1
|
Lachnit T, Ulrich L, Willmer FM, Hasenbein T, Steiner LX, Wolters M, Herbst EM, Deines P. Nutrition-induced changes in the microbiota can cause dysbiosis and disease development. mBio 2025; 16:e0384324. [PMID: 39998180 PMCID: PMC11980362 DOI: 10.1128/mbio.03843-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Eukaryotic organisms are associated with complex microbial communities. Changes within these communities have been implicated in disease development. Nonetheless, it remains unclear whether these changes are a cause or a consequence of disease. Here, we report a causal link between environment-induced shifts in the microbiota and disease development. Using the model organism Hydra, we observed changes in microbial composition when transferring laboratory-grown Hydra to natural lake environments. These shifts were caused not only by new colonizers, through the process of community coalescence (merging of previously separate microbial communities), but also by lake water nutrients. Moreover, selective manipulation of the nutrient environment induced compound-specific shifts in the microbiota followed by disease development. Finally, L-arginine supplementation alone caused a transition in Pseudomonas from symbiotic to pathogenic, leading to an upregulation of immune response genes, tissue degradation, and host death. These findings challenge the notion that the host-associated microbiota is exclusively controlled by the host, highlighting the dynamic interplay between host epithelial environment, microbial colonizer pool, and nutrient conditions of the surrounding water. Furthermore, our results show that overfeeding of the microbiota allows for uncontrolled microbial growth and versatile interactions with the host. Environmental conditions may thus render symbionts a potential hazard to their hosts, blurring the divide between pathogenic and non-pathogenic microbes.IMPORTANCEThis study highlights the critical need to understand the dynamic interplay between host-associated microbiota and environmental factors to obtain a holistic view on organismal health. Our results demonstrate that ecosystem-wide microbial trafficking (community coalescence) and environmental nutrient conditions reshape microbial communities with profound implications for host health. By exploring nutrient-driven changes in microbial composition, our research finds experimental support for the "overfeeding hypothesis," which states that overfeeding alters the functionality of the host microbiota such that an overabundance in nutrients can facilitate disease development, transforming non-pathogenic microbes into pathogens. These findings emphasize the critical role of metabolic interactions driving microbial pathogenicity. Furthermore, our research provides empirical evidence for the "pathogenic potential" concept, challenging traditional distinctions between pathogenic and non-pathogenic microbes and supporting the idea that any microbe can become pathogenic under certain conditions.
Collapse
Affiliation(s)
- Tim Lachnit
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Laura Ulrich
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Fiete M. Willmer
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tim Hasenbein
- Institute of Pharmacology and Toxicology, Technical University of Munich, München, Germany
| | - Leon X. Steiner
- RU Marine Symbioses, RD3 Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Maria Wolters
- Fakultät Nachhaltigkeit, Leuphana Universität Lüneburg, Lüneburg, Germany
| | - Eva M. Herbst
- Experimental Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Peter Deines
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
2
|
Guercio D, Boon E. The histidine kinase NahK regulates denitrification and nitric oxide accumulation through RsmA in Pseudomonas aeruginosa. J Bacteriol 2025; 207:e0040824. [PMID: 39660891 PMCID: PMC11784011 DOI: 10.1128/jb.00408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Pseudomonas aeruginosa have a versatile metabolism; they can adapt to many stressors, including limited oxygen and nutrient availability. This versatility is especially important within a biofilm where multiple microenvironments are present. As a facultative anaerobe, P. aeruginosa can survive under anaerobic conditions utilizing denitrification. This process produces nitric oxide (NO) which has been shown to result in cell elongation. However, the molecular mechanism underlying this phenotype is poorly understood. Our laboratory has previously shown that NosP is a NO-sensitive hemoprotein that works with the histidine kinase NahK to regulate biofilm formation in P. aeruginosa. In this study, we identify NahK as a novel regulator of denitrification under anaerobic conditions. Under anaerobic conditions, deletion of nahK leads to a reduction of growth coupled with reduced transcriptional expression and activity of the denitrification reductases. Furthermore, during stationary phase under anaerobic conditions, ΔnahK does not exhibit cell elongation, which is characteristic of P. aeruginosa. We determine the loss of cell elongation is due to changes in NO accumulation in ΔnahK. We further provide evidence that NahK may regulate denitrification through modification of RsmA levels. IMPORTANCE Pseudomonas aeruginosa is an opportunistic multi-drug resistance pathogen that is associated with hospital-acquired infections. P. aeruginosa is highly virulent, in part due to its versatile metabolism and ability to form biofilms. Therefore, better understanding of the molecular mechanisms that regulate these processes should lead to new therapeutics to treat P. aeruginosa infections. The histidine kinase NahK has been previously shown to be involved in both nitric oxide (NO) signaling and quorum sensing through RsmA. The data presented here demonstrate that NahK is responsive to NO produced during denitrification to regulate cell morphology. Understanding the role of NahK in metabolism under anaerobic conditions has larger implications in determining its role in a heterogeneous metabolic environment such as a biofilm.
Collapse
Affiliation(s)
- Danielle Guercio
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth Boon
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Chemistry, Stony Brook University Department of Chemistry, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Middelboe M, Traving SJ, Castillo D, Kalatzis PG, Glud RN. Prophage-encoded chitinase gene supports growth of its bacterial host isolated from deep-sea sediments. THE ISME JOURNAL 2025; 19:wraf004. [PMID: 39832281 PMCID: PMC11788074 DOI: 10.1093/ismejo/wraf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/03/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes (AMGs) may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded AMGs to host metabolic properties. In this study, we examined a temperate bacteriophage, and its piezotolerant Pseudomonas sp. host obtained from sediment samples collected from the Kermadec Trench at ~10 000 m water depth. Both the phage and host were present throughout the sediment profiles from the surface to 30 cm into the sediment, covering large gradients of environmental conditions. The host and phage each carried one chitinase gene, which differed from each other, suggesting that chitin degradation plays a role in their substrate supply. We demonstrated that prophage-encoded chitinase supported host chitin degradation and growth in the presence of chitin. Furthermore, prophage induction dynamics were strongly substrate-dependent, suggesting that the host controls the lysis-lysogeny switch in response to the presence of chitin, thus optimizing the trade-off between the loss of cells from prophage induction and prophage enhancement of host performance. Overall, the results demonstrate prophage-encoded AMGs as collaborative goods for their hosts and emphasize the potential role of phage-host interactions in benthic biogeochemical cycling, as well as for the capability of deep-sea bacteria to efficiently adapt and thrive at a wide range of environmental conditions.
Collapse
Affiliation(s)
- Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
- HADAL & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Sachia J Traving
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
- HADAL & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Daniel Castillo
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Panos G Kalatzis
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Ronnie N Glud
- HADAL & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477 Tokyo, Japan
| |
Collapse
|
4
|
Charkhi P, Haghshenas MR, Mirzaei B, Khalili Y, Goli HR. Combination Effect of Phenylalanine-Arginine-Beta-Naphthylamide and Curcumin on the Expression of the mexY Gene in Aminoglycoside-Resistant Clinical Isolates of Pseudomonas aeruginosa. Health Sci Rep 2024; 7:e70255. [PMID: 39659815 PMCID: PMC11629023 DOI: 10.1002/hsr2.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Background and Aims Overexpression of MexXY-OprM efflux pump causes resistance to aminoglycosides in Pseudomonas aeruginosa. We aimed to investigate the relationship between resistance to aminoglycosides and the MexXY-OprM expression level in P. aeruginosa clinical isolates without and after treatment with curcumin and/or phenylalanine-arginine-beta-naphthylamide (PAβN) as the efflux pump inhibitors. Methods We collected 100 clinical isolates from hospitalized patients. The minimum inhibitory concentrations of aminoglycosides were determined by the micro-broth dilution method in the presence and absence of PAβN and/or curcumin. Then, real-time PCR was used to determine the expression level of the MexXY-OprM efflux pump. Results In this study, 34%, 35%, 10%, 38%, 43%, 42%, and 39% of the clinical isolates were resistant to gentamicin, tobramycin, amikacin, netilmicin, spectinomycin, kanamycin, and streptomycin, respectively. Also, 45% of the isolates showed an overexpression of the mexY gene, while 31 (68.88%) isolates exhibited a 2-3-fold overexpression, and 14 (31.11%) isolates had a more than threefold overexpression of the mexY gene. However, 4 (8.88%) isolates showed a ≥ 10-fold overexpression of this gene. The combination of PAβN with spectinomycin, netilmicin, streptomycin, and kanamycin exhibited a reduced MIC range of these aminoglycosides in 93.02%, 86.8%, 76.9%, and 71.4% of resistant isolates, respectively. Additionally, all gentamicin-, tobramycin-, kanamycin-, streptomycin-, and netilmicin-resistant isolates showed a decreased MIC range in combination with curcumin. The most synergistic effect of curcumin and PAβN was observed in combination with spectinomycin, while the least synergistic effect was detected with kanamycin. Conclusion Curcumin can be a significant efflux inhibitor as an adjuvant in combination with aminoglycosides for successful treatment of patients infected by P. aeruginosa overexpressing the MexXY-OprM efflux pump.
Collapse
Affiliation(s)
- Parisa Charkhi
- Molecular and Cell Biology Research Centre, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Department of Medical Microbiology and Virology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mohammad Reza Haghshenas
- Molecular and Cell Biology Research Centre, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Department of Medical Microbiology and Virology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Bahman Mirzaei
- Department of Medical Microbiology and Virology, School of MedicineZanjan University of Medical SciencesZanjanIran
| | - Younes Khalili
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Hamid Reza Goli
- Molecular and Cell Biology Research Centre, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Department of Medical Microbiology and Virology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| |
Collapse
|
5
|
Sánchez-Maroto L, Gella P, Couce A. Novel Fosfomycin Resistance Mechanism in Pseudomonas entomophila Due to Atypical Pho Regulon Control of GlpT. Antibiotics (Basel) 2024; 13:1008. [PMID: 39596703 PMCID: PMC11590989 DOI: 10.3390/antibiotics13111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives:Pseudomonas entomophila is a ubiquitous bacterium capable of killing insects of different orders and has become a model for host-pathogen studies and a promising tool for biological pest control. In the human pathogen Pseudomonas aeruginosa, spontaneous resistance to fosfomycin arises almost exclusively from mutations in the glycerol-3-phosphate transporter (GlpT), the drug's sole entry route in this species. Here, we investigated whether this specificity is conserved in P. entomophila, as it could provide a valuable marker system for studying mutation rates and spectra and for selection in genetic engineering. Methods: We isolated 16 independent spontaneous fosfomycin-resistant mutants in P. entomophila, and studied the genetic basis of the resistance using a combination of sequencing, phenotyping and computational approaches. Results: We only found two mutants without alterations in glpT or any of its known regulatory elements. Whole-genome sequencing revealed unique inactivating mutations in phoU, a key regulator of the phosphate starvation (Pho) regulon. Computational analyses identified a PhoB binding site in the glpT promoter, and experiments showed that phoU inactivation reduced glpT expression nearly 20-fold. While placing a sugar-phosphate transporter under the Pho regulon may seem advantageous, bioinformatic analysis shows this configuration is atypical among pseudomonads. Conclusions: This atypical Pho regulon control of GlpT probably reflects the peculiarities of P. entomophila's habitat and lifestyle; highlighting how readily regulatory evolution can lead to the rapid divergence of resistance mechanisms, even among closely related species.
Collapse
Affiliation(s)
| | | | - Alejandro Couce
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain (P.G.)
| |
Collapse
|
6
|
Shao Z, Gu S, Zhang X, Xue J, Yan T, Guo S, Pommier T, Jousset A, Yang T, Xu Y, Shen Q, Wei Z. Siderophore interactions drive the ability of Pseudomonas spp . consortia to protect tomato against Ralstonia solanacearum. HORTICULTURE RESEARCH 2024; 11:uhae186. [PMID: 39247881 PMCID: PMC11377186 DOI: 10.1093/hr/uhae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
The soil-borne bacterial pathogen Ralstonia solanacearum causes significant losses in Solanaceae crop production worldwide, including tomato, potato, and eggplant. To efficiently prevent outbreaks, it is essential to understand the complex interactions between pathogens and the microbiome. One promising mechanism for enhancing microbiome functionality is siderophore-mediated competition, which is shaped by the low iron availability in the rhizosphere. This study explores the critical role of iron competition in determining microbiome functionality and its potential for designing high-performance microbiome engineering strategies. We investigated the impact of siderophore-mediated interactions on the efficacy of Pseudomonas spp. consortia in suppressing R. solanacearum , both in vitro and in vivo. Our findings show that siderophore production significantly enhances the inhibitory effects of Pseudomonas strains on pathogen growth, while other metabolites are less effective under iron-limited conditions. Moreover, siderophores play a crucial role in shaping interactions within the consortia, ultimately determining the level of protection against bacterial wilt disease. This study highlights the key role of siderophores in mediating consortium interactions and their impact on tomato health. Our results also emphasize the limited efficacy of other secondary metabolites in iron-limited environments, underscoring the importance of siderophore-mediated competition in maintaining tomato health and suppressing disease.
Collapse
Affiliation(s)
- Zhengying Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaohua Gu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaoni Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Xue
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Yan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Saisai Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Thomas Pommier
- Setec Energie Environnement, 97/101 bvd Vivier Merle, Lyon 69003, France
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianjie Yang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Tinoco-Tafolla HA, López-Hernández J, Ortiz-Castro R, López-Bucio J, Reyes de la Cruz H, Campos-García J, López-Bucio JS. Sucrose supplements modulate the Pseudomonas chlororaphis-Arabidopsis thaliana interaction via decreasing the production of phenazines and enhancing the root auxin response. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154259. [PMID: 38705079 DOI: 10.1016/j.jplph.2024.154259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.
Collapse
Affiliation(s)
- Hugo Alejandro Tinoco-Tafolla
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - José López-Hernández
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, Carretera Antigua a Coatepec 351, El Haya, A.C 91073 Veracruz, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Jesús Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Jesús Salvador López-Bucio
- Catedrático (IXM) CONAHCYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
8
|
Hu Y, Yuan M, Julian A, Tuz K, Juárez O. Identification of complex III, NQR, and SDH as primary bioenergetic enzymes during the stationary phase of Pseudomonas aeruginosa cultured in urine-like conditions. Front Microbiol 2024; 15:1347466. [PMID: 38468849 PMCID: PMC10926992 DOI: 10.3389/fmicb.2024.1347466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Pseudomonas aeruginosa is a common cause of urinary tract infections by strains that are often multidrug resistant, representing a major challenge to the world's health care system. This microorganism has a highly adaptable metabolism that allows it to colonize many environments, including the urinary tract. In this work, we have characterized the metabolic strategies used by stationary phase P. aeruginosa cells cultivated in urine-like media to understand the adaptations used by this microorganism to survive and produce disease. Our proteomics results show that cells rely on the Entner-Duodoroff pathway, pentose phosphate pathway, the Krebs cycle/ glyoxylate shunt and the aerobic oxidative phosphorylation to survive in urine-like media and other conditions. A deep characterization of the oxidative phosphorylation showed that the respiratory rate of stationary phase cells is increased 3-4 times compared to cells in the logarithmic phase of growth, indicating that the aerobic metabolism plays critical roles in the stationary phase of cells grown in urine like media. Moreover, the data show that respiratory complex III, succinate dehydrogenase and the NADH dehydrogenase NQR have important functions and could be used as targets to develop new antibiotics against this bacterium.
Collapse
Affiliation(s)
| | | | | | | | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| |
Collapse
|
9
|
Mendoza AG, Guercio D, Smiley MK, Sharma GK, Withorn JM, Hudson-Smith NV, Ndukwe C, Dietrich LEP, Boon EM. The histidine kinase NahK regulates pyocyanin production through the PQS system. J Bacteriol 2024; 206:e0027623. [PMID: 38169296 PMCID: PMC10809955 DOI: 10.1128/jb.00276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogen Pseudomonas aeruginosa. This network has also been associated with regulating many virulence factors P. aeruginosa secretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion of nahK leads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of all P. aeruginosa quorum-sensing (QS) systems, with a large upregulation of the Pseudomonas quinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system, las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium that establishes biofilms as part of its pathogenicity. P. aeruginosa infections are associated with nosocomial infections. As the prevalence of multi-drug-resistant P. aeruginosa increases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases in P. aeruginosa implicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in the P. aeruginosa lifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.
Collapse
Affiliation(s)
- Alicia G. Mendoza
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Danielle Guercio
- Department of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Gaurav K. Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Jason M. Withorn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | | | - Chika Ndukwe
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Elizabeth M. Boon
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
10
|
Kambouris AR, Brammer JA, Roussey H, Chen C, Cross AS. A combination of burn wound injury and Pseudomonas infection elicits unique gene expression that enhances bacterial pathogenicity. mBio 2023; 14:e0245423. [PMID: 37929965 PMCID: PMC10746159 DOI: 10.1128/mbio.02454-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE The interaction between an underlying disease process and a specific pathogen may lead to the unique expression of genes that affect bacterial pathogenesis. These genes may not be observed during infection in the absence of, or with a different underlying process or infection during the underlying process with a different pathogen. To test this hypothesis, we used Nanostring technology to compare gene transcription in a murine-burned wound infected with P. aeruginosa. The Nanostring probeset allowed the simultaneous direct comparison of immune response gene expression in both multiple host tissues and P. aeruginosa in conditions of burn alone, infection alone, and burn with infection. While RNA-Seq is used to discover novel transcripts, NanoString could be a technique to monitor specific changes in transcriptomes between samples and bypass the additional adjustments for multispecies sample processing or the need for the additional steps of alignment and assembly required for RNASeq. Using Nanostring, we identified arginine and IL-10 as important contributors to the lethal outcome of burned mice infected with P. aeruginosa. While other examples of altered gene transcription are in the literature, our study suggests that a more systematic comparison of gene expression in various underlying diseases during infection with specific bacterial pathogens may lead to the identification of unique host-pathogen interactions and result in more precise therapeutic interventions.
Collapse
Affiliation(s)
- Adrienne R. Kambouris
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jerod A. Brammer
- US Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Houston, Texas, USA
| | - Holly Roussey
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan S. Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Mahmoud M, Richter P, Lebert M, Burkovski A. Photodynamic Activity of Chlorophyllin and Polyethylenimine on Pseudomonas aeruginosa Planktonic, Biofilm and Persister Cells. Int J Mol Sci 2023; 24:12098. [PMID: 37569471 PMCID: PMC10419130 DOI: 10.3390/ijms241512098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Antimicrobial photodynamic inactivation is considered a promising antimicrobial approach that may not develop resistance in the near future. Here, we investigate the influence of the photosensitizer chlorophyllin (CHL) and the cationic permeabilizer polyethylenimine (PEI), exposed to a red light-emitting diode, on the human pathogen Pseudomonas aeruginosa free-living planktonic cells, the sessile biofilm and persister cells. The broth microdilution checkerboard method was used to test antimicrobial susceptibility. As a substrate for biofilms, the Calgary biofilm device was used, and the quantification of the biofilm biomass was carried out using a crystal violet assay. Serine hydroxamate was used for the induction of persisters. Our findings reveal that PEI ameliorates the antimicrobial activity of CHL against P. aeruginosa planktonic and biofilm states, and the concentration required to eradicate the bacteria in the biofilm is more than fourfold that is required to eradicate planktonic cells. Interestingly, the persister cells are more susceptible to CHL/PEI (31.25/100 µg mL-1) than the growing cells by 1.7 ± 0.12 and 0.4 ± 0.1 log10 reduction, respectively, after 15 min of illumination. These data demonstrate that CHL excited with red light together with PEI is promising for the eradication of P. aeruginosa, and the susceptibility of P. aeruginosa to CHL/PEI is influenced by the concentrations and the exposure time.
Collapse
Affiliation(s)
- Mona Mahmoud
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.M.); (A.B.)
- Dairy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
- Space Biology Unlimited S.A.S., 33000 Bordeaux, France
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.M.); (A.B.)
| |
Collapse
|
12
|
Xu C, Cui D, Lv X, Zhong G, Liu J. Heterogeneous distribution of carbofuran shaped by Pseudomonas stutzeri biofilms enhances biodegradation of agrochemicals. ENVIRONMENTAL RESEARCH 2023; 229:115894. [PMID: 37068725 DOI: 10.1016/j.envres.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Biodegradation, harnessing the metabolic versatility of microorganisms to reduce agrochemical contaminations, is commonly studied with enriched planktonic cells but overlooking the dominant lifestyle of microorganisms is to form biofilms, which compromises the efficiency of biodegradation in natural environment. Here, we employed a carbofuran-degrading bacterium Pseudomonas stutzeri PS21 to investigate how the bacterial biofilms formed and responded to agrochemicals. First, the PS21 biofilms formed with a core of bacterial cells enclosing with extracellular polymeric substances (EPSs), and the biofilms were active and resilient when exposed to carbofuran (up to 50 mg L-1). The formation was regulated by the second messenger bis-(3'-5')-cyclic di-guanosine monophosphate signaling, which strengthened the structural resistance and metabolic basis of biofilms to remain the degrading efficiency as comparable as the planktonic cells. Second, carbofuran distributed heterogeneously in the near-biofilm microenvironment via the covalent adsorption of biofilms, which provided a spontaneous force that enhanced the combination of carbofuran with biofilms to maintain high degrading activity. Additionally, we elucidated the biodegradation was driven by the integrated metabolic system of biofilms involving the extracellular enzymes located in the EPSs. This study exhibited the structural and metabolic advantages of microbial biofilms, highlighting the attractive potentials of exploring biofilm-based strategies to facilitate the in-situ bioremediation of organic contaminations.
Collapse
Affiliation(s)
- Chunyuan Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, 510642, PR China
| | - Dongming Cui
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xuejuan Lv
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, PR China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
13
|
Meng L, Cao X, Li C, Li J, Xie H, Shi J, Han M, Shen H, Liu C. Housekeeping gene stability in Pesudomonas aeruginosa PAO1 under the pressure of commonly used antibiotics in molecular microbiology assays. Front Microbiol 2023; 14:1140515. [PMID: 36992935 PMCID: PMC10040570 DOI: 10.3389/fmicb.2023.1140515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen notorious for its remarkable capacity of multi-drug resistance, and has become one of the most important model bacteria in clinical bacteriology research. Quantitative real-time PCR is a reliable method widely used in gene expression analysis, for which the selection of a set of appropriate housekeeping genes is a key prerequisite for the accuracy of the results. However, it is easy to overlook that the expression level of housekeeping gene may vary in different conditions, especially in the condition of molecular microbiology assays, where tested strains are generally cultured under the pre-set antibiotic selection pressures, and how this affects the stability of commonly used housekeeping genes remains unclear. In this study, the expression stability of ten classic housekeeping genes (algD, gyrA, anr, nadB, recA, fabD, proC, ampC, rpoS, and rpsL) under the pressure of eight laboratory commonly used antibiotics (kanamycin, gentamycin, tetracycline, chloramphenicol, hygromycin B, apramycin, tellurite, and zeocin) were tested. Results showed that the stability of housekeeping gene expression was indeed affected by the types of antibiotics added, and of course the best reference gene set varied for different antibiotics. This study provides a comprehensive summary of the effects of laboratory antibiotics on the stability of housekeeping genes in P. aeruginosa, highlighting the necessity to select housekeeping genes according to the type of antibiotics used in the initial stage of experiment.
Collapse
Affiliation(s)
- Lingning Meng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuchu Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jiping Shi
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mei Han
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Han Shen,
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- *Correspondence: Chang Liu,
| |
Collapse
|
14
|
Doing G, Lee AJ, Neff SL, Reiter T, Holt JD, Stanton BA, Greene CS, Hogan DA. Computationally Efficient Assembly of Pseudomonas aeruginosa Gene Expression Compendia. mSystems 2023; 8:e0034122. [PMID: 36541761 PMCID: PMC9948711 DOI: 10.1128/msystems.00341-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Thousands of Pseudomonas aeruginosa RNA sequencing (RNA-seq) gene expression profiles are publicly available via the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). In this work, the transcriptional profiles from hundreds of studies performed by over 75 research groups were reanalyzed in aggregate to create a powerful tool for hypothesis generation and testing. Raw sequence data were uniformly processed using the Salmon pseudoaligner, and this read mapping method was validated by comparison to a direct alignment method. We developed filtering criteria to exclude samples with aberrant levels of housekeeping gene expression or an unexpected number of genes with no reported values and normalized the filtered compendia using the ratio-of-medians method. The filtering and normalization steps greatly improved gene expression correlations for genes within the same operon or regulon across the 2,333 samples. Since the RNA-seq data were generated using diverse strains, we report the effects of mapping samples to noncognate reference genomes by separately analyzing all samples mapped to cDNA reference genomes for strains PAO1 and PA14, two divergent strains that were used to generate most of the samples. Finally, we developed an algorithm to incorporate new data as they are deposited into the SRA. Our processing and quality control methods provide a scalable framework for taking advantage of the troves of biological information hibernating in the depths of microbial gene expression data and yield useful tools for P. aeruginosa RNA-seq data to be leveraged for diverse research goals. IMPORTANCE Pseudomonas aeruginosa is a causative agent of a wide range of infections, including chronic infections associated with cystic fibrosis. These P. aeruginosa infections are difficult to treat and often have negative outcomes. To aid in the study of this problematic pathogen, we mapped, filtered for quality, and normalized thousands of P. aeruginosa RNA-seq gene expression profiles that were publicly available via the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). The resulting compendia facilitate analyses across experiments, strains, and conditions. Ultimately, the workflow that we present could be applied to analyses of other microbial species.
Collapse
Affiliation(s)
- Georgia Doing
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Alexandra J. Lee
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samuel L. Neff
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Taylor Reiter
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Jacob D. Holt
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Casey S. Greene
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, Colorado, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
15
|
Characterization of Distinct Biofilm Cell Subpopulations and Implications in Quorum Sensing and Antibiotic Resistance. mBio 2022; 13:e0019122. [PMID: 35695457 PMCID: PMC9239111 DOI: 10.1128/mbio.00191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacteria change phenotypically in response to their environment. Free swimming cells transition to biofilm communities that promote cellular cooperativity and resistance to stressors and antibiotics. We uncovered three subpopulations of cells with diverse phenotypes from a single-species Pseudomonas aeruginosa PA14 biofilm, and used a series of steps to isolate, characterize, and map these cell subpopulations in a biofilm. The subpopulations were distinguishable by size and morphology using dynamic light scattering (DLS) and scanning electron microscopy (SEM). Additionally, growth and dispersal of biofilms originating from each cell subpopulation exhibited contrasting responses to antibiotic challenge. Cell subpopulation surface charges were distinctly different, which led us to examine the ionizable surface molecules associated with each subpopulation using mass spectrometry. Matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of cell subpopulations revealed ions unique to each subpopulation of cells that significantly co-localized with ions associated with quorum sensing. Transcript levels of algR, lasR, and rhlI in subpopulations isolated from biofilms differed from levels in planktonic stationary and mid-log cell subpopulations. These studies provide insight into diverse phenotypes, morphologies, and biochemistries of PA14 cell subpopulations for potential applications in combating bacterial pathogenesis, with medical, industrial, and environmental complications.
Collapse
|
16
|
Mridha S, Kümmerli R. Coordination of siderophore gene expression among clonal cells of the bacterium Pseudomonas aeruginosa. Commun Biol 2022; 5:545. [PMID: 35668142 PMCID: PMC9170778 DOI: 10.1038/s42003-022-03493-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThere has been great progress in understanding how bacterial groups coordinate social actions, such as biofilm formation and public-goods secretion. Less clear is whether the seemingly coordinated group-level responses actually mirror what individual cells do. Here, we use a microscopy approach to simultaneously quantify the investment of individual cells of the bacterium Pseudomonas aeruginosa into two public goods, the siderophores pyochelin and pyoverdine. Using gene expression as a proxy for investment, we initially observe no coordination but high heterogeneity and bimodality in siderophore investment across cells. With increasing cell density, gene expression becomes more homogenized across cells, accompanied by a moderate shift from pyochelin to pyoverdine expression. We find positive associations in the expression of pyochelin and pyoverdine genes across cells, with cell-to-cell variation correlating with cellular metabolic states. Our work suggests that siderophore-mediated signalling aligns behaviour of individuals over time and spurs a coordinated three-phase siderophore investment cycle.
Collapse
|
17
|
Matuszewska M, Maciąg T, Rajewska M, Wierzbicka A, Jafra S. The carbon source-dependent pattern of antimicrobial activity and gene expression in Pseudomonas donghuensis P482. Sci Rep 2021; 11:10994. [PMID: 34040089 PMCID: PMC8154892 DOI: 10.1038/s41598-021-90488-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound ("cluster 17") and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.
Collapse
Affiliation(s)
- Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Aldona Wierzbicka
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
18
|
Molina Mora JA, Montero-Manso P, García-Batán R, Campos-Sánchez R, Vilar-Fernández J, García F. A first perturbome of Pseudomonas aeruginosa: Identification of core genes related to multiple perturbations by a machine learning approach. Biosystems 2021; 205:104411. [PMID: 33757842 DOI: 10.1016/j.biosystems.2021.104411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/27/2023]
Abstract
Tolerance to stress conditions is vital for organismal survival, including bacteria under specific environmental conditions, antibiotics, and other perturbations. Some studies have described common modulation and shared genes during stress response to different types of disturbances (termed as perturbome), leading to the idea of central control at the molecular level. We implemented a robust machine learning approach to identify and describe genes associated with multiple perturbations or perturbome in a Pseudomonas aeruginosa PAO1 model. Using microarray datasets from the Gene Expression Omnibus (GEO), we evaluated six approaches to rank and select genes: using two methodologies, data single partition (SP method) or multiple partitions (MP method) for training and testing datasets, we evaluated three classification algorithms (SVM Support Vector Machine, KNN K-Nearest neighbor and RF Random Forest). Gene expression patterns and topological features at the systems level were included to describe the perturbome elements. We were able to select and describe 46 core response genes associated with multiple perturbations in P. aeruginosa PAO1 and it can be considered a first report of the P. aeruginosa perturbome. Molecular annotations, patterns in expression levels, and topological features in molecular networks revealed biological functions of biosynthesis, binding, and metabolism, many of them related to DNA damage repair and aerobic respiration in the context of tolerance to stress. We also discuss different issues related to implemented and assessed algorithms, including data partitioning, classification approaches, and metrics. Altogether, this work offers a different and robust framework to select genes using a machine learning approach.
Collapse
Affiliation(s)
- Jose Arturo Molina Mora
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | | | - Raquel García-Batán
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, Costa Rica.
| | | | - Fernando García
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| |
Collapse
|
19
|
Pseudomonas aeruginosa Polynucleotide Phosphorylase Controls Tolerance to Aminoglycoside Antibiotics by Regulating the MexXY Multidrug Efflux Pump. Antimicrob Agents Chemother 2021; 65:AAC.01846-20. [PMID: 33257447 DOI: 10.1128/aac.01846-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that shows high intrinsic resistance to a variety of antibiotics. The MexX-MexY-OprM efflux pump plays an important role in bacterial resistance to aminoglycoside antibiotics. Polynucleotide phosphorylase (PNPase) is a highly conserved exonuclease that plays important roles in RNA processing and the bacterial response to environmental stresses. Previously, we demonstrated that PNPase controls the tolerance to fluoroquinolone antibiotics by influencing the production of pyocin in P. aeruginosa In this study, we found that mutation of the PNPase-encoding gene (pnp) in P. aeruginosa increases bacterial tolerance to aminoglycoside antibiotics. We further demonstrate that the upregulation of the mexXY genes is responsible for the increased tolerance of the pnp mutant. Furthermore, our experimental results revealed that PNPase controls the translation of the armZ mRNA through its 5' untranslated region (UTR). ArmZ had previously been shown to positively regulate the expression of mexXY Therefore, our results revealed a novel role of PNPase in the regulation of armZ and subsequently the MexXY efflux pump.
Collapse
|
20
|
Augustyniak A, Cendrowski K, Grygorcewicz B, Jabłońska J, Nawrotek P, Trukawka M, Mijowska E, Popowska M. The Response of Pseudomonas aeruginosa PAO1 to UV-activated Titanium Dioxide/Silica Nanotubes. Int J Mol Sci 2020; 21:E7748. [PMID: 33092046 PMCID: PMC7590050 DOI: 10.3390/ijms21207748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa is a bacterium of high clinical and biotechnological importance thanks to its high adaptability to environmental conditions. The increasing incidence of antibiotic-resistant strains has created a need for alternative methods to increase the chance of recovery in infected patients. Various nanomaterials have the potential to be used for this purpose. Therefore, we aimed to study the physiological response of P. aeruginosa PAO1 to titanium dioxide/silica nanotubes. The results suggest that UV light-irradiated nanomaterial triggers strong agglomeration in the studied bacteria that was confirmed by microscopy, spectrophotometry, and flow cytometry. The effect was diminished when the nanomaterial was applied without initial irradiation, with UV light indicating that the creation of reactive oxygen species could play a role in this phenomenon. The nanocomposite also affected biofilm formation ability. Even though the biomass of biofilms was comparable, the viability of cells in biofilms was upregulated in 48-hour biofilms. Furthermore, from six selected genes, the mexA coding efflux pump was upregulated, which could be associated with an interaction with TiO2. The results show that titanium dioxide/silica nanotubes may alter the physiological and metabolic functions of P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland;
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland;
| | - Krzysztof Cendrowski
- Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland; (K.C.); (M.T.); (E.M.)
| | - Bartłomiej Grygorcewicz
- Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, 70-111 Szczecin, Poland
| | - Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland;
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland;
| | - Paweł Nawrotek
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland;
| | - Martyna Trukawka
- Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland; (K.C.); (M.T.); (E.M.)
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland; (K.C.); (M.T.); (E.M.)
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Miecznikowa Street 1, 02-096 Warsaw, Poland;
| |
Collapse
|
21
|
Bai B, Ren J, Bai F, Hao L. Selection and validation of reference genes for gene expression studies in Pseudomonas brassicacearum GS20 using real-time quantitative reverse transcription PCR. PLoS One 2020; 15:e0227927. [PMID: 31986172 PMCID: PMC6984700 DOI: 10.1371/journal.pone.0227927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/02/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas brassicacearum GS20 is an antagonistic strain of bacteria recently isolated from the rhizosphere of Codonopsis pilosula. No validated reference gene has been indentified from P. brassicacearum to use in the normalization of real-time quantitative reverse transcription-PCR data. Therefore, in this study, nine candidate reference genes (recA, gyrA, rpoD, proC, gmk, rho, 16S, ftsz, and secA) were assessed at different growth phases and under various growth conditions. The expression stability of these candidate genes was evaluated using BestKeeper, NormFinder and GeNorm. In general, the results showed rho, rpoD and gyrA were the most suitable reference genes for P. brassicacearum GS20. The relative expression of iron-regulated gene (fhu) was normalized to verify the reliability of the proposed reference genes under iron-replete and iron-limited conditions. The trend in relative expression was consistent with the change in siderophore production under different iron conditions. This study presents reliable reference genes for transcriptional studies in P. brassicacearum GS20 under the chosen experimental conditions.
Collapse
Affiliation(s)
- Bianxia Bai
- College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- The Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
- Ecological and Environmental Research Institute of Taihang Mountain, Changzhi, Shanxi, China
| | - Jiahong Ren
- The Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
- Ecological and Environmental Research Institute of Taihang Mountain, Changzhi, Shanxi, China
- * E-mail: (LH); (JR)
| | - Fenling Bai
- The Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
- Ecological and Environmental Research Institute of Taihang Mountain, Changzhi, Shanxi, China
| | - Lin Hao
- College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- * E-mail: (LH); (JR)
| |
Collapse
|
22
|
Sulfate Ester Detergent Degradation in Pseudomonas aeruginosa Is Subject to both Positive and Negative Regulation. Appl Environ Microbiol 2019; 85:AEM.01352-19. [PMID: 31540990 DOI: 10.1128/aem.01352-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/14/2019] [Indexed: 12/25/2022] Open
Abstract
Bacteria using toxic chemicals, such as detergents, as growth substrates face the challenge of exposing themselves to cell-damaging effects that require protection mechanisms, which demand energy delivered from catabolism of the toxic compound. Thus, adaptations are necessary for ensuring the rapid onset of substrate degradation and the integrity of the cells. Pseudomonas aeruginosa strain PAO1 can use the toxic detergent sodium dodecyl sulfate (SDS) as a growth substrate and employs, among others, cell aggregation as a protection mechanism. The degradation itself is also a protection mechanism and has to be rapidly induced upon contact to SDS. In this study, gene regulation of the enzymes initiating SDS degradation in strain PAO1 was studied. The gene and an atypical DNA-binding site of the LysR-type regulator SdsB1 were identified and shown to activate expression of the alkylsulfatase SdsA1 initiating SDS degradation. Further degradation of the resulting 1-dodecanol is catalyzed by enzymes encoded by laoCBA, which were shown to form an operon. Expression of this operon is regulated by the TetR-type repressor LaoR. Studies with purified LaoR identified its DNA-binding site and 1-dodecanoyl coenzyme A as the ligand causing detachment of LaoR from the DNA. Transcriptional studies revealed that the sulfate ester detergent sodium lauryl ether sulfate (SLES) induced expression of sdsA1 and the lao operon. Growth experiments revealed an essential involvement of the alkylsulfatase SdsA1 for SLES degradation. This study revealed that the genes for the enzymes initiating the degradation of toxic sulfate-ester detergents are induced stepwise by a positive and a negative regulator in P. aeruginosa strain PAO1.IMPORTANCE Bacterial degradation of toxic compounds is important not only for bioremediation but also for the colonization of hostile anthropogenic environments in which biocides are being used. This study with Pseudomonas aeruginosa expands our knowledge of gene regulation of the enzymes initiating degradation of sulfate ester detergents, which occurs in many hygiene and household products and, consequently, also in wastewater. As an opportunistic pathogen, P. aeruginosa causes severe hygienic problems because of its pronounced biocide resistance and its metabolic versatility, often combined with its pronounced biofilm formation. Knowledge about the regulation of detergent degradation, especially regarding the ligands of DNA-binding regulators, may lead to the rational development of specific inhibitors for restricting growth and biofilm formation of P. aeruginosa in hygienic settings. In addition, it may also contribute to optimizing bioremediation strategies not only for detergents but also for alkanes, which when degraded merge with sulfate ester degradation at the level of long-chain alcohols.
Collapse
|
23
|
Reference genes for real-time RT-PCR expression studies in an Antarctic Pseudomonas exposed to different temperature conditions. Extremophiles 2019; 23:625-633. [DOI: 10.1007/s00792-019-01109-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
|
24
|
Wang Y, Han B, Xie Y, Wang H, Wang R, Xia W, Li H, Sun H. Combination of gallium(iii) with acetate for combating antibiotic resistant Pseudomonas aeruginosa. Chem Sci 2019; 10:6099-6106. [PMID: 31360415 PMCID: PMC6585600 DOI: 10.1039/c9sc01480b] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Combination of Ga(iii) with acetate greatly enhances the antimicrobial activity of Ga(iii) against P. aeruginosa, and shows promise to combat the crisis of antimicrobial resistance.
Gallium(iii) has been widely used as a diagnostic and therapeutic agent in clinics for the treatment of various diseases, in particular, Ga-based drugs have been exploited as antimicrobials to combat the crisis of antimicrobial resistance. The therapeutic properties of Ga(iii) are believed to be attributable to its chemical similarity to Fe(iii). However, the molecular mechanisms of action of gallium remain unclear. Herein, by integrating metalloproteomics with metabolomics and transcriptomics, we for the first time identified RpoB and RpoC, two subunits of RNA polymerase, as Ga-binding proteins in Pseudomonas aeruginosa. We show that Ga(iii) targets the essential transcription enzyme RNA polymerase to suppress RNA synthesis, resulting in reduced metabolic rates and energy utilization. Significantly, we show that exogenous supplementation of acetate could enhance the antimicrobial activity of Ga(iii), evidenced by the inhibited growth of persister cells and attenuated bacterial virulence. The effectiveness of co-therapy of Ga(iii) and acetate was further validated in mammalian cell and murine skin infection models, which is attributable to enhanced uptake of Ga(iii), and reduced TCA cycle flow and bacterial respiration. Our study provides novel insights into the mechanistic understanding of the antimicrobial activity of Ga(iii) and offers a safe and practical strategy of using metabolites to enhance the efficacy of Ga(iii)-based antimicrobials to fight drug resistance.
Collapse
Affiliation(s)
- Yuchuan Wang
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China.,Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Bingjie Han
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China
| | - Yanxuan Xie
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China
| | - Haibo Wang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Runming Wang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Wei Xia
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China
| | - Hongyan Li
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Hongzhe Sun
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| |
Collapse
|
25
|
Koch L, Poyot T, Schnetterle M, Guillier S, Soulé E, Nolent F, Gorgé O, Neulat-Ripoll F, Valade E, Sebbane F, Biot F. Transcriptomic studies and assessment of Yersinia pestis reference genes in various conditions. Sci Rep 2019; 9:2501. [PMID: 30792499 PMCID: PMC6385181 DOI: 10.1038/s41598-019-39072-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a very sensitive widespread technique considered as the gold standard to explore transcriptional variations. While a particular methodology has to be followed to provide accurate results many published studies are likely to misinterpret results due to lack of minimal quality requirements. Yersinia pestis is a highly pathogenic bacterium responsible for plague. It has been used to propose a ready-to-use and complete approach to mitigate the risk of technical biases in transcriptomic studies. The selection of suitable reference genes (RGs) among 29 candidates was performed using four different methods (GeNorm, NormFinder, BestKeeper and the Delta-Ct method). An overall comprehensive ranking revealed that 12 following candidate RGs are suitable for accurate normalization: gmk, proC, fabD, rpoD, nadB, rho, thrA, ribD, mutL, rpoB, adk and tmk. Some frequently used genes like 16S RNA had even been found as unsuitable to study Y. pestis. This methodology allowed us to demonstrate, under different temperatures and states of growth, significant transcriptional changes of six efflux pumps genes involved in physiological aspects as antimicrobial resistance or virulence. Previous transcriptomic studies done under comparable conditions had not been able to highlight these transcriptional modifications. These results highlight the importance of validating RGs prior to the normalization of transcriptional expression levels of targeted genes. This accurate methodology can be extended to any gene of interest in Y. pestis. More generally, the same workflow can be applied to identify and validate appropriate RGs in other bacteria to study transcriptional variations.
Collapse
Affiliation(s)
- Lionel Koch
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Ecole du Val de Grace (EVDG), Paris, France
- Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Thomas Poyot
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Marine Schnetterle
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Sophie Guillier
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Estelle Soulé
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Flora Nolent
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Olivier Gorgé
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Fabienne Neulat-Ripoll
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Eric Valade
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Ecole du Val de Grace (EVDG), Paris, France
- Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Florent Sebbane
- Inserm, University of Lille, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Fabrice Biot
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France.
- Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France.
| |
Collapse
|
26
|
Czerwonka G, Gmiter D, Guzy A, Rogala P, Jabłońska-Wawrzycka A, Borkowski A, Cłapa T, Narożna D, Kowalczyk P, Syczewski M, Drabik M, Dańczuk M, Kaca W. A benzimidazole-based ruthenium(IV) complex inhibits Pseudomonas aeruginosa biofilm formation by interacting with siderophores and the cell envelope, and inducing oxidative stress. BIOFOULING 2019; 35:59-74. [PMID: 30727772 DOI: 10.1080/08927014.2018.1564818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/11/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Pseudomonas aeruginosa biofilm-associated infections are a serious medical problem, and new compounds and therapies acting through novel mechanisms are much needed. Herein, the authors report a ruthenium(IV) complex that reduces P. aeruginosa PAO1 biofilm formation by 84%, and alters biofilm morphology and the living-to-dead cell ratio at 1 mM concentration. Including the compound in the culture medium altered the pigments secreted by PAO1, and fluorescence spectra revealed a decrease in pyoverdine. Scanning electron microscopy showed that the ruthenium complex did not penetrate the bacterial cell wall, but accumulated on external cell structures. Fluorescence quenching experiments indicated strong binding of the ruthenium complex to both plasmid DNA and bovine serum albumin. Formamidopyrimidine DNA N-glycosylase (Fpg) protein digestion of plasmid DNA isolated after ruthenium(IV) complex treatment revealed the generation of oxidative stress, which was further proved by the observed upregulation of catalase and superoxide dismutase gene expression.
Collapse
Affiliation(s)
- Grzegorz Czerwonka
- a Department of Microbiology, Institute of Biology , Jan Kochanowski University in Kielce , Poland
| | - Dawid Gmiter
- a Department of Microbiology, Institute of Biology , Jan Kochanowski University in Kielce , Poland
| | - Anna Guzy
- a Department of Microbiology, Institute of Biology , Jan Kochanowski University in Kielce , Poland
| | - Patrycja Rogala
- b Institute of Chemistry , Jan Kochanowski University in Kielce , Poland
| | | | - Andrzej Borkowski
- c Faculty of Geology, Geomicrobiology Laboratory , University of Warsaw , Warsaw , Poland
| | - Tomasz Cłapa
- d Department of Biochemistry and Biotechnology , Poznan University of Life Sciences , Poznań , Poland
| | - Dorota Narożna
- d Department of Biochemistry and Biotechnology , Poznan University of Life Sciences , Poznań , Poland
| | - Paweł Kowalczyk
- e Department of Animal Nutrition , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Jabłonna , Poland
| | | | - Marcin Drabik
- g Department of Astrophysics, Institute of Physics , Jan Kochanowski University in Kielce , Poland
| | - Magdalena Dańczuk
- h Faculty of Environmental, Geomatic and Energy Engineering , Kielce University of Technology , Kielce , Poland
| | - Wiesław Kaca
- a Department of Microbiology, Institute of Biology , Jan Kochanowski University in Kielce , Poland
| |
Collapse
|
27
|
A broad-host range dual-fluorescence reporter system for gene expression analysis in Gram-negative bacteria. J Microbiol Methods 2017; 144:173-176. [PMID: 29203144 DOI: 10.1016/j.mimet.2017.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/20/2023]
Abstract
Fluorescence-based reporter systems are valuable tools for studying gene expression dynamics in living cells. Here we describe a dual-fluorescence reporter system carrying the red fluorescent marker mCherry and the blue fluorescent protein EBFP2 enabling the simultaneous analysis of two promoters in broad-host range autofluorescent Gram-negative bacteria.
Collapse
|