium butyricum) on the physiology and histopathology of colon were evaluated in a dextran sulfate sodium (DSS)-induced colitis mouse model. The combined species, as well as the species individually, were tested and compared with sulfasalazine (SASP) and two Chinese herbal therapies. Results show that the functions of the four probiotic strains were different in regulating intestinal immunity and barrier function. The four-species probiotic cocktail was more effective than the species individually and anti-inflammatory drugs in repairing the dysbiosis of mucosal microbial ecology and reducing intestinal inflammation. The multi-strain probiotic mixture increased the proportion of beneficial bacteria and decreased the proportion of pro-inflammatory bacteria in the colonic mucosa. In addition, probiotic mixture significantly enhanced the expression of IL-10 and intestinal barrier function. These results suggest that a combination of multiple probiotics with different functions has synergistic effects and can restore the balance of interactions between microorganisms and immunological niches.
Collapse
|
35
|
Hur M, Park SJ. Identification of Microbial Profiles in Heavy-Metal-Contaminated Soil from Full-Length 16S rRNA Reads Sequenced by a PacBio System. Microorganisms 2019; 7:microorganisms7090357. [PMID: 31527468 PMCID: PMC6780547 DOI: 10.3390/microorganisms7090357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/16/2022] Open
Abstract
Heavy metal pollution is a serious environmental problem as it adversely affects crop production and human activity. In addition, the microbial community structure and composition are altered in heavy-metal-contaminated soils. In this study, using full-length 16S rRNA gene sequences obtained by a PacBio RS II system, we determined the microbial diversity and community structure in heavy-metal-contaminated soil. Furthermore, we investigated the microbial distribution, inferred their putative functional traits, and analyzed the environmental effects on the microbial compositions. The soil samples selected in this study were heavily and continuously contaminated with various heavy metals due to closed mines. We found that certain microorganisms (e.g., sulfur or iron oxidizers) play an important role in the biogeochemical cycle. Using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis, we predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) functional categories from abundances of microbial communities and revealed a high proportion belonging to transport, energy metabolism, and xenobiotic degradation in the studied sites. In addition, through full-length analysis, Conexibacter-like sequences, commonly identified by environmental metagenomics among the rare biosphere, were detected. In addition to microbial composition, we confirmed that environmental factors, including heavy metals, affect the microbial communities. Unexpectedly, among these environmental parameters, electrical conductivity (EC) might have more importance than other factors in a community description analysis.
Collapse
Affiliation(s)
- Moonsuk Hur
- Microorganism Resources Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Incheon 22689, Korea.
| | - Soo-Je Park
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea.
| |
Collapse
|
36
|
McDaneld TG, Kuehn LA, Keele JW. Microbiome of the upper nasal cavity of beef calves prior to weaning12. J Anim Sci 2019; 97:2368-2375. [PMID: 31144716 DOI: 10.1093/jas/skz119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/08/2019] [Indexed: 11/12/2022] Open
Abstract
Disease incidence is intimately associated with an animal's commensal bacteria populations (microbiome), as microbes that are involved with morbidity and mortality are commonly found in animals with no sign of disease. An understanding of the animal's resident respiratory pathogens, in the upper nasal cavity prior to weaning, may help us to understand the impact of these pathogens on incidence of respiratory disease. For this research, the overall goal was to characterize bacterial populations associated with calves at an early age and through time periods prior to weaning in 3 herds at the U.S. Meat Animal Research Center. Nasal swabs from the upper nasal cavity were collected at initial vaccination (approximately 40 d of age), preconditioning (approximately 130 d of age), and weaning (approximately 150 d of age) in 2015 and 2016. DNA was extracted from nasal swabs and combined into 2 pools of 10 animals for each sampling time point, in each herd, for a total of 6 pools at each sampling time point and 18 pools for all sampling time points within each year. To evaluate and compare the microbiome of each pooled sample, hypervariable regions 1 through 3 along the 16S ribosomal RNA (rRNA) gene were amplified by PCR and sequenced using next-generation sequencing (Illumina MiSeq) for identification of the bacterial taxa present. Alpha and beta diversity were also measured. Overall, microbial communities were different between combinations of sampling year, herd location, and sampling time prior to weaning as shown by beta diversity. Analysis of these specific respiratory pathogens prior to weaning will present a clearer picture of the distribution of microbial populations in animals prior to weaning and not exhibiting clinical signs of respiratory disease. Therefore, evaluation of the animal's resident bacterial populations in the upper nasal cavity during different phases of the beef production system may help us to understand the impact of the microbiome on incidence of respiratory disease in cattle.
Collapse
Affiliation(s)
- Tara G McDaneld
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE
| | - Larry A Kuehn
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE
| | - John W Keele
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE
| |
Collapse
|
37
|
Suppression of Obesity by an Intestinal Helminth through Interactions with Intestinal Microbiota. Infect Immun 2019; 87:IAI.00042-19. [PMID: 30962398 PMCID: PMC6529657 DOI: 10.1128/iai.00042-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/16/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is increasingly causing lifestyle diseases in developed countries where helminthic infections are rarely seen. Here, we investigated whether an intestinal nematode, Heligmosomoides polygyrus, has a suppressive role in diet-induced obesity in mice. Infection with H. polygyrus suppressed weight gain in obese mice, which was associated with increased uncoupling protein 1 (UCP1) expression in adipocytes and a higher serum norepinephrine (NE) concentration. Blocking interactions of NE with its receptor on adipocytes resulted in the failure to prevent weight gain and to enhance UCP1 expression in obese mice infected with H. polygyrus, indicating that NE is responsible for the protective effects of H. polygyrus on obesity. In addition to sympathetic nerve-derived NE, the intestinal microbiota was involved in the increase in NE. Infection with H. polygyrus altered the composition of intestinal bacteria, and antibiotic treatment to reduce intestinal bacteria reversed the higher NE concentration, UCP1 expression, and prevention of the weight gain observed after H. polygyrus infection. Our data indicate that H. polygyrus exerts suppressive roles on obesity through modulation of microbiota that produce NE.
Collapse
|
38
|
Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal 2019; 13:1843-1854. [PMID: 31062682 DOI: 10.1017/s1751731119000752] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ruminants are unique among livestock due to their ability to efficiently convert plant cell wall carbohydrates into meat and milk. This ability is a result of the evolution of an essential symbiotic association with a complex microbial community in the rumen that includes vast numbers of bacteria, methanogenic archaea, anaerobic fungi and protozoa. These microbes produce a diverse array of enzymes that convert ingested feedstuffs into volatile fatty acids and microbial protein which are used by the animal for growth. Recent advances in high-throughput sequencing and bioinformatic analyses have helped to reveal how the composition of the rumen microbiome varies significantly during the development of the ruminant host, and with changes in diet. These sequencing efforts are also beginning to explain how shifts in the microbiome affect feed efficiency. In this review, we provide an overview of how meta-omics technologies have been applied to understanding the rumen microbiome, and the impact that diet has on the rumen microbial community.
Collapse
|
39
|
Abstract
The IBDs, Crohn's disease and ulcerative colitis, are chronic inflammatory conditions of the gastrointestinal tract resulting from an aberrant immune response to enteric microbiota in genetically susceptible individuals. Disease presentation and progression within and across IBDs, especially Crohn's disease, are highly heterogeneous in location, severity of inflammation and other phenotypes. Current clinical classifications fail to accurately predict disease course and response to therapies. Genome-wide association studies have identified >240 loci that confer risk of IBD, but the clinical utility of these findings remains unclear, and mechanisms by which the genetic variants contribute to disease are largely unknown. In the past 5 years, the profiling of genome-wide gene expression, epigenomic features and gut microbiota composition in intestinal tissue and faecal samples has uncovered distinct molecular signatures that define IBD subtypes, including within Crohn's disease and ulcerative colitis. In this Review, we summarize studies in both adult and paediatric patients that have identified different IBD subtypes, which in some cases have been associated with distinct clinical phenotypes. We posit that genome-scale molecular phenotyping in large cohorts holds great promise not only to further our understanding of the diverse molecular causes of IBD but also for improving clinical trial design to develop more personalized disease management and treatment.
Collapse
|
40
|
Chen Z, Hui PC, Hui M, Yeoh YK, Wong PY, Chan MCW, Wong MCS, Ng SC, Chan FKL, Chan PKS. Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling. mSystems 2019; 4:e00271-18. [PMID: 30834331 PMCID: PMC6392095 DOI: 10.1128/msystems.00271-18] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
Proper preservation of stool samples to minimize microbial community shifts and inactivate infectious agents is important for self-collected specimens requiring shipment to laboratories when cold chain transport is not feasible. In this study, we evaluated the performance of six preservation solutions (Norgen, OMNI, RNAlater, CURNA, HEMA, and Shield) for these aspects. Following storage of human stool samples with these preservatives at room temperature for 7 days, three hypervariable regions of the bacterial 16S rRNA gene (V1-V2, V3-V4, and V4) were amplicon sequenced. We found that samples collected in two preservatives, Norgen and OMNI, showed the least shift in community composition relative to -80°C standards compared with other storage conditions, and both efficiently inhibited the growth of aerobic and anaerobic bacteria. RNAlater did not prevent bacterial activity and exhibited relatively larger community shift. Although the effect of preservation solution was small compared to intersubject variation, notable changes in microbiota composition were observed, which could create biases in downstream data analysis. When community profiles inferred from different 16S rRNA gene hypervariable regions were compared, we found differential sensitivity of primer sets in identifying overall microbial community and certain bacterial taxa. For example, reads generated by the V4 primer pair showed a higher alpha diversity of the gut microbial community. The degenerate 27f-YM primer failed to detect the majority of Bifidobacteriales. Our data indicate that choice of preservation solution and 16S rRNA gene primer pair are critical determinants affecting gut microbiota profiling. IMPORTANCE Large-scale human microbiota studies require specimens collected from multiple sites and/or time points to maximize detection of the small effects in microbe-host interactions. However, batch biases caused by experimental protocols, such as sample collection, massively parallel sequencing, and bioinformatics analyses, remain critical and should be minimized. This work evaluated the effects of preservation solutions and bacterial 16S rRNA gene primer pairs in revealing human gut microbiota composition. Since notable changes in detecting bacterial composition and abundance were observed among choice of preservatives and primer pairs, a consistent methodology is essential in minimizing their effects to facilitate comparisons between data sets.
Collapse
Affiliation(s)
- Zigui Chen
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pak Chun Hui
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mamie Hui
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kit Yeoh
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Po Yee Wong
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin C. W. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin C. S. Wong
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C. Ng
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- LKS Institute of Health Science, State Key Laboratory of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K. L. Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
41
|
Zeineldin M, Barakat R, Elolimy A, Salem AZM, Elghandour MMY, Monroy JC. Synergetic action between the rumen microbiota and bovine health. Microb Pathog 2018; 124:106-115. [PMID: 30138752 DOI: 10.1016/j.micpath.2018.08.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 12/26/2022]
Abstract
Host-rumen-microbe interactions are essential components of many physiological processes, and therefore can affect ruminant health. Classical knowledge of rumen microbiology is based on culture-dependent methodologies, which only account for 10-20% of the rumen bacterial communities. While, the advancement in DNA sequencing and bioinformatics platforms provide novel approaches to investigate the composition and dynamics of the rumen microbiota. Recent studies demonstrated that the ruminal ecosystem is highly diverse and harbors numerous microbial communities. The composition of these microbial communities are affected by various environmental factors such as nutrition and different management strategies. Disturbance in the microbial ecology of the rumen is associated with the development of various diseases. Despite the flow of recent rumen-based studies, rumen microbiota is still not fully characterized. This review provides an overview of recent efforts to characterize rumen microbiota and its potential role in rumen health and disease. Moreover, the recent effects of dietary interventions and probiotics on rumen microbiota are discussed.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Egypt; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, USA
| | - Ahmed Elolimy
- Department of Animal Sciences, Mammalian NutriPhysioGenomics, University of Illinois, Urbana, IL 61801, USA
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma del Estado de Mexico, Toluca, Mexico.
| | - Mona M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - José Cedillo Monroy
- Centro Universitario UAEM-Temascaltepec, Universidad Autónoma del Estado de México, Mexico
| |
Collapse
|
42
|
Diet, gut microbiota composition and feeding behavior. Physiol Behav 2018; 192:177-181. [DOI: 10.1016/j.physbeh.2018.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
|
43
|
Benítez-Páez A, Sanz Y. Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinION™ portable nanopore sequencer. Gigascience 2018; 6:1-12. [PMID: 28605506 PMCID: PMC5534310 DOI: 10.1093/gigascience/gix043] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
The miniaturized and portable DNA sequencer MinION™ has demonstrated great potential in different analyses such as genome-wide sequencing, pathogen outbreak detection and surveillance, human genome variability, and microbial diversity. In this study, we tested the ability of the MinION™ platform to perform long amplicon sequencing in order to design new approaches to study microbial diversity using a multi-locus approach. After compiling a robust database by parsing and extracting the rrn bacterial region from more than 67000 complete or draft bacterial genomes, we demonstrated that the data obtained during sequencing of the long amplicon in the MinION™ device using R9 and R9.4 chemistries were sufficient to study 2 mock microbial communities in a multiplex manner and to almost completely reconstruct the microbial diversity contained in the HM782D and D6305 mock communities. Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, we presented a novel approach consisting of multi-locus and long amplicon sequencing using the MinION™ MkIb DNA sequencer and R9 and R9.4 chemistries that help to overcome the main disadvantage of this portable sequencing platform. Furthermore, the nanopore sequencing library, constructed with the last releases of pore chemistry (R9.4) and sequencing kit (SQK-LSK108), permitted the retrieval of the higher level of 1D read accuracy sufficient to characterize the microbial species present in each mock community analysed. Improvements in nanopore chemistry, such as minimizing base-calling errors and new library protocols able to produce rapid 1D libraries, will provide more reliable information in the near future. Such data will be useful for more comprehensive and faster specific detection of microbial species and strains in complex ecosystems.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Microbial Ecology, Nutrition and Health Research Unit. Institute of Agrochemistry and Food Technology (IATA-CSIC). C. Catedràtic Agustín Escardino Benlloch, 7. 46980 Paterna-Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit. Institute of Agrochemistry and Food Technology (IATA-CSIC). C. Catedràtic Agustín Escardino Benlloch, 7. 46980 Paterna-Valencia, Spain
| |
Collapse
|
44
|
McAllister T, Dunière L, Drouin P, Xu S, Wang Y, Munns K, Zaheer R. Silage review: Using molecular approaches to define the microbial ecology of silage. J Dairy Sci 2018; 101:4060-4074. [DOI: 10.3168/jds.2017-13704] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/21/2017] [Indexed: 12/11/2022]
|
45
|
Abstract
Although immunotherapy has been remarkably effective across multiple cancer types, there continues to be a significant number of non-responding patients. A possible factor proposed to influence the efficacy of immunotherapies is the gut microbiome. We discuss the results and implications of recent research on the relationship between the gut microbiome, our immune systems, and immune checkpoint inhibitor therapies including anti-CTLA-4 Ab and anti-PD-1 Ab. While the investigations all exhibit interesting results and conclusions, we find little congruence in the specific bacteria that were found favorable for antitumor responses. It is unclear whether the inconsistencies are due to differential approaches in study design (pre-clinical or clinical subjects, anti-CTLA-4 Ab or anti-PD-1 Ab), experimental methods and measurements (metagenomics sequencing and clustering variations) or subject population dynamics (differential cancer types and baseline characteristics). Moreover, we note studies regarding particular bacterial commensals and autoimmune diseases, which challenge findings from these investigations. We conclude that with the current research, clinical investigators can appreciate the critical role of gut microbiota in mediating immunostimulant response. However, prospective research exploring the biochemical mechanisms which commensal bacteria communicate with each other and the immune system is imperative to understand how they can be adjusted properly for higher immunotherapy response.
Collapse
Affiliation(s)
- Audrey Humphries
- a Department of Medicine , Division of Hematology/Oncology, University of California San Francisco , San Francisco , CA , USA
| | - Adil Daud
- a Department of Medicine , Division of Hematology/Oncology, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
46
|
Cawthon CR, de La Serre CB. Gut bacteria interaction with vagal afferents. Brain Res 2018; 1693:134-139. [PMID: 29360469 DOI: 10.1016/j.brainres.2018.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/25/2022]
Abstract
Contemporary techniques including the use of germ-free models and next generation sequencing have deepened our understanding of the gut microbiota dynamics and its influence on host physiology. There is accumulating evidence that the gut microbiota can communicate to the CNS and is involved in the development of metabolic and behavioral disorders. Vagal afferent terminals are positioned beneath the gut epithelium where they can receive, directly or indirectly, signals produced by the gut microbiota, to affect host behavior, including feeding behavior. Supplementation with L. Rhamnosus in mice notably causes a decrease in anxiety and these effects are abolished by vagotomy. Additionally, chronic treatment with bacterial byproduct lipopolysaccharide (LPS) blunts vagally-mediated post-ingestive feedback and is associated with increased food intake. Inflammation in the nodose ganglion (NG), the location of vagal afferent neurons' cell bodies, may be a key triggering factor of microbiota-driven vagal alteration. Interestingly, several models show that vagal damage leads to an increase in immune cell (microglia) activation in the NG and remodeling of the vagal pathway. Similarly, diet-driven microbiota dysbiosis is associated with NG microglia activation and decreased vagal outputs to the CNS. Crucially, preventing dysbiosis and microglia activation in high-fat diet fed rodents normalizes vagal innervation and energy intake, highlighting the importance of microbiota/vagal communication in controlling feeding behavior. As of today, new consideration of potential roles for glial influence on vagal communication and new methods of vagal afferent ablation open opportunities to increase our understanding of how the gut microbiota influence its host's health and behavior.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, 372 Dawson Hall, 305 Sanford Drive, Athens, GA 30602 USA.
| | - Claire B de La Serre
- Department of Foods and Nutrition, University of Georgia, 372 Dawson Hall, 305 Sanford Drive, Athens, GA 30602 USA.
| |
Collapse
|
47
|
Henry R, Galbraith P, Coutts S, Prosser T, Boyce J, McCarthy DT. What's the risk? Identifying potential human pathogens within grey-headed flying foxes faeces. PLoS One 2018; 13:e0191301. [PMID: 29360880 PMCID: PMC5779653 DOI: 10.1371/journal.pone.0191301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/01/2018] [Indexed: 12/15/2022] Open
Abstract
Pteropus poliocephalus (grey-headed flying foxes) are recognised vectors for a range of potentially fatal human pathogens. However, to date research has primarily focused on viral disease carriage, overlooking bacterial pathogens, which also represent a significant human disease risk. The current study applied 16S rRNA amplicon sequencing, community analysis and a multi-tiered database OTU picking approach to identify faecal-derived zoonotic bacteria within two colonies of P. poliocephalus from Victoria, Australia. Our data show that sequences associated with Enterobacteriaceae (62.8% ± 24.7%), Pasteurellaceae (19.9% ± 25.7%) and Moraxellaceae (9.4% ± 11.8%) dominate flying fox faeces. Further colony specific differences in bacterial faecal colonisation patterns were also identified. In total, 34 potential pathogens, representing 15 genera, were identified. However, species level definition was only possible for Clostridium perfringens, which likely represents a low infectious risk due to the low proportion observed within the faeces and high infectious dose required for transmission. In contrast, sequences associated with other pathogenic species clusters such as Haemophilus haemolyticus-H. influenzae and Salmonella bongori-S. enterica, were present at high proportions in the faeces, and due to their relatively low infectious doses and modes of transmissions, represent a greater potential human disease risk. These analyses of the microbial community composition of Pteropus poliocephalus have significantly advanced our understanding of the potential bacterial disease risk associated with flying foxes and should direct future epidemiological and quantitative microbial risk assessments to further define the health risks presented by these animals.
Collapse
Affiliation(s)
- Rebekah Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
| | - Penelope Galbraith
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
| | - Scott Coutts
- Micromon, Dept. of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - John Boyce
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David T. McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
48
|
Radjabzadeh D, Uitterlinden AG, Kraaij R. Microbiome measurement: Possibilities and pitfalls. Best Pract Res Clin Gastroenterol 2017; 31:619-623. [PMID: 29566904 DOI: 10.1016/j.bpg.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/29/2017] [Indexed: 01/31/2023]
Abstract
Microbiome research is an emerging field in medical sciences. Several studies have made headways in understanding the influence of microbes on our health and disease states. Further progress in mapping microbiome populations across different body sites and understanding the underlying mechanisms of microbiome-host interactions depends critically on study design, collection protocols, analytical genetic techniques, and reference databases. In particular, a shift has appeared going from small sample collections to large-scale population studies (with extensive phenotypic information including disease status) which calls for some adaptions. In this review we will focus on gut microbiome profiling using the 16S ribosomal RNA approach in the setting of large-scale population studies, and discuss some novel developments.
Collapse
Affiliation(s)
| | - André G Uitterlinden
- Dept. Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Dept. Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert Kraaij
- Dept. Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Dept. Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Kerkhof LJ, Dillon KP, Häggblom MM, McGuinness LR. Profiling bacterial communities by MinION sequencing of ribosomal operons. MICROBIOME 2017; 5:116. [PMID: 28911333 PMCID: PMC5599880 DOI: 10.1186/s40168-017-0336-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/30/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND An approach utilizing the long-read capability of the Oxford Nanopore MinION to rapidly sequence bacterial ribosomal operons of complex natural communities was developed. Microbial fingerprinting employs domain-specific forward primers (16S rRNA subunit), reverse primers (23S rRNA subunit), and a high-fidelity Taq polymerase with proofreading capabilities. Amplicons contained both ribosomal subunits for broad-based phylogenetic assignment (~ 3900 bp of sequence), plus the intergenic spacer (ITS) region (~ 300 bp) for potential strain-specific identification. RESULTS To test the approach, bacterial rRNA operons (~ 4200 bp) were amplified from six DNA samples employing a mixture of farm soil and bioreactor DNA in known concentrations. Each DNA sample mixture was barcoded, sequenced in quadruplicate (n = 24), on two separate 6-h runs using the MinION system (R7.3 flow cell; MAP005 and 006 chemistry). From nearly 90,000 MinION reads, roughly 33,000 forward and reverse sequences were obtained. This yielded over 10,000 2D sequences which were analyzed using a simplified data analysis pipeline based on NCBI Blast and assembly with Geneious software. The method could detect over 1000 operational taxonomic units in the sample sets in a quantitative manner. Global sequence coverage for the various rRNA operons ranged from 1 to 1951x. An iterative assembly scheme was developed to reconstruct those rRNA operons with > 35x coverage from a set of 30 operational taxonomic units (OTUs) among the Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, and Gemmatimonadetes. Phylogenetic analysis of the 16S rRNA and 23S rRNA genes from each operon demonstrated similar tree topologies with species/strain-level resolution. CONCLUSIONS This sequencing method represents a cost-effective way to profile microbial communities. Because the MinION is small, portable, and runs on a laptop, the possibility of microbiota characterization in the field or on robotic platforms becomes realistic.
Collapse
Affiliation(s)
- Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901-8521, USA.
| | - Kevin P Dillon
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Lora R McGuinness
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901-8521, USA
| |
Collapse
|
50
|
van der Helm E, Imamovic L, Hashim Ellabaan MM, van Schaik W, Koza A, Sommer MOA. Rapid resistome mapping using nanopore sequencing. Nucleic Acids Res 2017; 45:e61. [PMID: 28062856 PMCID: PMC5416750 DOI: 10.1093/nar/gkw1328] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
The emergence of antibiotic resistance in human pathogens has become a major threat to modern medicine. The outcome of antibiotic treatment can be affected by the composition of the gut. Accordingly, knowledge of the gut resistome composition could enable more effective and individualized treatment of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut resistome of an ICU (intensive care unit) patient. The accuracy of the poreFUME pipeline is with >97% sufficient for the annotation of antibiotic resistance genes. The poreFUME pipeline provides a promising approach for efficient resistome profiling that could inform antibiotic treatment decisions in the future.
Collapse
Affiliation(s)
- Eric van der Helm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Lejla Imamovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Mostafa M Hashim Ellabaan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna Koza
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|