1
|
Carvajal-Maldonado D, Li Y, Returan M, Averill AM, Doublié S, Wood RD. Dynamic stem-loop extension by Pol θ and templated insertion during DNA repair. J Biol Chem 2024; 300:107461. [PMID: 38876299 PMCID: PMC11292364 DOI: 10.1016/j.jbc.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Theta-mediated end joining (TMEJ) is critical for survival of cancer cells when other DNA double-stranded break repair pathways are impaired. Human DNA polymerase theta (Pol θ) can extend ssDNA oligonucleotides, but little is known about preferred substrates and mechanism. We show that Pol θ can extend both ssDNA and RNA substrates by unimolecular stem-loop synthesis initiated by only two 3' terminal base pairs. Given sufficient time, Pol θ uses alternative pairing configurations that greatly expand the repertoire of sequence outcomes. Further primer-template adjustments yield low-fidelity outcomes when the nucleotide pool is imbalanced. Unimolecular stem-loop synthesis competes with bimolecular end joining, even when a longer terminal microhomology for end joining is available. Both reactions are partially suppressed by the ssDNA-binding protein replication protein A. Protein-primer grasp residues that are specific to Pol θ are needed for rapid stem-loop synthesis. The ability to perform stem-loop synthesis from a minimally paired primer is rare among human DNA polymerases, but we show that human DNA polymerases Pol η and Pol λ can catalyze related reactions. Using purified human Pol θ, we reconstituted in vitro TMEJ incorporating an insertion arising from a stem-loop extension. These activities may help explain TMEJ repair events that include inverted repeat sequences.
Collapse
Affiliation(s)
- Denisse Carvajal-Maldonado
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA
| | - Yuzhen Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA
| | - Mark Returan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA.
| |
Collapse
|
2
|
Mao EYC, Yen HY, Wu CC. Structural basis of how MGME1 processes DNA 5' ends to maintain mitochondrial genome integrity. Nucleic Acids Res 2024; 52:4067-4078. [PMID: 38471810 DOI: 10.1093/nar/gkae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial genome maintenance exonuclease 1 (MGME1) helps to ensure mitochondrial DNA (mtDNA) integrity by serving as an ancillary 5'-exonuclease for DNA polymerase γ. Curiously, MGME1 exhibits unique bidirectionality in vitro, being capable of degrading DNA from either the 5' or 3' end. The structural basis of this bidirectionally and, particularly, how it processes DNA from the 5' end to assist in mtDNA maintenance remain unclear. Here, we present a crystal structure of human MGME1 in complex with a 5'-overhang DNA, revealing that MGME1 functions as a rigid DNA clamp equipped with a single-strand (ss)-selective arch, allowing it to slide on single-stranded DNA in either the 5'-to-3' or 3'-to-5' direction. Using a nuclease activity assay, we have dissected the structural basis of MGME1-derived DNA cleavage patterns in which the arch serves as a ruler to determine the cleavage site. We also reveal that MGME1 displays partial DNA-unwinding ability that helps it to better resolve 5'-DNA flaps, providing insights into MGME1-mediated 5'-end processing of nascent mtDNA. Our study builds on previously solved MGME1-DNA complex structures, finally providing the comprehensive functional mechanism of this bidirectional, ss-specific exonuclease.
Collapse
Affiliation(s)
- Eric Y C Mao
- Department of Chemistry, College of Science, National Cheng Kung University, Tainan City 701, Taiwan
| | - Han-Yi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chyuan-Chuan Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|
3
|
Gonzalez CD, Nissanka N, Van Booven D, Griswold AJ, Moraes CT. Absence of both MGME1 and POLG EXO abolishes mtDNA whereas absence of either creates unique mtDNA duplications. J Biol Chem 2024; 300:107128. [PMID: 38432635 PMCID: PMC11002302 DOI: 10.1016/j.jbc.2024.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Both POLG and MGME1 are needed for mitochondrial DNA (mtDNA) maintenance in animal cells. POLG, the primary replicative polymerase of the mitochondria, has an exonuclease activity (3'→5') that corrects for the misincorporation of bases. MGME1 serves as an exonuclease (5'→3'), producing ligatable DNA ends. Although both have a critical role in mtDNA replication and elimination of linear fragments, these mechanisms are still not fully understood. Using digital PCR to evaluate and compare mtDNA integrity, we show that Mgme1 knock out (Mgme1 KK) tissue mtDNA is more fragmented than POLG exonuclease-deficient "Mutator" (Polg MM) or WT tissue. In addition, next generation sequencing of mutant hearts showed abundant duplications in/nearby the D-loop region and unique 100 bp duplications evenly spaced throughout the genome only in Mgme1 KK hearts. However, despite these unique mtDNA features at steady-state, we observed a similar delay in the degradation of mtDNA after an induced double strand DNA break in both Mgme1 KK and Polg MM models. Lastly, we characterized double mutant (Polg MM/Mgme1 KK) cells and show that mtDNA cannot be maintained without at least one of these enzymatic activities. We propose a model for the generation of these genomic abnormalities which suggests a role for MGME1 outside of nascent mtDNA end ligation. Our results highlight the role of MGME1 in and outside of the D-loop region during replication, support the involvement of MGME1 in dsDNA degradation, and demonstrate that POLG EXO and MGME1 can partially compensate for each other in maintaining mtDNA.
Collapse
Affiliation(s)
- Christian D Gonzalez
- MSTP and MCDB Programs, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
4
|
Oscorbin I, Filipenko M. Bst polymerase - a humble relative of Taq polymerase. Comput Struct Biotechnol J 2023; 21:4519-4535. [PMID: 37767105 PMCID: PMC10520511 DOI: 10.1016/j.csbj.2023.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
DNA polymerases are a superfamily of enzymes synthesizing DNA using DNA as a template. They are essential for nucleic acid metabolism and for DNA replication and repair. Modern biotechnology and molecular diagnostics rely heavily on DNA polymerases in analyzing nucleic acids. Among a variety of discovered DNA polymerases, Bst polymerase, a large fragment of DNA polymerase I from Geobacillus stearothermophilus, is one of the most commonly used but is not as well studied as Taq polymerase. The ability of Bst polymerase to displace an upstream DNA strand during synthesis, coupled with its moderate thermal stability, has provided the basis for several isothermal DNA amplification methods, including LAMP, WGA, RCA, and many others. Bst polymerase is one of the key components defining the robustness and analytical characteristics of diagnostic test systems based on isothermal amplification. Here, we present an overview of the biochemical and structural features of Bst polymerase and provide information on its mutated analogs.
Collapse
Affiliation(s)
- Igor Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Herrmann GK, Yin YW. The Role of Poly(ADP-ribose) Polymerase 1 in Nuclear and Mitochondrial Base Excision Repair. Biomolecules 2023; 13:1195. [PMID: 37627260 PMCID: PMC10452840 DOI: 10.3390/biom13081195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Poly(ADP-ribose) (PAR) Polymerase 1 (PARP-1), also known as ADP-ribosyl transferase with diphtheria toxin homology 1 (ARTD-1), is a critical player in DNA damage repair, during which it catalyzes the ADP ribosylation of self and target enzymes. While the nuclear localization of PARP-1 has been well established, recent studies also suggest its mitochondrial localization. In this review, we summarize the differences between mitochondrial and nuclear Base Excision Repair (BER) pathways, the involvement of PARP-1 in mitochondrial and nuclear BER, and its functional interplay with other BER enzymes.
Collapse
Affiliation(s)
- Geoffrey K. Herrmann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Plaza-G A I, Lemishko KM, Crespo R, Truong TQ, Kaguni LS, Cao-García FJ, Ciesielski GL, Ibarra B. Mechanism of strand displacement DNA synthesis by the coordinated activities of human mitochondrial DNA polymerase and SSB. Nucleic Acids Res 2023; 51:1750-1765. [PMID: 36744436 PMCID: PMC9976888 DOI: 10.1093/nar/gkad037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
Many replicative DNA polymerases couple DNA replication and unwinding activities to perform strand displacement DNA synthesis, a critical ability for DNA metabolism. Strand displacement is tightly regulated by partner proteins, such as single-stranded DNA (ssDNA) binding proteins (SSBs) by a poorly understood mechanism. Here, we use single-molecule optical tweezers and biochemical assays to elucidate the molecular mechanism of strand displacement DNA synthesis by the human mitochondrial DNA polymerase, Polγ, and its modulation by cognate and noncognate SSBs. We show that Polγ exhibits a robust DNA unwinding mechanism, which entails lowering the energy barrier for unwinding of the first base pair of the DNA fork junction, by ∼55%. However, the polymerase cannot prevent the reannealing of the parental strands efficiently, which limits by ∼30-fold its strand displacement activity. We demonstrate that SSBs stimulate the Polγ strand displacement activity through several mechanisms. SSB binding energy to ssDNA additionally increases the destabilization energy at the DNA junction, by ∼25%. Furthermore, SSB interactions with the displaced ssDNA reduce the DNA fork reannealing pressure on Polγ, in turn promoting the productive polymerization state by ∼3-fold. These stimulatory effects are enhanced by species-specific functional interactions and have significant implications in the replication of the human mitochondrial DNA.
Collapse
Affiliation(s)
- Ismael Plaza-G A
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain
| | - Kateryna M Lemishko
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain
| | - Rodrigo Crespo
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Thinh Q Truong
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Francisco J Cao-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA.,Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.,Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
7
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
8
|
Szymanski MR, Karlowicz A, Herrmann GK, Cen Y, Yin YW. Human EXOG Possesses Strong AP Hydrolysis Activity: Implication on Mitochondrial DNA Base Excision Repair. J Am Chem Soc 2022; 144:23543-23550. [PMID: 36516439 PMCID: PMC10920074 DOI: 10.1021/jacs.2c10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most oxidative damage on mitochondrial DNA is corrected by the base excision repair (BER) pathway. However, the enzyme that catalyzes the rate-limiting reaction─deoxyribose phosphate (dRP) removal─in the multienzymatic reaction pathway has not been completely determined in mitochondria. Also unclear is how a logical order of enzymatic reactions is ensured. Here, we present structural and enzymatic studies showing that human mitochondrial EXOG (hEXOG) exhibits strong 5'-dRP removal ability. We show that, unlike the canonical dRP lyases that act on a single substrate, hEXOG functions on a variety of abasic sites, including 5'-dRP, its oxidized product deoxyribonolactone (dL), and the stable synthetic analogue tetrahydrofuran (THF). We determined crystal structures of hEXOG complexed with a THF-containing DNA and with a partial gapped DNA to 2.9 and 2.1 Å resolutions, respectively. The structures illustrate that hEXOG uses a controlled 5'-exonuclease activity to cleave the third phosphodiester bond away from the 5'-abasic site. This study provides a structural basis for hEXOG's broad spectrum of substrates. Further, we show that hEXOG can set the order of BER reactions by generating an ideal substrate for the subsequent reaction in BER and inhibit off-pathway reactions.
Collapse
Affiliation(s)
- Michal R Szymanski
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Anna Karlowicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | | | - Yana Cen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | | |
Collapse
|
9
|
The N-terminal domain of human mitochondrial helicase Twinkle has DNA-binding activity crucial for supporting processive DNA synthesis by polymerase γ. J Biol Chem 2022; 299:102797. [PMID: 36528058 PMCID: PMC9860392 DOI: 10.1016/j.jbc.2022.102797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Twinkle is the ring-shaped replicative helicase within the human mitochondria with high homology to bacteriophage T7 gp4 helicase-primase. Unlike many orthologs of Twinkle, the N-terminal domain (NTD) of human Twinkle has lost its primase activity through evolutionarily acquired mutations. The NTD has no demonstrated activity thus far; its role has remained unclear. Here, we biochemically characterize the isolated NTD and C-terminal domain (CTD) with linker to decipher their contributions to full-length Twinkle activities. This novel CTD construct hydrolyzes ATP, has weak DNA unwinding activity, and assists DNA polymerase γ (Polγ)-catalyzed strand-displacement synthesis on short replication forks. However, CTD fails to promote multikilobase length product formation by Polγ in rolling-circle DNA synthesis. Thus, CTD retains all the motor functions but struggles to implement them for processive translocation. We show that NTD has DNA-binding activity, and its presence stabilizes Twinkle oligomerization. CTD oligomerizes on its own, but the loss of NTD results in heterogeneously sized oligomeric species. The CTD also exhibits weaker and salt-sensitive DNA binding compared with full-length Twinkle. Based on these results, we propose that NTD directly contributes to DNA binding and holds the DNA in place behind the central channel of the CTD like a "doorstop," preventing helicase slippages and sustaining processive unwinding. Consistent with this model, mitochondrial single-stranded DNA-binding protein (mtSSB) compensate for the NTD loss and partially restore kilobase length DNA synthesis by CTD and Polγ. The implications of our studies are foundational for understanding the mechanisms of disease-causing Twinkle mutants that lie in the NTD.
Collapse
|
10
|
Karlowicz A, Dubiel AB, Czerwinska J, Bledea A, Purzycki P, Grzelewska M, McAuley RJ, Szczesny RJ, Brzuska G, Krol E, Szczesny B, Szymanski MR. In vitro reconstitution reveals a key role of human mitochondrial EXOG in RNA primer processing. Nucleic Acids Res 2022; 50:7991-8007. [PMID: 35819194 PMCID: PMC9371904 DOI: 10.1093/nar/gkac581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022] Open
Abstract
The removal of RNA primers is essential for mitochondrial DNA (mtDNA) replication. Several nucleases have been implicated in RNA primer removal in human mitochondria, however, no conclusive mechanism has been elucidated. Here, we reconstituted minimal in vitro system capable of processing RNA primers into ligatable DNA ends. We show that human 5'-3' exonuclease, EXOG, plays a fundamental role in removal of the RNA primer. EXOG cleaves short and long RNA-containing flaps but also in cooperation with RNase H1, processes non-flap RNA-containing intermediates. Our data indicate that the enzymatic activity of both enzymes is necessary to process non-flap RNA-containing intermediates and that regardless of the pathway, EXOG-mediated RNA cleavage is necessary prior to ligation by DNA Ligase III. We also show that upregulation of EXOG levels in mitochondria increases ligation efficiency of RNA-containing substrates and discover physical interactions, both in vitro and in cellulo, between RNase H1 and EXOG, Pol γA, Pol γB and Lig III but not FEN1, which we demonstrate to be absent from mitochondria of human lung epithelial cells. Together, using human mtDNA replication enzymes, we reconstitute for the first time RNA primer removal reaction and propose a novel model for RNA primer processing in human mitochondria.
Collapse
Affiliation(s)
- Anna Karlowicz
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej B Dubiel
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland.,Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Adela Bledea
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Marta Grzelewska
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Ryan J McAuley
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Gabriela Brzuska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Ewelina Krol
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Michal R Szymanski
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
11
|
Somuncu B, Ekmekcioglu A, Antmen FM, Ertuzun T, Deniz E, Keskin N, Park J, Yazici IE, Simsek B, Erman B, Yin W, Erman B, Muftuoglu M. Targeting mitochondrial DNA polymerase gamma for selective inhibition of MLH1 deficient colon cancer growth. PLoS One 2022; 17:e0268391. [PMID: 35657956 PMCID: PMC9165880 DOI: 10.1371/journal.pone.0268391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Synthetic lethality in DNA repair pathways is an important strategy for the selective treatment of cancer cells without harming healthy cells and developing cancer-specific drugs. The synthetic lethal interaction between the mismatch repair (MMR) protein, MutL homolog 1 (MLH1), and the mitochondrial base excision repair protein, DNA polymerase γ (Pol γ) was used in this study for the selective treatment of MLH1 deficient cancers. Germline mutations in the MLH1 gene and aberrant MLH1 promoter methylation result in an increased risk of developing many cancers, including nonpolyposis colorectal and endometrial cancers. Because the inhibition of Pol γ in MLH1 deficient cancer cells provides the synthetic lethal selectivity, we conducted a comprehensive small molecule screening from various databases and chemical drug library molecules for novel Pol γ inhibitors that selectively kill MLH1 deficient cancer cells. We characterized these Pol γ inhibitor molecules in vitro and in vivo, and identified 3,3'-[(1,1'-Biphenyl)-4',4'-diyl)bis(azo)]bis[4-amino-1-naphthalenesulfonic acid] (congo red; CR; Zinc 03830554) as a high-affinity binder to the Pol γ protein and potent inhibitor of the Pol γ strand displacement and one-nucleotide incorporation DNA synthesis activities in vitro and in vivo. CR reduced the cell proliferation of MLH1 deficient HCT116 human colon cancer cells and suppressed HCT116 xenograft tumor growth whereas it did not affect the MLH1 proficient cell proliferation and xenograft tumor growth. CR caused mitochondrial dysfunction and cell death by inhibiting Pol γ activity and oxidative mtDNA damage repair, increasing the production of reactive oxygen species and oxidative mtDNA damage in MLH1 deficient cells. This study suggests that the Pol γ inhibitor, CR may be further evaluated for the MLH1 deficient cancers' therapy.
Collapse
Affiliation(s)
- Berna Somuncu
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aysegul Ekmekcioglu
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fatma Merve Antmen
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Tugce Ertuzun
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Emre Deniz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Nazli Keskin
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Joon Park
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ilgu Ece Yazici
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Busra Simsek
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
| | - Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Meltem Muftuoglu
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
12
|
Ciesielska EJ, Kim S, Bisimwa HGM, Grier C, Rahman MM, Young CKJ, Young MJ, Oliveira MT, Ciesielski GL. Remdesivir triphosphate blocks DNA synthesis and increases exonucleolysis by the replicative mitochondrial DNA polymerase, Pol γ. Mitochondrion 2021; 61:147-158. [PMID: 34619353 PMCID: PMC8595818 DOI: 10.1016/j.mito.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic prompted the FDA to authorize a new nucleoside analogue, remdesivir, for emergency use in affected individuals. We examined the effects of its active metabolite, remdesivir triphosphate (RTP), on the activity of the replicative mitochondrial DNA polymerase, Pol γ. We found that while RTP is not incorporated by Pol γ into a nascent DNA strand, it remains associated with the enzyme impeding its synthetic activity and stimulating exonucleolysis. In spite of that, we found no evidence for deleterious effects of remdesivir treatment on the integrity of the mitochondrial genome in human cells in culture.
Collapse
Affiliation(s)
- Elena J Ciesielska
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | - Shalom Kim
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | | | - Cody Grier
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | - Md Mostafijur Rahman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, United States
| | - Carolyn K J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, United States
| | - Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, United States
| | - Marcos T Oliveira
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States.
| |
Collapse
|
13
|
Ciesielski GL, Kim S, de Bovi Pontes C, Kaguni LS. Physical and Functional Interaction of Mitochondrial Single-Stranded DNA-Binding Protein and the Catalytic Subunit of DNA Polymerase Gamma. Front Genet 2021; 12:721864. [PMID: 34539752 PMCID: PMC8440931 DOI: 10.3389/fgene.2021.721864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
The maintenance of the mitochondrial genome depends on a suite of nucleus-encoded proteins, among which the catalytic subunit of the mitochondrial replicative DNA polymerase, Pol γα, plays a pivotal role. Mutations in the Pol γα-encoding gene, POLG, are a major cause of human mitochondrial disorders. Here we present a study of direct and functional interactions of Pol γα with the mitochondrial single-stranded DNA-binding protein (mtSSB). mtSSB coordinates the activity of the enzymes at the DNA replication fork. However, the mechanism of this functional relationship is elusive, and no direct interactions between the replicative factors have been identified to date. This contrasts strikingly with the extensive interactomes of SSB proteins identified in other homologous replication systems. Here we show for the first time that mtSSB binds Pol γα directly, in a DNA-independent manner. This interaction is strengthened in the absence of the loop 2.3 structure in mtSSB, and is abolished upon preincubation with Pol γβ. Together, our findings suggest that the interaction between mtSSB and polymerase gamma holoenzyme (Pol γ) involves a balance between attractive and repulsive affinities, which have distinct effects on DNA synthesis and exonucleolysis.
Collapse
Affiliation(s)
- Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.,Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | - Shalom Kim
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | | | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| |
Collapse
|
14
|
Baptiste BA, Baringer SL, Kulikowicz T, Sommers JA, Croteau DL, Brosh RM, Bohr VA. DNA polymerase β outperforms DNA polymerase γ in key mitochondrial base excision repair activities. DNA Repair (Amst) 2021; 99:103050. [PMID: 33540226 PMCID: PMC7887074 DOI: 10.1016/j.dnarep.2021.103050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
DNA polymerase beta (POLβ), well known for its role in nuclear DNA base excision repair (BER), has been shown to be present in the mitochondria of several different cell types. Here we present a side-by-side comparison of BER activities of POLβ and POLγ, the mitochondrial replicative polymerase, previously thought to be the only mitochondrial polymerase. We find that POLβ is significantly more proficient at single-nucleotide gap filling, both in substrates with ends that require polymerase processing, and those that do not. We also show that POLβ has a helicase-independent functional interaction with the mitochondrial helicase, TWINKLE. This interaction stimulates strand-displacement synthesis, but not single-nucleotide gap filling. Importantly, we find that purified mitochondrial extracts from cells lacking POLβ are severely deficient in processing BER intermediates, suggesting that mitochondrially localized DNA POLβ may be critical for cells with high energetic demands that produce greater levels of oxidative stress and therefore depend upon efficient BER for mitochondrial health.
Collapse
Affiliation(s)
- Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Stephanie L Baringer
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Tomasz Kulikowicz
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| |
Collapse
|
15
|
Herrmann GK, Russell WK, Garg NJ, Yin YW. Poly(ADP-ribose) polymerase 1 regulates mitochondrial DNA repair in an NAD-dependent manner. J Biol Chem 2021; 296:100309. [PMID: 33482196 PMCID: PMC7949115 DOI: 10.1016/j.jbc.2021.100309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial DNA is located in organelle that house essential metabolic reactions and contains high reactive oxygen species. Therefore, mitochondrial DNA suffers more oxidative damage than its nuclear counterpart. Formation of a repair enzyme complex is beneficial to DNA repair. Recent studies have shown that mitochondrial DNA polymerase (Pol γ) and poly(ADP-ribose) polymerase 1 (PARP1) were found in the same complex along with other mitochondrial DNA repair enzymes, and mitochondrial PARP1 level is correlated with mtDNA integrity. However, the molecular basis for the functional connection between Pol γ and PARP1 has not yet been elucidated because cellular functions of PARP1 in DNA repair are intertwined with metabolism via NAD+ (nicotinamide adenosine dinucleotide), the substrate of PARP1, and a metabolic cofactor. To dissect the direct effect of PARP1 on mtDNA from the secondary perturbation of metabolism, we report here biochemical studies that recapitulated Pol γ PARylation observed in cells and showed that PARP1 regulates Pol γ activity during DNA repair in a metabolic cofactor NAD+ (nicotinamide adenosine dinucleotide)-dependent manner. In the absence of NAD+, PARP1 completely inhibits Pol γ, while increasing NAD+ levels to a physiological concentration that enables Pol γ to resume maximum repair activity. Because cellular NAD+ levels are linked to metabolism and to ATP production via oxidative phosphorylation, our results suggest that mtDNA damage repair is coupled to cellular metabolic state and the integrity of the respiratory chain.
Collapse
Affiliation(s)
- Geoffrey K Herrmann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Y Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
16
|
Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res 2020; 48:11244-11258. [PMID: 33021629 PMCID: PMC7672454 DOI: 10.1093/nar/gkaa804] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Deletions in mitochondrial DNA (mtDNA) are associated with diverse human pathologies including cancer, aging and mitochondrial disorders. Large-scale deletions span kilobases in length and the loss of these associated genes contributes to crippled oxidative phosphorylation and overall decline in mitochondrial fitness. There is not a united view for how mtDNA deletions are generated and the molecular mechanisms underlying this process are poorly understood. This review discusses the role of replication and repair in mtDNA deletion formation as well as nucleic acid motifs such as repeats, secondary structures, and DNA damage associated with deletion formation in the mitochondrial genome. We propose that while erroneous replication and repair can separately contribute to deletion formation, crosstalk between these pathways is also involved in generating deletions.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Hailey L Gahlon
- To whom correspondence should be addressed. Tel: +41 44 632 3731;
| |
Collapse
|
17
|
Boldinova EO, Belousova EA, Gagarinskaya DI, Maltseva EA, Khodyreva SN, Lavrik OI, Makarova AV. Strand Displacement Activity of PrimPol. Int J Mol Sci 2020; 21:ijms21239027. [PMID: 33261049 PMCID: PMC7729601 DOI: 10.3390/ijms21239027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Human PrimPol is a unique enzyme possessing DNA/RNA primase and DNA polymerase activities. In this work, we demonstrated that PrimPol efficiently fills a 5-nt gap and possesses the conditional strand displacement activity stimulated by Mn2+ ions and accessory replicative proteins RPA and PolDIP2. The DNA displacement activity of PrimPol was found to be more efficient than the RNA displacement activity and FEN1 processed the 5′-DNA flaps generated by PrimPol in vitro.
Collapse
Affiliation(s)
- Elizaveta O. Boldinova
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (E.O.B.); (D.I.G.)
| | - Ekaterina A. Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Diana I. Gagarinskaya
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (E.O.B.); (D.I.G.)
| | - Ekaterina A. Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (E.A.B.); (E.A.M.); (S.N.K.); (O.I.L.)
| | - Alena V. Makarova
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov sq. 2, 123182 Moscow, Russia; (E.O.B.); (D.I.G.)
- Correspondence:
| |
Collapse
|
18
|
Moore TM, Zhou Z, Strumwasser AR, Cohn W, Lin AJ, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Hoang AN, Widjaja K, Abrishami AD, Charugundla S, Stiles L, Whitelegge JP, Turcotte LP, Wanagat J, Hevener AL. Age-induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge. Aging Cell 2020; 19:e13166. [PMID: 33049094 PMCID: PMC7681042 DOI: 10.1111/acel.13166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/10/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A "mutator" mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut ) because it accumulates mtDNA point mutations ~ 500-fold > wild-type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24-hr starvation, and following high-fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12-month-old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress-related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice.
Collapse
Affiliation(s)
- Timothy M. Moore
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Whitaker Cohn
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Cory
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kate Whitney
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Theodore Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Timothy Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Joseph L. Lee
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Daniel H. Rucker
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Austin N. Hoang
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Widjaja
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Aaron D. Abrishami
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Sarada Charugundla
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Julian P. Whitelegge
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jonathan Wanagat
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Andrea L. Hevener
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Iris Cantor‐UCLA Women's Health CenterUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
19
|
Wu CC, Lin JL, Yang-Yen HF, Yuan HS. A unique exonuclease ExoG cleaves between RNA and DNA in mitochondrial DNA replication. Nucleic Acids Res 2019; 47:5405-5419. [PMID: 30949702 PMCID: PMC6547421 DOI: 10.1093/nar/gkz241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
Replication of sufficient mitochondrial DNA (mtDNA) is essential for maintaining mitochondrial functions in mammalian cells. During mtDNA replication, RNA primers must be removed before the nascent circular DNA strands rejoin. This process involves mitochondrial RNase H1, which removes most of the RNA primers but leaves two ribonucleotides attached to the 5′ end of nascent DNA. A subsequent 5′-exonuclease is required to remove the residual ribonucleotides, however, it remains unknown if any mitochondrial 5′-exonuclease could remove two RNA nucleotides from a hybrid duplex DNA. Here, we report that human mitochondrial Exonuclease G (ExoG) may participate in this particular process by efficiently cleaving at RNA–DNA junctions to remove the 5′-end RNA dinucleotide in an RNA/DNA hybrid duplex. Crystal structures of human ExoG bound respectively with DNA, RNA/DNA hybrid and RNA–DNA chimeric duplexes uncover the underlying structural mechanism of how ExoG specifically recognizes and cleaves at RNA–DNA junctions of a hybrid duplex with an A-form conformation. This study hence establishes the molecular basis of ExoG functioning as a unique 5′-exonuclease to mediate the flap-independent RNA primer removal process during mtDNA replication to maintain mitochondrial genome integrity.
Collapse
Affiliation(s)
- Chyuan-Chuan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Jason L J Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hsin-Fang Yang-Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, ROC
- To whom correspondence should be addressed. Tel: +886 2 27884151;
| |
Collapse
|
20
|
Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem 2018; 62:287-296. [PMID: 29880722 PMCID: PMC6056714 DOI: 10.1042/ebc20170100] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022]
Abstract
Mammalian mitochondria contain multiple copies of a circular, double-stranded DNA genome and a dedicated DNA replication machinery is required for its maintenance. Many disease-causing mutations affect mitochondrial replication factors and a detailed understanding of the replication process may help to explain the pathogenic mechanisms underlying a number of mitochondrial diseases. We here give a brief overview of DNA replication in mammalian mitochondria, describing our current understanding of this process and some unanswered questions remaining.
Collapse
|
21
|
Trasviña-Arenas CH, Baruch-Torres N, Cordoba-Andrade FJ, Ayala-García VM, García-Medel PL, Díaz-Quezada C, Peralta-Castro A, Ordaz-Ortiz JJ, Brieba LG. Identification of a unique insertion in plant organellar DNA polymerases responsible for 5'-dRP lyase and strand-displacement activities: Implications for Base Excision Repair. DNA Repair (Amst) 2018. [PMID: 29522990 DOI: 10.1016/j.dnarep.2018.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant mitochondrial and chloroplast genomes encode essential proteins for oxidative phosphorylation and photosynthesis. For proper cellular function, plant organelles must ensure genome integrity. Although plant organelles repair damaged DNA using the multi-enzyme Base Excision Repair (BER) pathway, the details of this pathway in plant organelles are largely unknown. The initial enzymatic steps in BER produce a 5'-deoxyribose phosphate (5'-dRP) moiety that must be removed to allow DNA ligation and in plant organelles, the enzymes responsible for the removal of a 5'-dRP group are unknown. In metazoans, DNA polymerases (DNAPs) remove the 5'-dRP moiety using their intrinsic lyase and/or strand-displacement activities during short or long-patch BER sub-pathways, respectively. The plant model Arabidopsis thaliana encodes two family-A DNAPs paralogs, AtPolIA and AtPolIB, which are the sole DNAPs in plant organelles identified to date. Herein we demonstrate that both AtPolIs present 5'-dRP lyase activities. AtPolIB performs efficient strand-displacement on a BER-associated 1-nt gap DNA substrate, whereas AtPolIA exhibits only moderate strand-displacement activity. Both lyase and strand-displacement activities are dependent on an amino acid insertion that is exclusively present in plant organellar DNAPs. Within this insertion, we identified that residue AtPollB-Lys593 acts as nucleophile for lyase activity. Our results demonstrate that AtPolIs are functionally equipped to play a role in short-patch BER and suggest a major role of AtPolIB in a predicted long-patch BER sub-pathway. We propose that the acquisition of insertion 1 in the polymerization domain of AtPolIs was a key component in their evolution as BER associated and replicative DNAPs.
Collapse
Affiliation(s)
- Carlos H Trasviña-Arenas
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Francisco J Cordoba-Andrade
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Víctor M Ayala-García
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Paola L García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Antolín Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - José Juan Ordaz-Ortiz
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
22
|
A domain in human EXOG converts apoptotic endonuclease to DNA-repair exonuclease. Nat Commun 2017; 8:14959. [PMID: 28466855 PMCID: PMC5418593 DOI: 10.1038/ncomms14959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/16/2017] [Indexed: 11/09/2022] Open
Abstract
Human EXOG (hEXOG) is a 5′-exonuclease that is crucial for mitochondrial DNA repair; the enzyme belongs to a nonspecific nuclease family that includes the apoptotic endonuclease EndoG. Here we report biochemical and structural studies of hEXOG, including structures in its apo form and in a complex with DNA at 1.81 and 1.85 Å resolution, respectively. A Wing domain, absent in other ββα-Me members, suppresses endonuclease activity, but confers on hEXOG a strong 5′-dsDNA exonuclease activity that precisely excises a dinucleotide using an intrinsic ‘tape-measure'. The symmetrical apo hEXOG homodimer becomes asymmetrical upon binding to DNA, providing a structural basis for how substrate DNA bound to one active site allosterically regulates the activity of the other. These properties of hEXOG suggest a pathway for mitochondrial BER that provides an optimal substrate for subsequent gap-filling synthesis by DNA polymerase γ. Human EXOG is crucial for mitochondrial DNA repair. Here the authors present the crystal structures of hEXOG in apo form and as DNA complex and suggest a `tape-measure' activity to generate optimal substrates for mitochondrial base excision repair.
Collapse
|
23
|
Uhler JP, Thörn C, Nicholls TJ, Matic S, Milenkovic D, Gustafsson CM, Falkenberg M. MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication. Nucleic Acids Res 2016; 44:5861-71. [PMID: 27220468 PMCID: PMC4937333 DOI: 10.1093/nar/gkw468] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
Recently, MGME1 was identified as a mitochondrial DNA nuclease with preference for single-stranded DNA (ssDNA) substrates. Loss-of-function mutations in patients lead to mitochondrial disease with DNA depletion, deletions, duplications and rearrangements. Here, we assess the biochemical role of MGME1 in the processing of flap intermediates during mitochondrial DNA replication using reconstituted systems. We show that MGME1 can cleave flaps to enable efficient ligation of newly replicated DNA strands in combination with POLγ. MGME1 generates a pool of imprecisely cut products (short flaps, nicks and gaps) that are converted to ligatable nicks by POLγ through extension or excision of the 3'-end strand. This is dependent on the 3'-5' exonuclease activity of POLγ which limits strand displacement activity and enables POLγ to back up to the nick by 3'-5' degradation. We also demonstrate that POLγ-driven strand displacement is sufficient to generate DNA- but not RNA-flap substrates suitable for MGME1 cleavage and ligation during replication. Our findings have implications for RNA primer removal models, the 5'-end processing of nascent DNA at OriH, and DNA repair.
Collapse
Affiliation(s)
- Jay P Uhler
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Christian Thörn
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Thomas J Nicholls
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Stanka Matic
- Max Planck Institute for Biology of Ageing, 50391 Cologne, Germany
| | | | - Claes M Gustafsson
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Maria Falkenberg
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
24
|
Abstract
Mammalian mitochondrial DNA (mtDNA) encodes 13 proteins that are essential for the function of the oxidative phosphorylation system, which is composed of four respiratory-chain complexes and adenosine triphosphate (ATP) synthase. Remarkably, the maintenance and expression of mtDNA depend on the mitochondrial import of hundreds of nuclear-encoded proteins that control genome maintenance, replication, transcription, RNA maturation, and mitochondrial translation. The importance of this complex regulatory system is underscored by the identification of numerous mutations of nuclear genes that impair mtDNA maintenance and expression at different levels, causing human mitochondrial diseases with pleiotropic clinical manifestations. The basic scientific understanding of the mechanisms controlling mtDNA function has progressed considerably during the past few years, thanks to advances in biochemistry, genetics, and structural biology. The challenges for the future will be to understand how mtDNA maintenance and expression are regulated and to what extent direct intramitochondrial cross talk between different processes, such as transcription and translation, is important.
Collapse
Affiliation(s)
- Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden; ,
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden; ,
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; .,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
25
|
Primer removal during mammalian mitochondrial DNA replication. DNA Repair (Amst) 2015; 34:28-38. [PMID: 26303841 DOI: 10.1016/j.dnarep.2015.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/17/2022]
Abstract
The small circular mitochondrial genome in mammalian cells is replicated by a dedicated replisome, defects in which can cause mitochondrial disease in humans. A fundamental step in mitochondrial DNA (mtDNA) replication and maintenance is the removal of the RNA primers needed for replication initiation. The nucleases RNase H1, FEN1, DNA2, and MGME1 have been implicated in this process. Here we review the role of these nucleases in the light of primer removal pathways in mitochondria, highlight associations with disease, as well as consider the implications for mtDNA replication initiation.
Collapse
|
26
|
Jemt E, Persson Ö, Shi Y, Mehmedovic M, Uhler JP, Dávila López M, Freyer C, Gustafsson CM, Samuelsson T, Falkenberg M. Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res 2015; 43:9262-75. [PMID: 26253742 PMCID: PMC4627069 DOI: 10.1093/nar/gkv804] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/28/2015] [Indexed: 11/12/2022] Open
Abstract
The majority of mitochondrial DNA replication events are terminated prematurely. The nascent DNA remains stably associated with the template, forming a triple-stranded displacement loop (D-loop) structure. However, the function of the D-loop region of the mitochondrial genome remains poorly understood. Using a comparative genomics approach we here identify two closely related 15 nt sequence motifs of the D-loop, strongly conserved among vertebrates. One motif is at the D-loop 5'-end and is part of the conserved sequence block 1 (CSB1). The other motif, here denoted coreTAS, is at the D-loop 3'-end. Both these sequences may prevent transcription across the D-loop region, since light and heavy strand transcription is terminated at CSB1 and coreTAS, respectively. Interestingly, the replication of the nascent D-loop strand, occurring in a direction opposite to that of heavy strand transcription, is also terminated at coreTAS, suggesting that coreTAS is involved in termination of both transcription and replication. Finally, we demonstrate that the loading of the helicase TWINKLE at coreTAS is reversible, implying that this site is a crucial component of a switch between D-loop formation and full-length mitochondrial DNA replication.
Collapse
Affiliation(s)
- Elisabeth Jemt
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Örjan Persson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Yonghong Shi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Majda Mehmedovic
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Jay P Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Marcela Dávila López
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Christoph Freyer
- Department of Laboratory Medicine, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
27
|
The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication. Nat Commun 2015; 6:7303. [PMID: 26095671 PMCID: PMC4557304 DOI: 10.1038/ncomms8303] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial DNA (mtDNA) polymerase γ (POLγ) harbours a 3′–5′ exonuclease proofreading activity. Here we demonstrate that this activity is required for the creation of ligatable ends during mtDNA replication. Exonuclease-deficient POLγ fails to pause on reaching a downstream 5′-end. Instead, the enzyme continues to polymerize into double-stranded DNA, creating an unligatable 5′-flap. Disease-associated mutations can both increase and decrease exonuclease activity and consequently impair DNA ligation. In mice, inactivation of the exonuclease activity causes an increase in mtDNA mutations and premature ageing phenotypes. These mutator mice also contain high levels of truncated, linear fragments of mtDNA. We demonstrate that the formation of these fragments is due to impaired ligation, causing nicks near the origin of heavy-strand DNA replication. In the subsequent round of replication, the nicks lead to double-strand breaks and linear fragment formation. Mitochondrial DNA (mtDNA) polymerase γ has a 3′–5′ exonuclease proofreading activity. Here, the authors show it is required for creating ligatable ends during mtDNA replication, and inactivation of the activity in mice causes strand-specific nicks in DNA and the formation of linear mtDNA fragments.
Collapse
|
28
|
Szymanski MR, Kuznetsov VB, Shumate C, Meng Q, Lee YS, Patel G, Patel S, Yin YW. Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase. EMBO J 2015; 34:1959-70. [PMID: 26056153 DOI: 10.15252/embj.201591520] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/18/2015] [Indexed: 11/09/2022] Open
Abstract
The human DNA polymerase gamma (Pol γ) is responsible for DNA replication in mitochondria. Pol γ is particularly susceptible to inhibition by dideoxynucleoside-based inhibitors designed to fight viral infection. Here, we report crystal structures of the replicating Pol γ-DNA complex bound to either substrate or zalcitabine, an inhibitor used for HIV reverse transcriptase. The structures reveal that zalcitabine binds to the Pol γ active site almost identically to the substrate dCTP, providing a structural basis for Pol γ-mediated drug toxicity. When compared to the apo form, Pol γ undergoes intra- and inter-subunit conformational changes upon formation of the ternary complex with primer/template DNA and substrate. We also find that the accessory subunit Pol γB, which lacks intrinsic enzymatic activity and does not contact the primer/template DNA directly, serves as an allosteric regulator of holoenzyme activities. The structures presented here suggest a mechanism for processivity of the holoenzyme and provide a model for understanding the deleterious effects of Pol γ mutations in human disease. Crystal structures of the mitochondrial DNA polymerase, Pol γ, in complex with substrate or antiviral inhibitor zalcitabine provide a basis for understanding Pol γ-mediated drug toxicity.
Collapse
Affiliation(s)
- Michal R Szymanski
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vladmir B Kuznetsov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christie Shumate
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Qingchao Meng
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Young-Sam Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gayatri Patel
- Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Smita Patel
- Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|