1
|
Khan T, Samad A, Waseem R, Tazeen A, Shahid M, Parveen S, Hassan MI, Islam A. Delineating the Mechanistic Insight of Inhibition of α-Synuclein Fibrillation by Neuro Metabolite, Myo-inositol: Implications in Synucleopathies-Related Disorders. ACS Chem Neurosci 2025; 16:1767-1779. [PMID: 40259622 DOI: 10.1021/acschemneuro.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
The fibrillation of α-synuclein (α-syn) is a major factor contributing to neuronal damage and is critical in developing synucleopathies-related disorders. Considering this, the discovery of new compounds that can inhibit or modulate α-syn aggregation is a significant area of research. While polyol osmolytes have been shown to reduce α-syn fibrillation, the impact of brain metabolites such as myo-inositol (MI) on α-syn aggregation has not yet been explored. This study is the first to examine the effects of MI on α-syn aggregation, utilizing spectroscopic, microscopic, and cell cytotoxicity assay. Various aggregation assays revealed that MI inhibits the α-syn fibrillation in a dose-dependent manner. Fluorescence microscopy observations suggest that MI inhibits the α-syn fibrillation by forming amorphous aggregates. MTT assay revealed that α-syn aggregates in the presence of different concentrations of MI were not toxic as compared to α-syn fibrils. Thus, the mechanistic insight of inhibition of α-syn fibrillation by MI was explored by employing interaction studies using spectroscopic, calorimetric, and in silico approaches. Surface plasmon resonance and isothermal titration calorimetry suggest that MI-α-syn interacted with significant binding affinity, and the reaction was spontaneous. Molecular docking results depict that MI interacted with the aggregation-prone residues (36-42) at the N-terminal of α-syn, thereby stabilizing the α-syn and preventing the fibril formation. Molecular dynamics simulation results demonstrate the stability of the complex formation of MI with α-syn. This study highlighted the mechanistic insight of MI on preventing the α-syn from forming amyloid fibril, which could be further explored for therapeutic management of synucleopathies-related disorders.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Abdus Samad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ayesha Tazeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
2
|
Majamäki R, Wasiljeff J, Purkamo L, Hultman J, Asmala E, Yli-Hemminki P, Jørgensen KS, Koho K, Kuva J, Virtasalo JJ. Microbially Enhanced Growth and Metal Capture by Ferromanganese Concretions in a Laboratory Experiment. GEOBIOLOGY 2025; 23:e70010. [PMID: 39894980 DOI: 10.1111/gbi.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
The growth and metal enrichment of ferromanganese minerals on the seafloor have intrigued many studies, yet the role of microbes in the process has remained elusive. Here, we assessed the microbial influence on the growth and trace metal accumulation and release of ferromanganese concretions from the Baltic Sea using 12-week microcosm incubation experiments. We studied three concretion morphotypes: Crust, discoidal, and spheroidal, with biotic and abiotic treatments. The concretion samples were collected into bottles containing artificial brackish seawater from the Gulf of Finland, incubated in in-situ simulating conditions, and sampled at the beginning and end of the experiment. Microscale X-ray-computed tomography confirmed the local growth of up to 10 μm thick patches on the concretion surface during the 12-week incubation period, corresponding to a growth rate of 0.04 mm/year. Scanning electron microscopy of glass slides in the microcosms revealed freshly precipitated cauliflower-like grains, typical of freshly formed Fe- and Mn-hydroxides. Decreased concentrations of dissolved trace metals (Mn, Fe Co, V, Ni, Zn, and Mo) in the incubation solutions indicated the accumulation of these elements into concretions in the biotic microcosms. In contrast, the dissolution of concretions was observed in abiotic microcosms, confirming that microbial activity enhanced the ferromanganese precipitation and the associated accumulation and release of P and trace metals into the ambient solution. The microbial contribution was confirmed by a strong decrease in headspace methane concentrations in biotic microcosms, further indicating the presence of active methanotrophs in the concretion communities.
Collapse
Affiliation(s)
| | | | | | - Jenni Hultman
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Eero Asmala
- Geological Survey of Finland (GTK), Espoo, Finland
| | | | | | | | - Jukka Kuva
- Geological Survey of Finland (GTK), Espoo, Finland
| | | |
Collapse
|
3
|
Singh KRB, Singh P, Singh J, Pandey SS. Nanobioengineered Al 2O 3 Core-Shell Nanoparticle Preparation Using Bauhinia Variegate Plant Extract for Efficient Photocatalysis and Electrochemical Sensing. ACS APPLIED BIO MATERIALS 2024; 7:7646-7658. [PMID: 39467769 PMCID: PMC11577312 DOI: 10.1021/acsabm.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Core-shell-based nanomaterials have garnered considerable attention in the recent past not only in catalytic applications but also in their potentiality in selective and efficient sensing. Present research reports the first and successful biosynthesis of the core (c-Al2O3)-shell nanoparticles (NPs) using Bauhinia variegate blossom extract as reducing and capping agents. The synthesized c-Al2O3 NPs were characterized and utilized to fabricate nanobioengineered electrodes on indium tin oxide (ITO) substrates via electrophoretic deposition. Electrochemical analysis, including cyclic voltammetry and differential pulse voltammetry, revealed quasi-reversible processes with high electron-transfer rates (Ks = 0.66 s-1) and a diffusion coefficient (D = 5.84 × 10-2 cm2 s-1). The electrode exhibited a very high sensitivity (23.44 μA μM-1 cm-2) and a low detection limit (0.463 μM) for sodium azide (NaN3) over two linear ranges of 1-6 and 8-20 μM. Additionally, c-Al2O3 NPs demonstrated the effective photocatalytic degradation of crystal violet dye under visible light, following pseudo-first-order kinetics. The fabricated electrode showed excellent selectivity, stability, and reproducibility, highlighting its potential for environmental monitoring and clinical diagnostics.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Pooja Singh
- Department
of Biotechnology, Indira Gandhi National
Tribal University, Amarkantak, Madhya Pradesh 484886, India
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam S. Pandey
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
4
|
Hu X, Xiong Q, Hou S, Duan H. Metabolic labeling of peptidoglycan enabled optical analysis of probiotic vitality. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6164-6172. [PMID: 39189146 DOI: 10.1039/d4ay00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The growing awareness of the health benefits associated with probiotics has led to an increasing interest in probiotic products. To develop probiotic functional foods that deliver health benefits, it is essential to characterize both probiotic viability (the ability to survive) and vitality (the ability to remain active and effective). However, traditional probiotic assays only provide limited information about their survival state. To gain a comprehensive understanding of probiotic states, a D-amino-acid-based metabolic labeling strategy was applied to quantitatively depict probiotic vitality. In this approach, probiotics were first metabolically incorporated with azido-modified D-lysine and then labeled with dibenzocyclooctyne-sulfo-Cy5 through click chemistry. This two-step labeling process provides a visual representation of the metabolic levels of probiotics as well as the bacterial membrane integrity. Besides, this method is capable of characterizing the influence of various environmental conditions, from manufacturing to oral administration, on probiotic vitality. With its rapid detection process and general applicability, this strategy has the potential to be widely implemented in the food industry for probiotic vitality evaluation.
Collapse
Affiliation(s)
- Xinping Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Qirong Xiong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Shuai Hou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| |
Collapse
|
5
|
Vo KC, Sakamoto JJ, Furuta M, Tsuchido T. The impact of heat treatment on E. coli cell physiology in rich and minimal media considering oxidative secondary stress. J Appl Microbiol 2024; 135:lxae216. [PMID: 39165131 DOI: 10.1093/jambio/lxae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
AIMS This study investigates the cell physiology of thermally injured bacterial cells, with a specific focus on oxidative stress and the repair mechanisms associated with oxidative secondary stress. METHODS AND RESULTS We explored the effect of heat treatment on the activity of two protective enzymes, levels of intracellular reactive oxygen species, and redox potential. The findings reveal that enzyme activity slightly increased after heat treatment, gradually returning to baseline levels during subculture. The response of Escherichia coli cells to heat treatment, as assessed by the level of superoxide radicals generated and redox potential, varied based on growth conditions, namely minimal and rich media. Notably, the viability of injured cells improved when antioxidants were added to agar media, even in the presence of metabolic inhibitors. CONCLUSIONS These results suggest a complex system involved in repairing damage in heat-treated cells, particularly in rich media. While repairing membrane damage is crucial for cell regrowth and the electron transport system plays a critical role in the recovery process of injured cells under both tested conditions.
Collapse
Affiliation(s)
- Khanh C Vo
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Jin J Sakamoto
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- MPES-3 U and Faculty of Materials, Chemistry and Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Radiation Research Center, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tetsuaki Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- TriBioX Laboratories Ltd., 1-125 Takano-Tamaoka-cho, Sakyo-ku, Kyoto 606-8106, Japan
| |
Collapse
|
6
|
Akter A, Firth G, Darwesh AMF, Cooper MS, Chuljerm H, Cilibrizzi A, Blower PJ, Hider RC, Lyons O, Schelenz S, Mehra V, Abbate V. [ 68Ga]Ga-Schizokinen, a Potential Radiotracer for Selective Bacterial Infection Imaging. ACS Infect Dis 2024; 10:2615-2622. [PMID: 39012184 PMCID: PMC11320569 DOI: 10.1021/acsinfecdis.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Gallium-68-labeled siderophores as radiotracers have gained interest for the development of in situ infection-specific imaging diagnostics. Here, we report radiolabeling, in vitro screening, and in vivo pharmacokinetics (PK) of gallium-68-labeled schizokinen ([68Ga]Ga-SKN) as a new potential radiotracer for imaging bacterial infections. We radiolabeled SKN with ≥95% radiochemical purity. Our in vitro studies demonstrated its hydrophilic characteristics, neutral pH stability, and short-term stability in human serum and toward transchelation. In vitro uptake of [68Ga]Ga-SKN by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and S. epidermidis, but no uptake by Candida glabrata, C. albicans, or Aspergillus fumigatus, demonstrated its specificity to bacterial species. Whole-body [68Ga]Ga-SKN positron emission tomography (PET) combined with computerized tomography (CT) in healthy mice showed rapid renal excretion with no or minimal organ uptake. The subsequent ex vivo biodistribution resembled this fast PK with rapid renal excretion with minimal blood retention and no major organ uptake and showed some dissociation of the tracer in the urine after 60 min postinjection. These findings warrant further evaluation of [68Ga]Ga-SKN as a bacteria-specific radiotracer for infection imaging.
Collapse
Affiliation(s)
- Asma Akter
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| | - George Firth
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
| | - Afnan M. F. Darwesh
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
- Department
of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Margaret S. Cooper
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
| | - Hataichanok Chuljerm
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
- School
of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Agostino Cilibrizzi
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| | - Philip J. Blower
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
| | - Robert C. Hider
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| | - Oliver Lyons
- Department
of Surgery, University of Otago, Christchurch 8013, New Zealand
| | - Silke Schelenz
- Department
of Microbiology, Kings College Hospital
NHS Foundation Trust, London SE5 9RS, United
Kingdom
| | - Varun Mehra
- Department
of Hematology, King’s College Hospital
NHS Foundation Trust, London SE5 9RS, United
Kingdom
| | - Vincenzo Abbate
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| |
Collapse
|
7
|
Chen Y, Bell TH, Gourlie S, Lei YD, Wania F. Contaminant Biomagnification in Polar Bears: Interindividual Differences, Dietary Intake Rate, and the Gut Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10504-10514. [PMID: 38838208 PMCID: PMC11192032 DOI: 10.1021/acs.est.4c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Some persistent hydrophobic pollutants biomagnify, i.e., achieve higher contaminant levels in a predator than in its prey (Cpredator/Cprey > 1). This ratio is called the biomagnification factor (BMF) and is traditionally determined using tissues from carcasses or biopsies. Using a noninvasive method that relies on equilibrium sampling in silicone-film-coated vessels and chemical analysis of paired diet and feces, we determined on three occasions the thermodynamic biomagnification limit (BMFlim) and feces-based biomagnification factor (BMFF) for three zoo-housed polar bears who experience seasonal periods of hyperphagia and hypophagia. All bears had high biomagnification capabilities (BMFlim was up to 200) owing to very efficient lipid assimilation (up to 99.5%). The bears differed up to a factor of 3 in their BMFlim. BMFlim and BMFF of a bear increased by up to a factor of 4 during the hypophagic period, when the ingestion rate was greatly reduced. Much of that variability can be explained by differences in the lipid assimilation efficiency, even though this efficiency ranged only from 98.1 to 99.5%. A high BMFlim was associated with a high abundance of Bacteroidales and Lachnospirales in the gut microbiome. Biomagnification varies to a surprisingly large extent between individuals and within the same individual over time. Future work should investigate whether this can be attributed to the influence of the gut microbiome on lipid assimilation by studying more individual bears at different key physiological stages.
Collapse
Affiliation(s)
- Yuhao Chen
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department
of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Terrence H. Bell
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Sarra Gourlie
- Nutrition
Science, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario, Canada M1B 5K7
| | - Ying Duan Lei
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Frank Wania
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department
of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
8
|
Schenekar T, Baxter J, Phukuntsi MA, Sedlmayr I, Weckworth B, Mwale M. Optimizing waterborne eDNA capture from waterholes in savanna systems under remote field conditions. Mol Ecol Resour 2024; 24:e13942. [PMID: 38390664 DOI: 10.1111/1755-0998.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Environmental DNA (eDNA) is used for biodiversity assessments in a variety of ecosystems across the globe, whereby different eDNA concentration, preservation and extraction methods can outperform others depending on the sampling conditions and environment. Tropical and subtropical ecosystems in Africa are among the less studied systems concerning eDNA-based monitoring. Waterholes in arid parts of southern Africa represent important agglomeration points for terrestrial mammals, and the eDNA shed into such waterbodies provides a powerful source of information for monitoring mammalian biodiversity in the surrounding area. However, the applied methods for eDNA sampling, preservation and filtering in different freshwater systems vary greatly, and rigorous protocol testing in African freshwater systems is still lacking. This study represents the first attempt to examine variations in eDNA concentration, preservation and extraction methods under remote field conditions using waterborne eDNA in a savanna system. Collected samples were heavily affected by microalgal and bacterial growth, impeding eDNA capture and PCR success. We demonstrate clear effects of the methodological choices, which also depend on the state of eDNA. A preliminary metabarcoding run showed little taxonomic overlap in mammal species detection between two metabarcoding primers tested. We recommend water filtering (using filters with pore sizes >1 μm) over centrifugation for eDNA concentration, Longmire's solution for ambient temperature sample preservation and Qiagen's DNeasy PowerSoil Pro Kit for DNA extraction of these inhibitor-prone samples. Furthermore, at least two independent metabarcoding markers should be utilized in order to maximize species detections in metabarcoding studies.
Collapse
Affiliation(s)
| | - Janine Baxter
- South African National Biodiversity Institute, National Zoological Gardens, Pretoria, South Africa
| | - Metlholo Andries Phukuntsi
- South African National Biodiversity Institute, National Zoological Gardens, Pretoria, South Africa
- South African Environmental Observation Network, Egagasini Node, South African Environmental Observation Network, Cape Town, South Africa
| | | | | | - Monica Mwale
- South African National Biodiversity Institute, National Zoological Gardens, Pretoria, South Africa
- NRF-South African Institute for Aquatic Biodiversity, Makhanda (Grahamstown), South Africa
| |
Collapse
|
9
|
Lei P, Chen M, Rong N, Tang W, Zhang H. A passive sampler for synchronously measuring inorganic and organic pollutants in sediment porewater: Configuration and field application. J Environ Sci (China) 2024; 136:201-212. [PMID: 37923430 DOI: 10.1016/j.jes.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 11/07/2023]
Abstract
In situ measurement of multiple pollutants coexisting in sediment porewater is an essential step in comprehensively assessing the bioavailability and risk of pollutants, but to date, this needs to be better developed. In this study, a passive sampler, consisting of an "I-shaped" supporting frame and inorganic/organic sampling units, incorporating equilibrium dialysis theory and kinetic/equilibrium sorption principle, was developed for the synchronous measurement of inorganic (e.g., phosphorus and metal(loid)s) and organic pollutants (e.g., parent and substituted PAHs). The equilibrium time and sampling rates were explored in laboratory tests to support in situ application. Profiles of pollutants in porewater within a vertical resolution of centimeters, i.e., 1 cm and 2 cm for inorganic and organic pollutants, respectively, were obtained by field deployment of the sampler for further estimation of diffusive fluxes across the sediment-water interface. The results suggested that the role of sediments for a specific pollutant may change (e.g., from "sink" to "source") during the sampling time. This study demonstrated the feasibility of synchronous measurement of inorganic and organic pollutants in sediment porewater by the passive sampler. In addition, it provided new insight for further investigation into the combined pollution effects of various pollutants in sediments.
Collapse
Affiliation(s)
- Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Nan Rong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510530, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Leon‐Fernandez LF, Dominguez‐Benetton X, Villaseñor Camacho J, Fernandez‐Morales FJ. Coupling the electrocatalytic dechlorination of 2,4-D with electroactive microbial anodes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:512-529. [PMID: 37482917 PMCID: PMC10667633 DOI: 10.1111/1758-2229.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023]
Abstract
This work proves the feasibility of dechlorinating 2,4-D, a customary commercial herbicide, using cathodic electrocatalysis driven by the anodic microbial electrooxidation of sodium acetate. A set of microbial electrochemical systems (MES) were run under two different operating modes, namely microbial fuel cell (MFC) mode, with an external resistance of 120 Ω, or microbial electrolysis cell (MEC) mode, by supplying external voltage (0.6 V) for promoting the (bio)electrochemical reactions taking place. When operating the MES as an MFC, 32% dechlorination was obtained after 72 h of treatment, which was further enhanced by working under MEC mode and achieving a 79% dechlorination. In addition, the biodegradability (expressed as the ratio BOD/COD) of the synthetic polluted wastewater was tested prior and after the MES treatment, which was improved from negative values (corresponding to toxic effluents) up to 0.135 in the MFC and 0.453 in the MEC. Our MES approach proves to be a favourable option from the point of view of energy consumption. Running the system under MFC mode allowed to co-generate energy along the dechlorination process (-0.0120 kWh mol-1 ), even though low removal rates were attained. The energy input under MEC operation was 1.03 kWh mol-1 -a competitive value compared to previous works reported in the literature for (non-biological) electrochemical reactors for 2,4-D electrodechlorination.
Collapse
Affiliation(s)
- Luis F. Leon‐Fernandez
- Chemical Engineering Department, ITQUIMAUniversity of Castilla‐La ManchaCiudad RealSpain
- Separation and Conversion TechnologiesFlemish Institute for Technological Research (VITO)MolBelgium
| | | | | | | |
Collapse
|
11
|
Griffith DR, Carolan M, Gutierrez MM, Romig A, Garcia-Diaz N, Hutchinson CP, Zayas RL. Microbial Degradation of Free and Halogenated Estrogens in River Water-Sediment Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37428977 PMCID: PMC10373497 DOI: 10.1021/acs.est.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Halogenated estrogens are formed during chlorine-based wastewater disinfection and have been detected in wastewater treatment plant effluent; however, very little is known about their susceptibility to biodegradation in natural waters. To better understand the biodegradation of free and halogenated estrogens in a large river under environmentally relevant conditions, we measured estrogen kinetics in aerobic microcosms containing water and sediment from the Willamette River (OR, USA) at two concentrations (50 and 1250 ng L-1). Control microcosms were used to characterize losses due to sorption and other abiotic processes, and microbial dynamics were monitored using 16S rRNA gene sequencing and ATP. We found that estrogen biodegradation occurred on timescales of hours to days and that in river water spiked at 50 ng L-1 half-lives were significantly shorter for 17β-estradiol (t1/2,bio = 42 ± 3 h) compared to its monobromo (t1/2,bio = 49 ± 5 h), dibromo (t1/2,bio = 88 ± 12 h), and dichloro (t1/2,bio = 98 ± 16 h) forms. Biodegradation was also faster in microcosms with high initial estrogen concentrations as well as those containing sediment. Free and halogenated estrone were important transformation products in both abiotic and biotic microcosms. Taken together, our findings suggest that biodegradation is a key process for removing free estrogens from surface waters but likely plays a much smaller role for the more highly photolabile halogenated forms.
Collapse
Affiliation(s)
- David R Griffith
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - MacKayla Carolan
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | | | - Anya Romig
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Nathan Garcia-Diaz
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | | | - Rosa León Zayas
- Willamette University, 900 State Street, Salem, Oregon 97301, United States
| |
Collapse
|
12
|
Wu SC, Hsiao WC, Zhao YC, Wu LF. Hexavalent chromate bioreduction by a magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1 and the effect of magnetosome synthesis. CHEMOSPHERE 2023; 330:138739. [PMID: 37088211 DOI: 10.1016/j.chemosphere.2023.138739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Magnetotactic bacteria (MTB) are receiving attention for heavy metal biotreatment due to their potential for biosorption with heavy metals and the capability of the magnetic recovery. In this study, we investigated the characteristics of Cr(VI) bioreduction and biosorption by an MTB isolate, Magnetospirillum gryphiswaldense MSR-1, which has a higher growth rate and wider reflexivity in culture conditions. Our results demonstrated that the MSR-1 strain could remove Cr(VI) up to the concentration of 40 mg L-1 and with an optimal activity at neutral pH conditions. The magnetosome synthesis existed regulatory mechanisms between Cr(VI) reduction and cell division. The addition of 10 mg L-1 Cr(VI) significantly inhibited cell growth, but the magnetosome-deficient strain, B17316, showed an average specific growth rate of 0.062 h-1 at the same dosage. Cr(VI) reduction examined by the heat-inactivated and resting cells demonstrated that the main mechanism for MSR-1 strain to reduce Cr(VI) was chromate reductase and adsorption, and magnetosome synthesis would enhance the chromate reductase activity. Finally, our results elucidated that the chromate reductase distributes diversely in multiple subcellular components of the MSR-1 cells, including extracellular, membrane-associated, and intracellular cytoplasmic activity; and expression of the membrane-associated chromate reductase was increased after the cells were pre-exposed by Cr(VI).
Collapse
Affiliation(s)
- Siang Chen Wu
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Wei-Che Hsiao
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Ya-Chun Zhao
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Li-Fen Wu
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| |
Collapse
|
13
|
Chabilan A, Ledesma DGB, Horn H, Borowska E. Mesocosm experiment to determine the contribution of adsorption, biodegradation, hydrolysis and photodegradation in the attenuation of antibiotics at the water sediment interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161385. [PMID: 36621511 DOI: 10.1016/j.scitotenv.2022.161385] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
To understand the fate of antibiotics in the aquatic environment, we need to evaluate to which extent the following processes contribute to the overall antibiotic attenuation: adsorption to river sediment, biodegradation, hydrolysis and photodegradation. A laboratory scale mesocosm experiment was conducted in 10 L reactors filled with river sediment and water. The reactors were spiked with four classes of antibiotics (fluoroquinolones, macrolides, sulfonamides, tetracyclines), as well as clindamycin and trimethoprim. The experimental-set-up was designed to study the attenuation processes in parallel in one mesocosm experiment, hence also considering synergetic effects. Our results showed that antibiotics belonging to the same class exhibited similar behavior. Adsorption was the main attenuation process for the fluoroquinolones and tetracyclines (44.4 to 80.0 %). For the sulfonamides, biodegradation was the most frequent process (50.2 to 65.1 %). Hydrolysis appeared to be significant only for tetracyclines (12.6 to 41.8 %). Photodegradation through visible light played a minor role for most of the antibiotics - fluoroquinolones, sulfonamides, and trimethoprim (0.7 to 24.7 %). The macrolides were the only class of antibiotics not affected by the studied processes and they persisted in the water phase. Based on our results, we propose to class the antibiotics in three groups according to their persistence in the water phase. Fluoroquinolones and tetracyclines were non-persistent (half-lives shorter than 11 d). Chlorotetracycline, sulfapyridine and trimethoprim showed a moderate persistence (half-lives between 12 and 35 d). Due to half-lives longer than 36 d sulfonamides and clindamycin were classified as persistent.
Collapse
Affiliation(s)
- Amélie Chabilan
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Daniel Gustavo Barajas Ledesma
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Harald Horn
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
| | - Ewa Borowska
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| |
Collapse
|
14
|
Yang F, Zhao F. Mechanism of visible light enhances microbial degradation of Bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130214. [PMID: 36327837 DOI: 10.1016/j.jhazmat.2022.130214] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is a toxic endocrine disruptor detected in various environments. Microbial metabolic/enzymatic degradation has been thought to be the main pathway for BPA attenuation in natural environments. In this study, we found that under visible light conditions, superoxide produced by bacteria was the main reason for the rapid removal of BPA, accounting for 57 % of the total removal rate. With visible light, the bacteria degraded BPA at a rate of 0.22 mg/L/d, and the total removal within 8 days reached 85 %, which is 4.7 times compared with that of dark culture. The intermediate product 4-iso-propenylphenol, which was considered as an end-product of microbial degradation of BPA in previous reports, was detected in large quantities at 24 h in culture but gradually decreased in our experiment. Community analysis suggested bacteria with aromatic hydrocarbon degradation ability were more enriched under light incubation. Moreover, the bacteria showed well degradation ability to various pharmaceutically active but nonbiodegradable compounds including diclofenac and fluoxetine, with a removal rate of 88 % and 20 %, respectively. Our study revealed the organic pollutant transformation pathway under the combined action of light and microorganisms, providing new insights into the microbial treatment of aromatic hydrocarbon pollutants.
Collapse
Affiliation(s)
- Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
15
|
Rehman S, Yousaf S, Ye Q, Chenhui L, Bilal M, Shaikh AJ, Khan MS, Shahzad SA, Wu P. Bentonite binding with mercury(II) ion through promotion of reactive oxygen species derived from manure-based dissolved organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26107-26119. [PMID: 36352071 DOI: 10.1007/s11356-022-23948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
This study reports the mercury binding by bentonite clay influenced by cattle manure-derived dissolved organic matter (DOM). The DOM (as total organic carbon; TOC) was reacted with bentonite at 5.2 pH to monitor the subsequent uptake of Hg2+ for 5 days. The binding kinetics of Hg2+ to the resulting composite was studied (metal = 350 µM/L, pH 5.2). Bentonite-DOM bound much more Hg2+ than original bentonite and accredited to the establishment of further binding sites. On the other hand, the presence of DOM was found to decrease the Hg2+ binding on the clay surface, specifically, the percent decrease of metal with increasing DOM concentration. Post to binding of DOM with bentonite resulted in increased particle size diameter (~ 33.37- ~ 87.67 nm) by inducing the mineral modification of the pore size distribution, thus increasing the binding sites. The XPS and FTIR results confirm the pronounced physico-chemical features of bentonite-DOM more than that of bentonite. Hydroxyl and oxygen vacancies on the surface were found actively involved in Hg2+ uptake by bentonite-DOM composite. Furthermore, DOM increased the content of Hg2+ binding by ~ 10% (pseudo-second-order qe = 90.9-100.0) through boosting up Fe3+ reduction with the DOM. The quenching experiment revealed that more oxygen functionalities were generated in bentonite-DOM, where hydroxyl was found to be dominant specie for Hg2+ binding. The findings of this study can be used as theoretical reference for mineral metal interaction under inhibitory or facilitating role of DOM, risk assessment, management, and mobilization/immobilization of mercury in organic matter-containing environment.
Collapse
Affiliation(s)
- Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Sayyaf Yousaf
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Quanyun Ye
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liu Chenhui
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
16
|
Ma Y, You F, Parry D, Urban A, Huang L. Adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacterial communities enriched from biofilms colonising strongly alkaline and saline bauxite residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159131. [PMID: 36183768 DOI: 10.1016/j.scitotenv.2022.159131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to characterise the adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacteria sourced from field biofilms colonising seawater-treated bauxite residue, under moderate and extremely alkaline pH conditions (8.5 to 10.8) and coupled saline (EC ≈ 50 mS/cm) conditions. The haloalkaliphilic bacterial communities demonstrated strong adaptiveness to the increasing pH from 8.5 to 10.8. The dominant groups were Exiguobacterales and Bacillales at pH 8.5 and 10, but Lactobacillales and Bacillales at pH 10.8. The exposure to pH 10.8 initially delayed bacterial growth in the first 24 h, but which rapidly recovered to a peak rate at 48 h similar to that in the pH 10 treatment. Correspondingly, lactic acid concentration at pH 10.8 rapidly rose to as high as >2000 mg/L at 48 h. Bacterial growth and organic acid production were positively related to carbohydrate supply. Overall, these bacterial groups fermented glucose to produce mainly lactic acid (>80 %) and other acids (such as acetic acid, formic acid, and succinic acid), leading to 0.5-2.0 units of pH reduction, despite the strong buffering capacity in the culture solution. The bacteria could up-regulate their phosphatase activity to mineralise the organic P in the basal nutrient broth, but increasing soluble phosphate-P at a 1:10 of glucose-C was beneficial. The biofilm-sourced bacteria communities contained redundant fermentative haloalkaliphilic groups which were adaptive to strongly alkaline pH and saline conditions.
Collapse
Affiliation(s)
- Yuanying Ma
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - David Parry
- Rio Tinto, Brisbane, Queensland 4000, Australia
| | - Anja Urban
- Queensland Alumina Limited, Gladstone, Queensland 4680, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
Sauter D, Steuer A, Wasmund K, Hausmann B, Szewzyk U, Sperlich A, Gnirss R, Cooper M, Wintgens T. Microbial communities and processes in biofilters for post-treatment of ozonated wastewater treatment plant effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159265. [PMID: 36206900 DOI: 10.1016/j.scitotenv.2022.159265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Ozonation is an established solution for organic micropollutant (OMP) abatement in tertiary wastewater treatment. Biofiltration is the most common process for the biological post-treatment step, which is generally required to remove undesired oxidation products from the reaction of ozone with water matrix compounds. This study comparatively investigates the effect of filter media on the removal of organic contaminants and on biofilm properties for biologically activated carbon (BAC) and anthracite biofilters. Biofilms were analysed in two pilot-scale filters that have been operated for >50,000 bed volumes as post-treatment for ozonated wastewater treatment plant effluent. In parallel, the removal performance of bulk organics and OMP, including differentiation of adsorption and biotransformation through sodium azide inhibition, were carried out in bench-scale filter columns filled with material from the pilot filters. The use of BAC instead of anthracite resulted in an improved removal of organic bulk parameters, dissolved oxygen, and OMP. The OMP removal observed in the BAC filter but not in the anthracite filter was based on adsorption for most of the investigated compounds. For valsartan, however, biotransformation was found to be the dominant pathway, indicating that conditions for biotransformation of certain OMP are better on BAC than on anthracite. Adenosine triphosphate analyses in the media-attached biofilms of the pilot filters showed that biomass concentrations in the BAC filter were significantly higher than in the anthracite filter. The microbial communities (16S rRNA gene sequencing) appeared to be similar with respect to the types of organisms occurring on both filter materials. Alpha diversity also exhibited little variation between filter media. Beta diversity analysis, however, revealed that filter media and bed depth substantially influenced the biofilm composition. In practice, the impact of filter media on biofilm properties and biotransformation processes should be considered for the design of biofilters.
Collapse
Affiliation(s)
- Daniel Sauter
- Berliner Wasserbetriebe, Neue Juedenstr. 1, 10179 Berlin, Germany
| | - Andrea Steuer
- Chair of Environmental Microbiology, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; School of Biological Science, University of Portsmouth, King Henry Building, King Henry I St, PO12DY Portsmouth, UK
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | | | - Regina Gnirss
- Berliner Wasserbetriebe, Neue Juedenstr. 1, 10179 Berlin, Germany
| | - Myriel Cooper
- Chair of Environmental Microbiology, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Thomas Wintgens
- RWTH Aachen University, Institut für Siedlungswasserwirtschaft, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany; School of Life Sciences, Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 40, 4132 Muttenz, Switzerland.
| |
Collapse
|
18
|
Wang Z, Hu X, Qu Q, Hao W, Deng P, Kang W, Feng R. Dual regulatory effects of microplastics and heat waves on river microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129879. [PMID: 36084464 DOI: 10.1016/j.jhazmat.2022.129879] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Rivers play a critical role in the global carbon cycle, but the processes can be affected by widespread microplastic (MP) pollution and the increasing frequency of heat waves (HWs) in a warming climate. However, little is known about the role of river microbes in regulating the carbon cycle under the combined action of MP pollution and HWs. Here, through seven-day MP exposure and three cycles of HW simulation experiments, we found that MPs inhibited the thermal adaptation of the microbial community, thus regulating carbon metabolism. The CO2 release level increased, while the carbon degradation ability and the preference for stable carbon were inhibited. Metabonomic, 16 S rRNA and ITS gene analyses further revealed that the regulation of carbon metabolism was closely related to the microbial r-/K- strategy, community assembly and transformation of keystone taxa. The random forest model revealed that dissolved oxygen and ammonia-nitrogen were important variables influencing microbial carbon metabolism. The above findings regarding microbe-mediated carbon metabolism provide insights into the effect of climate-related HWs on the ecological risks of MPs.
Collapse
Affiliation(s)
- Zhongwei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weidan Hao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
19
|
Smida H, Lefèvre F, Thobie‐Gautier C, Boujtita M, Paquete CM, Lebègue E. Single Electrochemical Impacts of
Shewanella oneidensis
MR‐1 Bacteria for Living Cells Adsorption onto a Polarized Ultramicroelectrode Surface. ChemElectroChem 2022. [DOI: 10.1002/celc.202200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hassiba Smida
- Nantes Université CNRS CEISAM UMR 6230 F-44000 Nantes France
| | | | | | | | - Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-156 Oeiras Portugal
| | - Estelle Lebègue
- Nantes Université CNRS CEISAM UMR 6230 F-44000 Nantes France
| |
Collapse
|
20
|
Chen Y, Lei YD, Wensvoort J, Gourlie S, Wania F. Probing the Thermodynamics of Biomagnification in Zoo-Housed Polar Bears by Equilibrium Sampling of Dietary and Fecal Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9497-9504. [PMID: 35593505 PMCID: PMC9260956 DOI: 10.1021/acs.est.2c00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
In a proof-of-concept study, we recently used equilibrium sampling with silicone films to noninvasively derive the thermodynamic limit to a canine's gastrointestinal biomagnification capability (BMFlim) by determining the ratio of the products of the volume (V) and fugacity capacity (Z) of food and feces. In that earlier study, low contaminant levels prevented the determination of contaminant fugacities (f) in food and feces. For zoo-housed polar bears, fed on a lipid-rich diet of fish and seal oil, we were now able to measure the increase in f of nine native polychlorinated biphenyls (PCBs) upon digestion, providing incontestable proof of the process of gastrointestinal biomagnification. A high average BMFlim value of ∼171 for the bears was caused mostly by a remarkable reduction in fugacity capacity driven by a high lipid assimilation capacity. Lipid-rich diets increase the uptake of biomagnifying contaminants in two ways: because they tend to have higher contaminant concentrations and because they lead to a high Z value drop during digestion. We also confirmed that equilibrium sampling yielded similar Z values for PCBs originally present in food and feces and for isotopically labeled PCBs spiked onto those samples, which makes the method suitable for investigating the biomagnification capability of organisms, even if native contaminant concentrations in their diet and feces are low.
Collapse
Affiliation(s)
- Yuhao Chen
- Department
of Chemistry and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Ying Duan Lei
- Department
of Chemistry and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Jaap Wensvoort
- Nutrition
Science, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario, Canada M1B 5K7
| | - Sarra Gourlie
- Nutrition
Science, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario, Canada M1B 5K7
| | - Frank Wania
- Department
of Chemistry and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
21
|
Layglon N, Lenoble V, Longo L, D'Onofrio S, Mounier S, Mullot JU, Sartori D, Omanović D, Garnier C, Misson B. Cd transfers during marine sediment resuspension over short and long-term period: Associated risk for coastal water quality. MARINE POLLUTION BULLETIN 2022; 180:113771. [PMID: 35623216 DOI: 10.1016/j.marpolbul.2022.113771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a highly toxic metal, regularly monitored uniformly for water quality across Europe, but scarcely for sediments. This study was designed to compare the kinetics of Cd remobilization and the amplitude of its transfers with different marine sediments. The results showed a highly reproducible transfer kinetics. Dissolved Cd was strongly and quickly removed from the dissolved phase (from 5 min up to 7 h). Then, the dissolved Cd concentration increased progressively to reach a maximal value after two weeks of mixing. The influence of the resuspension intensity representing light wind-induced resuspension up to dredging operations was observed after 2 weeks. The intensity of the sediment resuspension clearly impacted the amplitude of Cd remobilization, dissolved Cd ranging from a few ngL-1 to few hundreds of ngL-1, exceeding the maximal dissolved Cd concentration accepted by the European Union Water Framework Directive (WFD-2008/105 32/EC).
Collapse
Affiliation(s)
- Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France; University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221 Geneva 4, Switzerland.
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Louis Longo
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Sébastien D'Onofrio
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Stéphane Mounier
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | | | - Davide Sartori
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123 Livorno, Italy
| | - Dario Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| |
Collapse
|
22
|
Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs – Induced ROS/NF-κB signaling in monocytes. Cell Signal 2022; 97:110372. [DOI: 10.1016/j.cellsig.2022.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
23
|
Mn(II) Sorption on Stream Sediments Sampled in Manganese Mining Area: Dynamics and Mechanisms. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The stream sediments that have been impacted by manganese (Mn) containing wastewater for decades contain not only abundant microorganisms but also organic/inorganic substances. To achieve effective treatment of manganese (Mn)-containing effluent and recovery of Mn from water/sediments, the Mn(II) sorption behaviors and mechanism on sediments of a stream in Mn mining areas were studied. In addition, the study analyzed the effects of various factors (initial concentration, solution pH, sediment dose, contact time, and coexisting cations) on the Mn sorption efficiency of Daxin sediments, and explored the contribution of microbial activity in the sediment sorption of Mn(II). The results showed that the sorption process of Mn(II) on the sediments was consistent with the Elovich and Freundlich models, and the removal of heavy metals was maximum at 40 °C (62.47–98.93%), pH = 8 (77.51%), initial concentration of 1 mmol·L−1 (95.37%) and sediment dosing of 12 g·L−1 (98.93%). The addition of 50 mM NaN3 inhibited the microbial activity in the Daxin sediment, reducing the sorption and removal rates of Mn(II) by 0.605 mg·g−1 and 8.92%, respectively. After sorption, the proportion of the Fe–Mn oxidation(iron–manganese) state in Daxin sediments decreased from 54% to 43%, while the proportion of the exchangeable state increased by 10.80%. Microorganisms in the sediment had a positive effect on inhibiting heavy metal migration and reducing the bioavailability of contaminants in the soil. Through this study, we hope to further understand the sorption and desorption mechanism of manganese by stream sediments in manganese ore areas, so as to provide a guide on the management and recovery of Mn from stream sediments in manganese mining areas.
Collapse
|
24
|
Wu X, Zhu Y, Yang M, Zhang J, Lin D. Biological responses of Eisenia fetida towards the exposure and metabolism of tris (2-butoxyethyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152285. [PMID: 34933047 DOI: 10.1016/j.scitotenv.2021.152285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of various organophosphorus flame retardants (OPFRs) is of increasing concern. However, there is still a lack of research on the toxicity of OPFRs to terrestrial invertebrates and its metabolism in vivo. Herein, earthworms (Eisenia fetida) were exposed to soil spiked with 0, 0.05, 0.5, and 5 mg/kg tris(2-butoxyethyl) phosphate (TBOEP, a typical alkyl OPFRs) for 28 d to study the biological responses to the exposure and metabolism of TBOEP. TBOEP exposure inhibited the activity of acetyl-cholinesterase (64.4-68.6% of that in the control group), increased the energy consumption level, and affected calcium-dependent pathways of E. fetida, which caused a 3.6-12.4% reduction in the weight gain rate (developmental toxicity), a 10.6-69.4% reduction in the number of juveniles (reproduction toxicity), and neurotoxicity to E. fetida. The 5 mg/kg TBOEP exposure caused a significant accumulation of malondialdehyde (1.68 times higher than that in the control group) in E. fetida, which indicated that the balance of oxidation and anti-oxidation of E. fetida was broken. Meanwhile, E. fetida maintained the absorption and metabolic abilities to TBOEP under the environmental condition. The removal rate of soil TBOEP was increased by 25.1-35.5% by the presence of E. fetida. Importantly, TBOEP could accumulate in E. fetida (0.09-76.0 μg/kg) and the activation of cytochrome P450 and glutathione detoxification pathway promoted the metabolism of TBOEP in E. fetida. These findings link the biological responses and metabolic behavior of earthworms under pollution stress and provide fundamental data for the environmental risk assessment and pollution removal of OPFRs in soil.
Collapse
Affiliation(s)
- Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ya Zhu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Bioleaching Process for Copper Extraction from Waste in Alkaline and Acid Medium. MINERALS 2022. [DOI: 10.3390/min12010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Flotation wastes are becoming a valuable secondary raw material and source of many metals and semimetals worldwide with the possibilities of industrial recycling. The flotation tailings contain oxide and sulfide minerals that have not been sufficiently stabilized and form acidic mine waters, which in turn contaminate groundwater, rivers, and reservoi6sediments. An effective way to recycle these mine wastes is to recover the metals through leaching. While the focus is on acid bioleaching by iron- and sulfur-oxidizing bacteria, alkaline leaching, and the removal of iron-containing surface coatings on sulfide minerals contribute significantly to the overall environmental efficiency of leaching. For this study, static and percolate bioleaching of copper from flotation waste at the Bor copper mine in Serbia was investigated in alkaline and then acidic environments. The aim of the study was to verify the effect of alkaline pH and nutrient stimulation on the bioleaching process and element extraction. A sample was taken from a mine waste site, which was characterized by XRF analyses. The concentration of leached copper was increased when copper oxide minerals dissolved during alkaline bioleaching. The highest copper yield during alkaline bioleaching was achieved after 9 days and reached 67%. The addition of nutrients in acidic medium enhanced the degradation of sulfide minerals and increased Cu recovery to 74%, while Fe and Ag recoveries were not significantly affected. Combined bioleaching with alkaline media and iron- and sulfur-oxidizing bacteria in acidic media should be a good reference for ecological Cu recovery from copper oxide and sulfide wastes.
Collapse
|
26
|
Yang X, Zhao Z, Nguyen BV, Hirayama S, Tian C, Lei Z, Shimizu K, Zhang Z. Cr(VI) bioremediation by active algal-bacterial aerobic granular sludge: Importance of microbial viability, contribution of microalgae and fractionation of loaded Cr. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126342. [PMID: 34329001 DOI: 10.1016/j.jhazmat.2021.126342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, chromium (Cr) was used as an example of the most toxic heavy metals that threaten human health, and Cr(VI) bioremediation was implemented by using a new type of aerobic granular sludge (AGS), i.e., algal-bacterial AGS. Results showed that the total Cr removal efficiency by active algal-bacterial AGS was 85.1 ± 0.6% after 6 h biosorption at pH 6 and room temperature, which could be further improved to 93.8 ± 0.4% with external electron donor (glucose) supply. However, inactivation dramatically decreased the total Cr removal efficiency to 29.6 ± 3.5%, and no effect was noticed when external electron donor was provided. With an antibiotic (levofloxacin) or metabolic inhibitor (NaN3) addition, the total Cr removal efficiency of bacterial AGS was inhibited by 16.0% or 10.1%, but this efficiency was maintained in the case of algal-bacterial AGS. Analysis of extracellular polymeric substances (EPS) composition revealed that under Cr(VI) exposure, more loosely bound EPS were secreted by algal-bacterial AGS, favoring Cr(VI) reduction. Results from chemical fractionation indicated that 90.5 ± 4.2% of the loaded Cr on algal-bacterial AGS was in an immobile form, reflecting the low environmental risk of Cr-loaded algal-bacterial AGS after biosorption of hazardous heavy metals from wastewater.
Collapse
Affiliation(s)
- Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Bach Van Nguyen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shota Hirayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Caixing Tian
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
27
|
Petelet-Giraud E, Baran N, Vergnaud-Ayraud V, Portal A, Michel C, Joulian C, Lucassou F. Elucidating heterogeneous nitrate contamination in a small basement aquifer. A multidisciplinary approach: NO 3 isotopes, CFCs-SF6, microbiological activity, geophysics and hydrogeology. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 241:103813. [PMID: 33906024 DOI: 10.1016/j.jconhyd.2021.103813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Nitrate contamination of groundwater remains a major concern despite all the measures and efforts undertaken over the last decades to protect water resources. We focused on a small catchment in Brittany (France) facing nitrate pollution with concentrations over the European drinking water standard of 50 mg.L-1. This is a common situation in catchments where - supposedly effective - measures were applied for reducing the transfer of N to groundwater. At the scale of this small (~100 ha) basement aquifer, nitrate concentrations are very heterogeneous in the groundwater, sampled up to 15-20 m below the soil surface in several observation wells (hereafter referred as piezometers) and up to 110 m deep in a borehole drilled through a faulted area near the Spring (outlet of the catchment). We used complementary and robust approaches for exploring and constraining the driving parameters of nitrate transfer and distribution in groundwater. Detailed geological work and a geophysical electrical resistivity tomography survey identified the lithologies, tectonic structures and weathering layers. This highlighted a complex geological structure with several compartments delimited by faults, as well as the highly variable thickness of the weathered layer. It also illustrated the heterogeneity of the hydrosystem, some compartments appearing to be disconnected from the general groundwater flow. This was confirmed by geochemical analyses and by the mean apparent groundwater residence time based on CFCs-SF6 and noble-gas analyses, locally revealing old and nitrate-free groundwater, and very old water with a recharge temperature below than the current average temperature in the area, reflecting water dating back to the last period of glaciation (-19 to -17 ky). Nitrate isotopes clearly showed denitrification processes in a few piezometers, which was generally supported by microbiology and molecular biology results. This highlighted the presence of functional genes involved in denitrification as well as a capacity of the groundwater microbial community to denitrify when in situ conditions are favourable. This type of combined approach - covering chemistry, isotopic methods, dissolved gases, microbiological activity, geophysics and hydrogeology - appears to be indispensable for implementing the most relevant programme of measures and for accurately assessing their effectiveness, notably by considering the timeframe between implementation of the measures and their impact on groundwater quality.
Collapse
|
28
|
Morón-Asensio R, Schuler D, Wiedlroither A, Offterdinger M, Kurmayer R. Differential Labeling of Chemically Modified Peptides and Lipids among Cyanobacteria Planktothrix and Microcystis. Microorganisms 2021; 9:1578. [PMID: 34442657 PMCID: PMC8398151 DOI: 10.3390/microorganisms9081578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
The cyanoHAB forming cyanobacteria Microcystis and Planktothrix frequently produce high intracellular amounts of microcystins (MCs) or anabaenopeptins (APs). In this study, chemically modified MCs and APs have been localized on a subcellular level in Microcystis and Planktothrix applying copper-catalyzed alkyne-azide cycloaddition (CuACC). For this purpose, three different non-natural amino acids carrying alkyne or azide moieties were fed to individual P. agardhii strains No371/1 and CYA126/8 as well as to M. aeruginosa strain Hofbauer showing promiscuous incorporation of various amino acid substrates during non-ribosomal peptide synthesis (NRPS). Moreover, CYA126/8 peptide knock-out mutants and non-toxic strain Synechocystis PCC6803 were processed under identical conditions. Simultaneous labeling of modified peptides with ALEXA405 and ALEXA488 and lipid staining with BODIPY 505/515 were performed to investigate the intracellular location of the modified peptides. Pearson correlation coefficients (PCC) obtained from confocal images were calculated between the different fluorophores and the natural autofluorescence (AF), and between labeled modified peptides and dyed lipids to investigate the spatial overlap between peptides and the photosynthetic complex, and between peptides and lipids. Overall, labeling of modified MCs (M. aeruginosa) and APs (P. agardhii) using both fluorophores revealed increased intensity in MC/AP producing strains. For Synechocystis lacking NRPS, no labeling using either ALEXA405 or ALEXA488 was observed. Lipid staining in M. aeruginosa and Synechocystis was intense while in Planktothrix it was more variable. When compared with AF, both modified peptides and lipids showed a heterologous distribution. In comparison, the correlation between stained lipids and labeled peptides was not increased suggesting a reduced spatial overlap.
Collapse
Affiliation(s)
- Rubén Morón-Asensio
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (D.S.); (A.W.)
| | - David Schuler
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (D.S.); (A.W.)
| | - Anneliese Wiedlroither
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (D.S.); (A.W.)
| | - Martin Offterdinger
- Core Facility Biooptics (CCB), Medical University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| | - Rainer Kurmayer
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (D.S.); (A.W.)
| |
Collapse
|
29
|
Michel C, Baran N, André L, Charron M, Joulian C. Side Effects of Pesticides and Metabolites in Groundwater: Impact on Denitrification. Front Microbiol 2021; 12:662727. [PMID: 34054765 PMCID: PMC8155494 DOI: 10.3389/fmicb.2021.662727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023] Open
Abstract
The impact of two pesticides (S-metolachlor and propiconazole) and their respective main metabolites (ESA-metolachlor and 1,2,4-triazole) on bacterial denitrification in groundwater was studied. For this, the denitrification activity and the bacterial diversity of a microbial community sampled from a nitrate-contaminated groundwater were monitored during 20 days in lab experiments in the presence or absence of pesticides or metabolites at 2 or 10 μg/L. The kinetics of nitrate reduction along with nitrite and N2O production all suggested that S-metolachlor had no or only little impact, whereas its metabolite ESA-metolachlor inhibited denitrification by 65% at 10 μg/L. Propiconazole and 1,2,4-triazole also inhibited denitrification at both concentrations, but to a lesser extent (29–38%) than ESA-metolachlor. When inhibition occurred, pesticides affected the reduction of nitrate into nitrite step. However, no significant differences were detected on the abundance of nitrate reductase narG and napA genes, suggesting an impact of pesticides/metabolites at the protein level rather than on denitrifying bacteria abundance. 16S rRNA gene Illumina sequencing indicated no major modification of bacterial diversity in the presence or absence of pesticides/metabolites, except for ESA-metolachlor and propiconazole at 10 μg/L that tended to increase or decrease Shannon and InvSimpson indices, respectively. General growth parameters suggested no impact of pesticides, except for propiconazole at 10 μg/L that partially inhibited acetate uptake and induced a decrease in microbial biomass. In conclusion, pesticides and metabolites can have side effects at environmental concentrations on microbial denitrification in groundwater and may thus affect ecosystem services based on microbial activities.
Collapse
Affiliation(s)
- Caroline Michel
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), Orléans, France
| | - Nicole Baran
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), Orléans, France
| | - Laurent André
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), Orléans, France.,Université d'Orléans, CNRS, BRGM, UMR 7327 Institut des Sciences de la Terre d'Orléans, Orléans, France
| | - Mickael Charron
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), Orléans, France
| | - Catherine Joulian
- BRGM, DEPA (Direction de l'Eau, de l'Environnement, des Procédés et Analyses), Orléans, France
| |
Collapse
|
30
|
Schübl M, Kiecak A, Hug K, Lintelmann J, Zimmermann R, Stumpp C. Sorption and biodegradation parameters of selected pharmaceuticals in laboratory column experiments. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 236:103738. [PMID: 33310632 DOI: 10.1016/j.jconhyd.2020.103738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/24/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Pharmaceutically active compounds have increasingly been detected in groundwater worldwide. Despite constituting a risk for human health and ecosystems, their fate in the environment has still not been exhaustively investigated. This study characterizes the transport behavior of five selected pharmaceutically active compounds (antipyrine, atenolol, caffeine, carbamazepine and sulfamethoxazole) in two sediments (coarse quartz sand and sandy loam) using column experiments with long-term injection of spiked groundwater. Transport parameters were estimated using an analytical reactive transport model. When five selected compounds were injected simultaneously, transport behavior of antipyrine, carbamazepine and the antibiotic sulfamethoxazole were similar to the conservative tracer in both sediments and under varying redox conditions. Atenolol and caffeine were retarded significantly stronger in the sandy loam sediment than in the coarse quartz sand. Biodegradation of caffeine was observed in both sediments after an adaption period and depended on dissolved oxygen. The identification of biodegradation processes was supported by monitoring of intracellular adenosine triphosphate (ATPitc) as a measure for microbial activity. ATPitc was present in varying concentrations in all sediments and was highest when biodegradation of pharmaceuticals, especially caffeine, was observed. When only caffeine and sulfamethoxazole were injected simultaneously, sulfamethoxazole was degraded while caffeine degradation was reduced. The latter seemed to be influenced by low concentrations in dissolved oxygen rather than the presence of the antibiotic sulfamethoxazole. Results of these experiments emphasize the impact on pharmaceutical sorption and (bio)degradation of sediment type and redox conditions, as well as available time for microbial adaption and the combination of pharmaceuticals that are released together into groundwater.
Collapse
Affiliation(s)
- Marleen Schübl
- Institute for Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Neuherberg, Germany
| | - Aleksandra Kiecak
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Neuherberg, Germany; Chair of Hydrogeology, Technical University of Munich, Munich, Germany
| | - Katrin Hug
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Neuherberg, Germany
| | - Jutta Lintelmann
- Joint Mass Spectrometry Centre of the research unit Comprehensive Molecular Analytics, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Neuherberg, Germany; The Chair of Analytical Chemistry, University of Rostock, Germany; Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Neuherberg, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre of the research unit Comprehensive Molecular Analytics, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Neuherberg, Germany; The Chair of Analytical Chemistry, University of Rostock, Germany
| | - Christine Stumpp
- Institute for Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Neuherberg, Germany.
| |
Collapse
|
31
|
Pagnozzi G, Carroll S, Reible DD, Millerick K. Powdered activated carbon (PAC) amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115641. [PMID: 33045588 DOI: 10.1016/j.envpol.2020.115641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Capping represents an efficient and well-established practice to contain polycyclic aromatic hydrocarbons (PAHs) in sediments, reduce mobility, and minimize risks. Exposure to PAHs can encourage biodegradation, which can improve the performance of capping. This study investigates biodegradation of naphthalene (a model PAH) in highly reducing, sediment-like environments with amendment of different capping materials (PAC and sand). Microcosms were prepared with sediment enrichments, sulfate as an electron acceptor, and naphthalene. Results show that PAC stimulates naphthalene biodegradation and mineralization, as indicated by production of 14CO2 from radiolabeled naphthalene. Mineralization in PAC systems correlates with the enrichment of genera (Geobacter and Desulfovirga) previously identified to biodegrade naphthalene (Spearman's, p < 0.05). Naphthalene decay in sand and media-free systems was not linked to biodegradation activity (ANOVA, p > 0.05), and microbial communities were correlated to biomass yields rather than metabolites. Naphthalene decay in PAC systems consists of three stages with respect to time: latent (0-88 days), exponential decay (88-210 days), and inactive (210-480 days). This study shows that PAC amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions and provides a kinetic and metagenomic characterization of systems demonstrating naphthalene decay.
Collapse
Affiliation(s)
- Giovanna Pagnozzi
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sean Carroll
- Haley and Aldrich, Inc., 100 Corporate Place, Suite 105, Rocky Hill, CT, 06067, USA
| | - Danny D Reible
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kayleigh Millerick
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
32
|
Coclet C, Garnier C, Durrieu G, D'onofrio S, Layglon N, Briand JF, Misson B. Impacts of copper and lead exposure on prokaryotic communities from contaminated contrasted coastal seawaters: the influence of previous metal exposure. FEMS Microbiol Ecol 2020; 96:5809961. [PMID: 32188980 DOI: 10.1093/femsec/fiaa048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/17/2020] [Indexed: 01/04/2023] Open
Abstract
Our understanding of environmental factors controlling prokaryotic community is largely hampered by the large environmental variability across spatial scales (e.g. trace metal contamination, nutrient enrichment and physicochemical variations) and the broad diversity of bacterial pre-exposure to environmental factors. In this article, we investigated the specific influence of copper (Cu) and lead (Pb) on prokaryotic communities from the uncontaminated site, using mesocosm experiments. In addition, we studied how pre-exposure (i.e. life history) affects communities, with reference to previous metal exposure on the response of three prokaryotic communities to similar Cu exposition. This study showed a stronger influence of Cu contamination than Pb contamination on prokaryotic diversity and structure. We identified 12 and 34 bacterial families and genera, respectively, contributing to the significant differences observed in community structure between control and spiked conditions. Taken altogether, our results point toward a combination of direct negative responses to Cu contamination and indirect responses mediated by interaction with phytoplankton. These identified responses were largely conditioned by the previous exposure of community to contaminants.
Collapse
Affiliation(s)
- Clément Coclet
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc.,Université de Toulon, MAPIEM, EA 4323, Toulon, 83041 Toulon, Cedex 9, Franc
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| | - Gaël Durrieu
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| | - Sébastien D'onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| | - Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| | | | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 83041 Toulon, Cedex 9, Franc
| |
Collapse
|
33
|
Webb DT, Nagorzanski MR, Powers MM, Cwiertny DM, Hladik ML, LeFevre GH. Differences in Neonicotinoid and Metabolite Sorption to Activated Carbon Are Driven by Alterations to the Insecticidal Pharmacophore. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14694-14705. [PMID: 33119293 DOI: 10.1021/acs.est.0c04187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Widespread application of neonicotinoids has led to their proliferation in waters. Despite low neonicotinoid hydrophobicity, our prior studies implicated granular activated carbon (GAC) in neonicotinoid removal. Based on known receptor binding characteristics, we hypothesized that the insecticidal pharmacophore influences neonicotinoid sorption. Our objectives were to illuminate drivers of neonicotinoid sorption for parent neonicotinoids (imidacloprid, clothianidin, thiamethoxam, and thiacloprid) and pharmacophore-altered metabolites (desnitro-imidacloprid and imidacloprid urea) to GAC, powdered activated carbon, and carbon nanotubes (CNTs). Neonicotinoid sorption to GAC was extensive and largely irreversible, with significantly greater sorption of imidacloprid than desnitro-imidacloprid. Imidacloprid and imidacloprid urea (electronegative pharmacophores) sorbed most extensively to nonfunctionalized CNTs, whereas desnitro-imidacloprid (positive pharmacophore) sorbed most to COOH-CNTs, indicating the importance of charge interactions and/or hydrogen bonding between the pharmacophore and carbon surface. Water chemistry parameters (temperature, alkalinity, ionic strength, and humic acid) inhibited overall neonicotinoid sorption, suggesting that pharmacophore-driven sorption in real waters may be diminished. Analysis of a full-scale drinking water treatment plant GAC filter influent, effluent, and spent GAC attributes neonicotinoid/metabolite removal to GAC under real-world conditions for the first time. Our results demonstrate that the neonicotinoid pharmacophore not only confers insecticide selectivity but also impacts sorption behavior, leading to less effective removal of metabolites by GAC filters in water treatment.
Collapse
Affiliation(s)
- Danielle T Webb
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| | - Matthew R Nagorzanski
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| | - Megan M Powers
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| | - David M Cwiertny
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
- Center for Health Effects of Environmental Contamination, University of Iowa, 455 Van Allen Hall, Iowa City, Iowa 52242, United States
- Public Policy Center, University of Iowa, 310 South Grand Ave, 209 South Quadrangle, Iowa City, Iowa 52242, United States
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
34
|
Li C, Gu Z, Zhu S, Liu D. 17β-Estradiol removal routes by moving bed biofilm reactors (MBBRs) under various C/N ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140381. [PMID: 32599404 DOI: 10.1016/j.scitotenv.2020.140381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the contribution of biotic and abiotic routes to the 17β-estradiol (E2) removal in moving bed biofilm reactors (MBBRs), and uncovered the interrelation between the E2 removal routes and biofilm characteristics, which was not researched in previous literature. Three MBBRs with different C/N ratios (0 for C/N0; 2 for C/N2; and 5 for C/N5) were operated in continuous mode. A 65-day degradation demonstrated that the MBBRs had high potential to remove E2 regardless of the C/N (E2 removal greater than 99% for all MBBRs; P > 0.05). Further batch tests showed that the E2 removal mainly resulted from heterotrophic activities for all MBBRs, accounting for approximately 85% for all MBBRs (P > 0.05), followed by nitrification (10-11%) and adsorption (4-5%). Importantly, lower adhesive force likely led to higher E2 adsorption onto biofilms. Besides, enhanced ammonia oxidizing rate (AOR) was consistent with the high contribution of nitrification to the E2 attenuation. Importantly, heterotrophic activity was positively correlated with its contribution to E2 removal (r = 0.99, P < 0.05). To sum, the results obtained in this study helped to understand the E2 removal routes in nitrifying biofilm systems.
Collapse
Affiliation(s)
- Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhefeng Gu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Hamdan HZ, Salam DA. Response of sediment microbial communities to crude oil contamination in marine sediment microbial fuel cells under ferric iron stimulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114658. [PMID: 33618484 DOI: 10.1016/j.envpol.2020.114658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 06/12/2023]
Abstract
In this study, response of the microbial communities associated with the bioremediation of crude oil contaminated marine sediments was addressed using sediment microbial fuel cells (SMFCs). Crude oil was spiked into marine sediments at 1 g/kg of dry sediment to simulate a heavily contaminated marine environment. Conventional SMFCs were used with carbon fiber brushes as the electrode components and were enhanced with ferric iron to stimulate electrochemically active bacteria. Controls were operated under open circuit with and without ferric iron stimulation, with the latter condition simulating natural attenuation. Crude oil removal in the Fe enhanced SMFCs reached 22.0 ± 5.5% and was comparable to the measured removal in the control treatments (19.2 ± 7.4% in natural attenuation SMFCs and 15.2 ± 2.7% in Fe stimulated open circuit SMFCs), indicating no major enhancement to biodegradation under the applied experimental conditions. The low removal efficiency could be due to limitations in the mass transfer of the electron donor to the microbes and the anodes. The microbial community structure showed similarity between the iron stimulated SMFCs operated under the open and closed circuit. Natural attenuation SMFCs showed a unique profile. All SMFCs showed high relative abundances of hydrocarbon degrading bacteria rather than anode reducers, such as Marinobacter and Arthrobacter in the case of the natural attenuation SMFCs, and Gordonia in the case of iron stimulated SMFCs. This indicated that the microbial structure during the bioremediation process was mainly determined by the presence of petroleum contamination and to a lesser extent the presence of the ferric iron, with no major involvement of the anode as a terminal electron acceptor. Under the adopted experimental conditions, the absence of electrochemically active microbes throughout the biodegradation process indicates that the use of SMFCs in crude oil bioremediation is not a successful approach. Further studies are required to optimize SMFCs systems for this aim.
Collapse
Affiliation(s)
- Hamdan Z Hamdan
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Darine A Salam
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
36
|
Layglon N, Misson B, Durieu G, Coclet C, D'Onofrio S, Dang DH, François D, Mullot JU, Mounier S, Lenoble V, Omanović D, Garnier C. Long-term monitoring emphasizes impacts of the dredging on dissolved Cu and Pb contamination along with ultraplankton distribution and structure in Toulon Bay (NW Mediterranean Sea, France). MARINE POLLUTION BULLETIN 2020; 156:111196. [PMID: 32510358 DOI: 10.1016/j.marpolbul.2020.111196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
A long-term monitoring during dredging and non-dredging periods was performed. Total and dissolved Cu and Pb concentrations, DGT-labile Pb, ultraphytoplankton abundance and structure were monitored at four sites: dredging site, dumping site (inside/outside of a geotextile bag) and reference site. During the reference period (non-dredging), an increasing contamination in Pb, Cu and a progressive shift from Synechococcus to photosynthetic picoeukaryotes dominance was observed from reference to dumping site. Pb concentrations were significantly higher during dredging period, pointing out sediment resuspension as Pb major source of contamination. Unlike Pb, Cu concentrations were not statistically different during the two periods. Dredging period did not impact on ultraphytoplankton abundance and structure but influence heterotrophic prokaryotes abundance. Sediment resuspension is therefore a major driver of chemical and biological qualities in Toulon Bay. Furthermore, although the geotextile bag reduces particulate transport of the dredged sediment, the transport in the dissolved phase remains a major problem.
Collapse
Affiliation(s)
- Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France.
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Gaël Durieu
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Clément Coclet
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France; MAPIEM, EA4323, Université de Toulon, Toulon, France
| | - Sébastien D'Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Duc Huy Dang
- School of the Environment, Chemistry Department, Trent University, Peterborough, ON, Canada
| | - David François
- LASEM-Toulon, Base Navale De Toulon, BP 61, 83800 Toulon, France
| | | | - Stéphane Mounier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Dario Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| |
Collapse
|
37
|
Layglon N, Misson B, Mounier S, Lenoble V, Omanović D, Garnier C. Have decades of abiotic studies in sediments been misinterpreted? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135949. [PMID: 31863987 DOI: 10.1016/j.scitotenv.2019.135949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Sterilization techniques are largely employed to distinguish biotic and abiotic processes in biogeochemical studies as they inhibit microbial activity. Since one century, chemical sterilizers, supposed to preserve original environmental samples, have taken precedence over physical sterilization techniques considered too destructive. Sodium azide (NaN3) is nowadays the most commonly used inorganic chemical sterilizer. It is sufficiently purified to study trace metals, as well. Nevertheless, its (in)activity in physico-chemical processes was never ascertained. Through the investigation of sediment resuspension in seawater, the present work unequivocally demonstrated that NaN3 can impact carbon and trace metals' transfers by altering the redox balance and pH. Unlike decades of blind practice, NaN3 should be used with great care to track abiotic processes from organic matter rich and reductive matrices.
Collapse
Affiliation(s)
- Nicolas Layglon
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | - Benjamin Misson
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Stéphane Mounier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Véronique Lenoble
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Dario Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | - Cédric Garnier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
38
|
Kujala K, Besold J, Mikkonen A, Tiirola M, Planer-Friedrich B. Abundant and diverse arsenic-metabolizing microorganisms in peatlands treating arsenic-contaminated mining wastewaters. Environ Microbiol 2020; 22:1572-1587. [PMID: 31984582 PMCID: PMC7187466 DOI: 10.1111/1462-2920.14922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023]
Abstract
Mining operations produce large quantities of wastewater. At a mine site in Northern Finland, two natural peatlands are used for the treatment of mining‐influenced waters with high concentrations of sulphate and potentially toxic arsenic (As). In the present study, As removal and the involved microbial processes in those treatment peatlands (TPs) were assessed. Arsenic‐metabolizing microorganisms were abundant in peat soil from both TPs (up to 108 cells gdw−1), with arsenate respirers being about 100 times more abundant than arsenite oxidizers. In uninhibited microcosm incubations, supplemented arsenite was oxidized under oxic conditions and supplemented arsenate was reduced under anoxic conditions, while little to no oxidation/reduction was observed in NaN3‐inhibited microcosms, indicating high As‐turnover potential of peat microbes. Formation of thioarsenates was observed in anoxic microcosms. Sequencing of the functional genemarkers aioA (arsenite oxidizers), arrA (arsenate respirers) and arsC (detoxifying arsenate reducers) demonstrated high diversity of the As‐metabolizing microbial community. The microbial community composition differed between the two TPs, which may have affected As removal efficiencies. In the present situation, arsenate reduction is likely the dominant net process and contributes substantially to As removal. Changes in TP usage (e.g. mine closure) with lowered water tables and heightened oxygen availability in peat might lead to re‐oxidation and re‐mobilization of bound arsenite.
Collapse
Affiliation(s)
- Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
| | - Johannes Besold
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Anu Mikkonen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
39
|
McGuire PM, Reid MC. Nitrous Oxide and Methane Dynamics in Woodchip Bioreactors: Effects of Water Level Fluctuations on Partitioning into Trapped Gas Phases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14348-14356. [PMID: 31736311 DOI: 10.1021/acs.est.9b04829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Woodchip bioreactors (WBRs) are low-cost, passive systems for nonpoint source nitrogen removal at terrestrial-aquatic interfaces. The greenhouse gases nitrous oxide (N2O) and methane (CH4) can be produced within WBRs, and efforts to reduce N2O and CH4 emissions from WBR systems require improved understanding of the biogeochemical and physical-chemical mechanisms regulating their production, transport, and release. This study evaluates the impact of trapped gas-filled void volumes as sinks of dissolved gases from water and as sources of episodic fluxes when water levels fall. Dissolved gas tracer experiments in a laboratory bioreactor were used to parameterize nonequilibrium advection-dispersion-gas transfer models and quantify trapping of gas-filled voids as a function of antecedent hydrological conditions. Experiments following a water-level rise revealed that up to 24% of the WBR pore volume was occupied by trapped gas phases, which were primarily located in pore spaces inside woodchips. This finding was confirmed with X-ray-computed microtomography. N2O (3.3-10%) and CH4 (4.3-14%) injected into the reactor following a water table rise partitioned into gas-filled voids and were released when water tables fell. In the case of N2O, partitioning into trapped gas phases makes N2O unavailable for enzymatic reduction, potentially enhancing N2O fluxes under fluctuating water levels.
Collapse
Affiliation(s)
- Philip M McGuire
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Matthew C Reid
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
40
|
Robben C, Witte AK, Schoder D, Stessl B, Rossmanith P, Mester P. A Fast and Easy ATP-Based Approach Enables MIC Testing for Non-resuscitating VBNC Pathogens. Front Microbiol 2019; 10:1365. [PMID: 31258524 PMCID: PMC6587809 DOI: 10.3389/fmicb.2019.01365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
Many bacteria enter the viable but non-culturable (VBNC) state to maximize resources and increase their tolerance to harmful conditions to cope with environmental stress, which has been described for a plethora of important human and foodborne pathogens. VBNC pathogens can potentially present a serious risk to human health as they are invisible to routine microbiological culture-based methods. Of high importance is the increased tolerance to antibiotics or disinfectant measures while in the VBNC state. The greatest remaining challenge for such investigations is the lack of an appropriate, cost-effective multi-species screening method due to experimental constraints. In this study, we investigated if de novo ATP production of cells in the VBNC state is a suitable indicator for overall cell viability that can be utilized to determine the minimum ATP inhibitory concentration (MAIC) of antibiotics and other antimicrobials. To validate this approach, heat-stress time-kill experiments were performed with both culturable and VBNC cells. We developed a comprehensive experimental setup and demonstrated the applicability of this VBNC–MIC assay for testing the tolerance of 12 strains of 4 important bacterial species (Escherichia coli, Bacillus cereus, Pseudomonas aeruginosa, and Listeria monocytogenes) in the VBNC state to eight important antimicrobials including four different antibiotics. We confirmed that bacteria in the VBNC state were resistant to all tested antibiotics (ampicillin, imipenem, ciprofloxacin, and gentamicin) and additionally insensitive to disinfectants (benzalkonium chloride and trioctylmethylammonium chloride) and preservatives (bronopol and sodium azide). These data emphasize the need for further research regarding the characteristics of bacterial pathogens in the VBNC state and present the advantages and high-throughput capabilities of ATP determinations to investigate tolerance of VBNC pathogens to antimicrobials. The presented method should be helpful in order to identify appropriate countermeasures, treatments, or disinfectants when confronted with bacterial pathogens in the VBNC state.
Collapse
Affiliation(s)
- Christian Robben
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department of Farm Animal and Public Health in Veterinary Medicine, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Anna Kristina Witte
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department of Farm Animal and Public Health in Veterinary Medicine, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Dagmar Schoder
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department of Farm Animal and Public Health in Veterinary Medicine, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department of Farm Animal and Public Health in Veterinary Medicine, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Beatrix Stessl
- Department of Farm Animal and Public Health in Veterinary Medicine, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department of Farm Animal and Public Health in Veterinary Medicine, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department of Farm Animal and Public Health in Veterinary Medicine, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Patrick Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department of Farm Animal and Public Health in Veterinary Medicine, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
41
|
Chifflet S, Quéméneur M, Barani A, Angeletti B, Didry M, Grégori G, Pradel N. Impact of sterilization methods on dissolved trace metals concentrations in complex natural samples: Optimization of UV irradiation. MethodsX 2019; 6:1133-1146. [PMID: 31193445 PMCID: PMC6529719 DOI: 10.1016/j.mex.2019.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/18/2019] [Indexed: 11/27/2022] Open
Abstract
Sterilization is essential for discriminating biotic responses from abiotic reactions in laboratory experiments investigating biogeochemical processes of complex natural samples. However, the conventional methods used to effectively sterilize materials or culture media do not allow sterilizing complex natural samples while maintaining biogeochemical balances. The aim of this study was to develop a low-cost and easy-to-use method to obtain geochemically unmodified and sterilized samples from complex lacustrine or coastal marine ecosystems. In preliminary assays, the impact of several sterilization methods (autoclaving, chemical poisoning, microwave, UV irradiation) on the trace metals balances was studied using borosilicate glass (BG), fluorinated ethylene-propylene (FEP) or polyethylene terephthalate (PET) bottles. Unlike other methods, UV sterilization had minor effects on the distribution of dissolved trace metals. Additional tests using complex lacustrine and coastal marine samples under 10 g/L sediments were performed using a homemade UV sterilization chamber designed to simultaneously irradiate a large number samples. Results showed: •very reproducible UV tests in BG and FEP bottles•faster sterilization using FEP bottles than using BG bottles•low variations of dissolved trace metals concentrations, except for Al, Cu, Fe and Zn.
Collapse
Affiliation(s)
- Sandrine Chifflet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Marianne Quéméneur
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Aude Barani
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Bernard Angeletti
- Aix Marseille Univ., CNRS-IRD-Collège de France, CEREGE UM34, 13545, Aix en Provence, France
| | - Morgane Didry
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Gérald Grégori
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Nathalie Pradel
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| |
Collapse
|
42
|
Coclet C, Garnier C, Durrieu G, Omanović D, D’Onofrio S, Le Poupon C, Mullot JU, Briand JF, Misson B. Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area. Front Microbiol 2019; 10:257. [PMID: 30853948 PMCID: PMC6395402 DOI: 10.3389/fmicb.2019.00257] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/31/2019] [Indexed: 01/21/2023] Open
Abstract
Unraveling the relative importance of both environmental conditions and ecological processes regulating bacterioplankton communities is a central goal in microbial ecology. Marine coastal environments are among the most urbanized areas and as a consequence experience environmental pressures. The highly anthropized Toulon Bay (France) was considered as a model system to investigate shifts in bacterioplankton communities along natural and anthropogenic physicochemical gradients during a 1-month survey. In depth geochemical characterization mainly revealed strong and progressive Cd, Zn, Cu, and Pb contamination gradients between the entrance of the Bay and the north-western anthropized area. On the other hand, low-amplitude natural gradients were observed for other environmental variables. Using 16S rRNA gene sequencing, we observed strong spatial patterns in bacterioplankton taxonomic and predicted function structure along the chemical contamination gradient. Variation partitioning analysis demonstrated that multiple metallic contamination explained the largest part of the spatial biological variations observed, but DOC and salinity were also significant contributors. Network analysis revealed that biotic interactions were far more numerous than direct interactions between microbial groups and environmental variables. This suggests indirect effects of the environment, and especially trace metals, on the community through a few taxonomic groups. These spatial patterns were also partially found for predicted bacterioplankton functions, thus indicating a limited functional redundancy. All these results highlight both potential direct influences of trace metals contamination on coastal bacterioplankton and indirect forcing through biotic interactions and cascading.
Collapse
Affiliation(s)
- Clément Coclet
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
- MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | - Cédric Garnier
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Gaël Durrieu
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Dario Omanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sébastien D’Onofrio
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Christophe Le Poupon
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | | | | | - Benjamin Misson
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| |
Collapse
|
43
|
Zouch H, Cabrol L, Chifflet S, Tedetti M, Karray F, Zaghden H, Sayadi S, Quéméneur M. Effect of Acidic Industrial Effluent Release on Microbial Diversity and Trace Metal Dynamics During Resuspension of Coastal Sediment. Front Microbiol 2018; 9:3103. [PMID: 30619182 PMCID: PMC6302000 DOI: 10.3389/fmicb.2018.03103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/30/2018] [Indexed: 12/05/2022] Open
Abstract
Both industrial effluent discharge and the resuspension of contaminated marine sediments are important sources of trace metals in seawater which potentially affect marine ecosystems. The aim of this study was to evaluate the impact of the industrial wastewaters having acidic pH (2–3) and containing trace metals on microbial diversity in the coastal ecosystem of the Gulf of Gabès (Tunisia, southern Mediterranean Sea) subjected to resuspension events of marine sediments. Four trace elements (As, Cd, U, and V) were monitored during 10-day sediment resuspension experiments. The highest enrichment in the seawater dissolved phase was observed for Cd followed by U, V, and As. Cd remobilization was improved by indigenous microbial community, while U release was mainly abiotic. Acidic effluent addition impacted both trace metal distribution and microbial diversity, particularly that of the abundant phylum Bacteroidetes. Members of the order Saprospirales were enriched from sediment in natural seawater (initial pH > 8), while the family Flavobacteriaceae was favored by acidified seawater (initial pH < 8). Some Flavobacteriaceae members were identified as dominant species in both initial sediment and experiments with acidic wastewater, in which their relative abundance increased with increasing dissolved Cd levels. It could be therefore possible to consider them as bioindicators of metal pollution and/or acidification in marine ecosystems.
Collapse
Affiliation(s)
- Hana Zouch
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, Tunisia.,Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Léa Cabrol
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Sandrine Chifflet
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Marc Tedetti
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, Tunisia.,Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, Tunisia
| | - Hatem Zaghden
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, Tunisia
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, Tunisia
| | - Marianne Quéméneur
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, Tunisia.,Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| |
Collapse
|
44
|
Fitzgerald NJM, Wargenau A, Sorenson C, Pedersen J, Tufenkji N, Novak PJ, Simcik MF. Partitioning and Accumulation of Perfluoroalkyl Substances in Model Lipid Bilayers and Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10433-10440. [PMID: 30148610 DOI: 10.1021/acs.est.8b02912] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants, yet knowledge of their biological effects and mechanisms of action is limited. The highest aqueous PFAS concentrations are found in areas where bacteria are relied upon for functions such as nutrient cycling and contaminant degradation, including fire-training areas, wastewater treatment plants, and landfill leachates. This research sought to elucidate one of the mechanisms of action of PFAS by studying their uptake by bacteria and partitioning into model phospholipid bilayer membranes. PFAS partitioned into bacteria as well as model membranes (phospholipid liposomes and bilayers). The extent of incorporation into model membranes and bacteria was positively correlated to the number of fluorinated carbons. Furthermore, incorporation was greater for perfluorinated sulfonates than for perfluorinated carboxylates. Changes in zeta potential were observed in liposomes but not bacteria, consistent with PFAS being incorporated into the phospholipid bilayer membrane. Complementary to these results, PFAS were also found to alter the gel-to-fluid phase transition temperature of phospholipid bilayers, demonstrating that PFAS affected lateral phospholipid interactions. This investigation compliments other studies showing that sulfonated PFAS and PFAS with more than seven fluorinated carbons have a higher potential to accumulate within biota than carboxylated and shorter-chain PFAS.
Collapse
Affiliation(s)
- Nicole J M Fitzgerald
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive SE , Minneapolis , Minnesota 55455 , United States
| | - Andreas Wargenau
- Department of Chemical Engineering , McGill University , 3610 University Street , Montreal , Quebec H3A 0C5 , Canada
| | - Carlise Sorenson
- Department of Bioproducts and Biosystems Engineering , University of Minnesota , 1390 Eckles Avenue , Saint Paul , Minnesota 55108 , United States
| | - Joel Pedersen
- Departments of Soil Science, Civil and Environmental Engineering, and Chemistry , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Nathalie Tufenkji
- Department of Chemical Engineering , McGill University , 3610 University Street , Montreal , Quebec H3A 0C5 , Canada
| | - Paige J Novak
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive SE , Minneapolis , Minnesota 55455 , United States
| | - Matt F Simcik
- School of Public Health , University of Minnesota , 420 Delaware Street S.E. , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
45
|
Yang L, Lou J, Wang H, Wu L, Xu J. Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:360-371. [PMID: 29574379 DOI: 10.1016/j.scitotenv.2018.03.201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/11/2018] [Accepted: 03/18/2018] [Indexed: 05/28/2023]
Abstract
High-throughput sequencing has dramatically expanded our understanding of bacterial communities based on the information of the species types and their relative abundances. Recently, researchers have also become aware of a deficiency in not considering the absolute abundance in this technique. Combining two or more different methods has typically been used to achieve absolute quantification of microbial communities. However, making a combination of different methods not only is time-consuming but also involves potential uncertainty due to variations in the experimental conditions. To simplify the experimental procedure and improve the high-throughput absolute abundance quantification (HAAQ) of a soil bacterial community, we propose an HAAQ method that uses an internal standard strain (ISS) HAAQ-GFP to simultaneously obtain both the relative and absolute abundances in the soil bacterial community. The results showed that a soil bacterial community and its dynamics can be better characterized by the HAAQ method when the optimal concentrations of ISS HAAQ-GFP (105 to 107cellsg-1) were used, and a 16S rRNA gene copy number adjustment was applied. Based on the HAAQ method, we first found that soil bacterial absolute abundances at the genus level fitted well to the partial log-normal distribution function, and most genera concentrations were in the range of 103.5 to 106.5cellsg-1 in the test soils. Our case studies also indicated that more comprehensive descriptions of soil bacterial communities and their dynamics can be achieved by both the relative and absolute abundances than by the relative abundance alone. The improved HAAQ method can be potentially applied to other microbial ecological studies and to stimulating the development of quantitative bacterial ecology studies.
Collapse
Affiliation(s)
- Li Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|