1
|
Guo Z, Wang X, Sun J, Chen Q, Chen L, Wu O, Jin Y, Lyu T, Morgan J, Li YM, Zhou H, Chen Y, You X, Zhou Y, Chen Y, Qian Q, Wu A. Injectable Nanocomposite Hydrogels for Intervertebral Disc Degeneration: Combating Oxidative Stress, Mitochondrial Dysfunction, and Ferroptosis. Adv Healthc Mater 2025; 14:e2403892. [PMID: 40079053 DOI: 10.1002/adhm.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Intervertebral disc degeneration (IVDD) is a major cause of low back pain, where oxidative stress and mitochondrial dysfunction are key contributors. Additionally, ferroptosis, an iron-dependent form of cell death, is identified as a critical mechanism in IVDD pathogenesis. Herein, the therapeutic potential of gallic acid (GA)-derived PGA-Cu nanoparticles, enhanced with functional octapeptide (Cys-Lys-His-Gly-d-Arg-d-Tyr-Lys-Phe, SS08) to build the mitochondria-targeted nanoparticles (PGA-Cu@SS08), and embedded within a hydrogel matrix to form a nanocomposite hydrogel, is explored. The nanoparticles show targeted localization within mitochondria, effectively scavenging reactive oxygen species and preserving mitochondrial function. The abundant phenolic hydroxyl groups present on the nanoparticle surface, along with the histidine residue of the SS08 peptide, endow these entities with the capacity to chelate iron. Through RNA sequencing analysis, it is discovered that PGA-Cu@SS08 activates the NRF2 signaling pathway, mitigating ferroptosis. It also reduces iron overload by inhibiting the autophagy of iron storage proteins. Additionally, the nanocomposite hydrogels exhibit excellent biocompatibility and biodegradability, along with enhanced mechanical properties that improve intervertebral disc (IVD) performance. PGA-Cu@SS08 is continuously released from these hydrogels, restoring IVD height and maintaining tissue hydration levels, thus facilitating future applications for alleviating IVDD.
Collapse
Affiliation(s)
- Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - QiZhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Taidong Lyu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jones Morgan
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Yan Michael Li
- The Minimally Invasive Brain and Spine Institute, Department of Neurosurgery, State University of New York Upstate medical university, 475 Irving Ave, #402, Syracuse, NY, 13210, USA
| | - Hao Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Yongcheng Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiuling You
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- CINBIO, University of Vigo, Campus University Lagoas Marcosende, Vigo, 36310, Spain
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
2
|
K S PK, Jyothi MN, Prashant A. Mitochondrial DNA variants in the pathogenesis and metabolic alterations of diabetes mellitus. Mol Genet Metab Rep 2025; 42:101183. [PMID: 39835172 PMCID: PMC11743804 DOI: 10.1016/j.ymgmr.2024.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Mitochondrial DNA (mtDNA) variants considerably affect diabetes mellitus by disturbing mitochondrial function, energy metabolism, oxidative stress response, and even insulin secretion. The m.3243 A > G variants is associated with maternally inherited diabetes and deafness (MIDD), where early onset diabetes and hearing loss are prominent features. Other types of mtDNA variants involve genes ND4 and tRNA Ala genes that increase susceptibility to type 2 diabetes. Understanding these variants will provide a basis for developing targeted therapy to improve mitochondrial function and metabolic health. This article reviews the impact of mtDNA variants in diabetes, specifically with regards to the m.3243 A > G variant effects on mitochondrial function and insulin secretion and other mtDNA variants that contribute to diabetes susceptibility, particularly ND4 and tRNA Ala gene variants. Data from extant literature were synthesised to obtain an understanding of how mtDNA variants affect diabetes pathogenesis. The main defect for MIDD is the m.3243 A > G variant, which comprises enhanced susceptibility to metabolic syndrome and type 2 diabetes, followed by mitochondrial dysfunction, insulin resistance, and beta-cell dysfunction. Other mtDNA variants have also been reported to enhance diabetes susceptibility through mitochondrial dysfunction and insulin resistance. Increased production of reactive oxygen species (ROS) resulting from mitochondrial malfunction adds to metabolic and tissue damage. This happens in tissues crucial to glucose homeostasis, and it represents an important contribution of mitochondrial dysfunction to metabolic disturbances in diabetes. These mechanisms would underlie the rationale for developing targeted therapies to preserve mitochondrial function and, hence improve the metabolic health of diabetic patients.
Collapse
Affiliation(s)
- Praveen Kumar K S
- Department of Medical Genetics, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India
- SIG-TRRG, JSS Medical College and Hospitals, JSS-AHER, Mysuru - 570015, India
| | - M N Jyothi
- Department of Medical Genetics, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India
| | - Akila Prashant
- Department of Biochemistry, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India
- SIG-TRRG, JSS Medical College and Hospitals, JSS-AHER, Mysuru - 570015, India
| |
Collapse
|
3
|
Chen C, Yan Y, Wu J, Gan WB. GCTransNet: 3D mitochondrial instance segmentation based on Global Context Vision Transformers. J Struct Biol 2025; 217:108170. [PMID: 39842559 DOI: 10.1016/j.jsb.2025.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Mitochondria are double membrane-bound organelles essential for generating energy in eukaryotic cells. Mitochondria can be readily visualized in 3D using Volume Electron Microscopy (vEM), and accurate image segmentation is vital for quantitative analysis of mitochondrial morphology and function. To address the challenge of segmenting small mitochondrial compartments in vEM images, we propose an automated mitochondrial segmentation method called GCTransNet. This method employs grayscale migration technology to preprocess images, effectively reducing intensity distribution differences across EM images. By utilizing 3D Global Context Vision Transformers (GC-ViT) combined with global context self-attention modules and local self-attention modules, GCTransNet precisely models long-range and short-range spatial interactions. The long-range interactions enable the model to capture the global structural relationships within the mitochondrial segmentation network, while the short-range interactions refine local details and boundaries. In our approach, the encoder of the 3D U-Net network, a classical multi-scale learning architecture that retains high-resolution features through skip connections and combines multi-scale features for precise segmentation, is replaced by a 3D GC-ViT. The GC-ViT leverages shifted window-based self-attention, capturing long-range dependencies and offering improved segmentation accuracy compared to traditional U-Net encoders. In the MitoEM mitochondrial segmentation challenge, GCTransNet achieved state-of-the-art results, demonstrating its superiority in automated mitochondrial segmentation. The code and its documentation are publicly available at https://github.com/GanLab123/GCTransNet.
Collapse
Affiliation(s)
- Chaoyi Chen
- Collage of Biological Sciences, China Agricultural University, Beijing 100091, China; Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yidan Yan
- Collage of Biological Sciences, China Agricultural University, Beijing 100091, China
| | | | - Wen-Biao Gan
- Shenzhen Bay Laboratory, Shenzhen 518132, China; Lingang Laboratory, Shanghai 200032, China.
| |
Collapse
|
4
|
Ambrose A, Bahl S, Sharma S, Zhang D, Hung C, Jain-Ghai S, Chan A, Mercimek-Andrews S. Genetic landscape of primary mitochondrial diseases in children and adults using molecular genetics and genomic investigations of mitochondrial and nuclear genome. Orphanet J Rare Dis 2024; 19:424. [PMID: 39533303 PMCID: PMC11555972 DOI: 10.1186/s13023-024-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMD) are one of the most common metabolic genetic disorders. They are due to pathogenic variants in the mitochondrial genome (mtDNA) or nuclear genome (nDNA) that impair mitochondrial function and/or structure. We hypothesize that there is overlap between PMD and other genetic diseases that are mimicking PMD. For this reason, we performed a retrospective cohort study. METHODS All individuals with suspected PMD that underwent molecular genetic and genomic investigations were included. Individuals were grouped for comparison: (1) individuals with mtDNA-PMD; (2) individuals with nDNA-PMD; (3) individuals with other genetic diseases mimicking PMD (non-PMD); (4) individuals without a confirmed genetic diagnosis. RESULTS 297 individuals fulfilled inclusion criteria. The diagnostic yield of molecular genetics and genomic investigations was 31.3%, including 37% for clinical exome sequencing and 15.8% for mitochondrial genome sequencing. We identified 71 individuals with PMD (mtDNA n = 41, nDNA n = 30) and 22 individuals with non-PMD. Adults had higher percentage of mtDNA-PMD compared to children (p-value = 0.00123). There is a statistically significant phenotypic difference between children and adults with PMD. CONCLUSION We report a large cohort of individuals with PMD and the diagnostic yield of urine mitochondrial genome sequencing (16.1%). We think liver phenotype might be progressive and should be studied further in PMD. We showed a relationship between non-PMD genes and their indirect effects on mitochondrial machinery. Differentiation of PMD from non-PMD can be achieved using specific phenotypes as there was a statistically significant difference for muscular, cardiac, and ophthalmologic phenotypes, seizures, hearing loss, peripheral neuropathy in PMD group compared to non-PMD group.
Collapse
Affiliation(s)
- Anastasia Ambrose
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shalini Bahl
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Saloni Sharma
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Dan Zhang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Clara Hung
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shailly Jain-Ghai
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Alicia Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
- Alberta Health Services, Edmonton Zone, AB, Canada.
| |
Collapse
|
5
|
Zhao M, Wen Y, Yang Y, Pan H, Xie S, Shen C, Liao W, Chen N, Zheng Q, Zhang G, Li Y, Gong D, Tang J, Zhao Z, Zeng J. (-)-Asarinin alleviates gastric precancerous lesions by promoting mitochondrial ROS accumulation and inhibiting the STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155348. [PMID: 38335913 DOI: 10.1016/j.phymed.2024.155348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND (-)-Asarinin (Asarinin) is the primary component in the extract of the herb Asarum sieboldii Miq. It possesses various functions, including pain relief, anti-viral and anti-tuberculous bacilli effects, and inhibition of tumor growth. Gastric precancerous lesion (GPL) is a common but potentially carcinogenic chronic gastrointestinal disease, and its progression can lead to gastric dysfunction and cancer development. However, the protective effects of asarinin against GPL and the underlying mechanisms remain unexplored. METHODS A premalignant cell model (methylnitronitrosoguanidine-induced malignant transformation of human gastric epithelial cell strain, MC cells) and a GPL animal model were established and then were treated with asarinin. The cytotoxic effect of asarinin was assessed using a CCK8 assay. Detection of intracellular reactive oxygen species (ROS) using DCFH-DA. Apoptosis in MC cells was evaluated using an annexin V-FITC/PI assay. We performed western blot analysis and immunohistochemistry (IHC) to analyze relevant markers, investigating the in vitro and in vivo therapeutic effects of asarinin on GPL and its intrinsic mechanisms. RESULTS Our findings showed that asarinin inhibited MC cell proliferation, enhanced intracellular ROS levels, and induced cell apoptosis. Further investigations revealed that the pharmacological effects of asarinin on MC cells were blocked by the ROS scavenger N-acetylcysteine. IHC revealed a significant upregulation of phospho-signal transducer and activator of transcription 3 (p-STAT3) protein expression in human GPL tissues. In vitro, asarinin exerted its pro-apoptotic effects in MC cells by modulating the STAT3 signaling pathway. Agonists of STAT3 were able to abolish the effects of asarinin on MC cells. In vivo, asarinin induced ROS accumulation and inhibited the STAT3 pathway in gastric mucosa of mice, thereby halting and even reversing the development of GPL. CONCLUSION Asarinin induces apoptosis and delays the progression of GPL by promoting mitochondrial ROS production, decreasing mitochondrial membrane potential (MMP), and inhibiting the STAT3 pathway.
Collapse
Affiliation(s)
- Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shunkai Xie
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caifei Shen
- Department of Endoscopy Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Wenhao Liao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Nianzhi Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Qiao Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Yuchen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China.
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
6
|
Zhang K, Chan V, Botelho RJ, Antonescu CN. A tail of their own: regulation of cardiolipin and phosphatidylinositol fatty acyl profile by the acyltransferase LCLAT1. Biochem Soc Trans 2023; 51:1765-1776. [PMID: 37737061 DOI: 10.1042/bst20220603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Cardiolipin and phosphatidylinositol along with the latter's phosphorylated derivative phosphoinositides, control a wide range of cellular functions from signal transduction, membrane traffic, mitochondrial function, cytoskeletal dynamics, and cell metabolism. An emerging dimension to these lipids is the specificity of their fatty acyl chains that is remarkably distinct from that of other glycerophospholipids. Cardiolipin and phosphatidylinositol undergo acyl remodeling involving the sequential actions of phospholipase A to hydrolyze acyl chains and key acyltransferases that re-acylate with specific acyl groups. LCLAT1 (also known as LYCAT, AGPAT8, LPLAT6, or ALCAT1) is an acyltransferase that contributes to specific acyl profiles for phosphatidylinositol, phosphoinositides, and cardiolipin. As such, perturbations of LCLAT1 lead to alterations in cardiolipin-dependent phenomena such as mitochondrial respiration and dynamics and phosphoinositide-dependent processes such as endocytic membrane traffic and receptor signaling. Here we examine the biochemical and cellular actions of LCLAT1, as well as the contribution of this acyltransferase to the development and specific diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Victoria Chan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| |
Collapse
|
7
|
Dapper AL, Diegel AE, Wade MJ. Relative rates of evolution of male-beneficial nuclear compensatory mutations and male-harming Mother's Curse mitochondrial alleles. Evolution 2023; 77:1945-1955. [PMID: 37208299 DOI: 10.1093/evolut/qpad087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Mother's Curse alleles represent a significant source of potential male fitness defects. The maternal inheritance of mutations with the pattern of sex-specific fitness effects, s♀>0>s♂, allows Mother's Curse alleles to spread through a population even though they reduce male fitness. Although the mitochondrial genomes of animals contain only a handful of protein-coding genes, mutations in many of these genes have been shown to have a direct effect on male fertility. The evolutionary process of nuclear compensation is hypothesized to counteract the male-limited mitochondrial defects that spread via Mother's Curse. Here we use population genetic models to investigate the evolution of compensatory autosomal nuclear mutations that act to restore the loss of fitness caused by mitochondrial mutation pressures. We derive the rate of male fitness deterioration by Mother's Curse and the rate of restoration by nuclear compensatory evolution. We find that the rate of nuclear gene compensation is many times slower than that of its deterioration by cytoplasmic mutation pressure, resulting in a significant lag in the recovery of male fitness. Thus, the numbers of nuclear genes capable of restoring male mitochondrial fitness defects must be large in order to sustain male fitness in the face of mutation pressures.
Collapse
Affiliation(s)
- Amy L Dapper
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Amanda E Diegel
- Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS, United States
| | - Michael J Wade
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
8
|
Liu C, Zhang N, Xu Z, Wang X, Yang Y, Bu J, Cao H, Xiao J, Xie Y. Nuclear mitochondria-related genes-based molecular classification and prognostic signature reveal immune landscape, somatic mutation, and prognosis for glioma. Heliyon 2023; 9:e19856. [PMID: 37809472 PMCID: PMC10559255 DOI: 10.1016/j.heliyon.2023.e19856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background Glioma is the most frequent malignant primary brain tumor, and mitochondria may influence the progression of glioma. The aim of this study was to analyze the role of nuclear mitochondria related genes (MTRGs) in glioma, identify subtypes and construct a prognostic model based on nuclear MTRGs and machine learning algorithms. Methods Samples containing both gene expression profiles and clinical information were retrieved from the TCGA database, CGGA database, and GEO database. We selected 16 nuclear MTRGs and identified two clusters of glioma. Prognostic features, microenvironment, mutation landscape, and drug sensitivity were compared between the clusters. A prognostic model based on multiple machine learning algorithms was then constructed and validated by multiple datasets. Results We observed significant discrepancies between the two clusters. Cluster One had higher nuclear MTRG expression, a lower survival rate, and higher immune infiltration than Cluster Two. For the two clusters, we found distinct predictive drug sensitivities and responses to immune therapy, and the infiltration of immune cells was significantly different. Among the 22 combinations of machine learning algorithms we tested, LASSO was the most effective in constructing the prognostic model. The model's accuracy was further verified in three independent glioma datasets. We identified MGME1 as a vital gene associated with infiltrating immune cells in multiple types of tumors. Conclusion In short, our research identified two clusters of glioma and developed a dependable prognostic model based on machine learning methods. MGME1 was identified as a potential biomarker for multiple tumors. Our results will contribute to precise medicine and glioma management.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhihao Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiaofeng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junming Bu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jin Xiao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yinyin Xie
- College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
9
|
Dar GM, Ahmad E, Ali A, Mahajan B, Ashraf GM, Saluja SS. Genetic aberration analysis of mitochondrial respiratory complex I implications in the development of neurological disorders and their clinical significance. Ageing Res Rev 2023; 87:101906. [PMID: 36905963 DOI: 10.1016/j.arr.2023.101906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Growing neurological diseases pose difficult challenges for modern medicine to diagnose and manage them effectively. Many neurological disorders mainly occur due to genetic alteration in genes encoding mitochondrial proteins. Moreover, mitochondrial genes exhibit a higher rate of mutation due to the generation of Reactive oxygen species (ROS) during oxidative phosphorylation operating in their vicinity. Among the different complexes of Electron transport chain (ETC), NADH: Ubiquinone oxidoreductase (Mitochondrial complex I) is the most important. This multimeric enzyme, composed of 44 subunits, is encoded by both nuclear and mitochondrial genes. It often exhibits mutations resulting in development of various neurological diseases. The most prominent diseases include leigh syndrome (LS), leber hereditary optic neuropathy (LHON), mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), myoclonic epilepsy associated with ragged-red fibers (MERRF), idiopathic Parkinson's disease (PD) and, Alzheimer's disease (AD). Preliminary data suggest that mitochondrial complex I subunit genes mutated are frequently of nuclear origin; however, most of the mtDNA gene encoding subunits are also primarily involved. In this review, we have discussed the genetic origins of neurological disorders involving mitochondrial complex I and signified recent approaches to unravel the diagnostic and therapeutic potentials and their management.
Collapse
Affiliation(s)
- Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India.
| |
Collapse
|
10
|
Dai Z, Xia C, Zhao T, Wang H, Tian H, Xu O, Zhu X, Zhang J, Chen P. Platelet-derived extracellular vesicles ameliorate intervertebral disc degeneration by alleviating mitochondrial dysfunction. Mater Today Bio 2023; 18:100512. [PMID: 36536658 PMCID: PMC9758573 DOI: 10.1016/j.mtbio.2022.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction causes the production of reactive oxygen species (ROS) and oxidative damage, and oxidative stress and inflammation are considered key factors causing intervertebral disc degeneration (IVDD). Thus, restoring the mitochondrial dysfunction is an attractive strategy for treating IVDD. Platelet-derived extracellular vesicles (PEVs) are nanoparticles that target inflammation. Moreover, the vesicles produced by platelets (PLTs) have considerable anti-inflammatory effects. We investigate the use of PEVs as a therapeutic strategy for IVDD in this study. We extract PEVs and evaluate their properties; test their effects on H2O2-induced oxidative damage of nucleus pulposus (NP) cells; verify the role of PEVs in repairing H2O2-induced cellular mitochondrial dysfunction; and demonstrate the therapeutic effects of PEVs in a rat IVDD model. The results confirm that PEVs can restore impaired mitochondrial function, reduce oxidative stress, and restore cell metabolism by regulating the sirtuin 1 (SIRT1)-peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α)-mitochondrial transcription factor A (TFAM) pathway; in rat models, PEVs retard the progression of IVDD. Our results demonstrate that the injection of PEVs can be a promising strategy for treating patients with IVDD.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Anhui, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Haoli Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Ouyuan Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Shi Y, Huang G, Jiang F, Zhu J, Xu Q, Fang H, Lan S, Pan Z, Jian H, Li L, Zhang Y. Deciphering a mitochondria-related signature to supervise prognosis and immunotherapy in hepatocellular carcinoma. Front Immunol 2022; 13:1070593. [PMID: 36544763 PMCID: PMC9761315 DOI: 10.3389/fimmu.2022.1070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major public health problem in humans. The imbalance of mitochondrial function has been discovered to be closely related to the development of cancer recently. However, the role of mitochondrial-related genes in HCC remains unclear. Methods The RNA-sequencing profiles and patient information of 365 samples were derived from the Cancer Genome Atlas (TCGA) dataset. The mitochondria-related prognostic model was established by univariate Cox regression analysis and LASSO Cox regression analysis. We further determined the differences in immunity and drug sensitivity between low- and high-risk groups. Validation data were obtained from the International Cancer Genome Consortium (ICGC) dataset of patients with HCC. The protein and mRNA expression of six mitochondria-related genes in tissues and cell lines was verified by immunohistochemistry and qRT-PCR. Results The six mitochondria-related gene signature was constructed for better prognosis forecasting and immunity, based on which patients were divided into high-risk and low-risk groups. The ROC curve, nomogram, and calibration curve exhibited admirable clinical predictive performance of the model. The risk score was associated with clinicopathological characteristics and proved to be an independent prognostic factor in patients with HCC. The above results were verified in the ICGC validation cohort. Compared with normal tissues and cell lines, the protein and mRNA expression of six mitochondria-related genes was upregulated in HCC tissues and cell lines. Conclusion The signature could be an independent factor that supervises the immunotherapy response of HCC patients and possess vital guidance value for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guo Huang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China,Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Fei Jiang
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Jun Zhu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Qiyang Xu
- Department of General Surgery, the Fifth People’s Hospital of Fuyang City, Fuyang, Anhui, China
| | - Hanlu Fang
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Lan
- The Second Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyuan Pan
- Hengyang Hospital affiliated of Hunan University of Chinese Medicine, Hengyang, Hunan, China
| | - Haokun Jian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Li Li
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China,*Correspondence: Li Li, ; Yewei Zhang,
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Li Li, ; Yewei Zhang,
| |
Collapse
|
12
|
Hydroxytyrosol Ameliorates Intervertebral Disc Degeneration and Neuropathic Pain by Reducing Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2240894. [PMID: 36388163 PMCID: PMC9646310 DOI: 10.1155/2022/2240894] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
Low back pain (LBP) seriously affects human quality of life. Intervertebral disc degeneration (IVDD) is the main pathological factor that leads to LBP, but the pathological mechanism underlying IVDD has not been fully elucidated. Neuropathic pain caused by IVDD is an important pathological factor affecting people's daily lives. Therefore, it is very important to identify therapeutic drugs to ameliorate IVDD and secondary neuropathic pain. Hydroxytyrosol (HT) is a natural compound derived from olive leaves and oil and has anti-inflammatory, antioxidant, and antitumor activities and other properties. In this study, TNF-α-stimulated human nucleus pulposus cells (HNPCs) were used to simulate the local inflammatory microenvironment observed in IVDD in vitro to explore the role of HT in alleviating various pathological processes associated with IVDD. A rat needle puncture model was used to further explore the role of HT in alleviating IVDD. Lipopolysaccharide (LPS) was used to stimulate microglia in vitro to comprehensively explore the role of HT in alleviating neuropathic pain, and a rat model involving chronic compression of the dorsal root ganglion (CCD) was established to simulate the neuropathic pain caused by IVDD. This study suggests that HT reduces the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and matrix metalloproteinase-13 (MMP-13); inhibits the production of mitochondrial reactive oxygen species (ROS); and maintains mitochondrial homeostasis. Thus, HT appears to reduce the rate of apoptosis and mitigate the loss of major intervertebral disc components by inhibiting the nuclear factor kappa-B (NF-κB) signaling pathway. Moreover, HT inhibited the secretion of COX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and iNOS and activation of the NLRP3 inflammasome in microglia by inhibiting the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and extracellular regulated protein kinase (ERK) signaling pathways. In conclusion, HT plays a protective role against IVDD and secondary neuropathic pain by inhibiting the NF-κB, PI3K/AKT, and ERK signaling pathways.
Collapse
|
13
|
Xia W, Zeng C, Zheng Z, Huang C, Zhou Y, Bai L. Development and Validation of a Novel Mitochondrion and Ferroptosis-Related Long Non-Coding RNA Prognostic Signature in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:844759. [PMID: 36036006 PMCID: PMC9413087 DOI: 10.3389/fcell.2022.844759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondrion and ferroptosis are related to tumorigenesis and tumor progression of hepatocellular carcinoma (HCC). Therefore, this study focused on exploring the participation of lncRNAs in mitochondrial dysfunction and ferroptosis using public datasets from The Cancer Genome Atlas (TCGA) database. We identified the mitochondrion- and ferroptosis-related lncRNAs by Pearson's analysis and lasso-Cox regression. Moreover, real-time quantitative reverse transcription PCR (RT-qPCR) was utilized to further confirm the abnormal expression of these lncRNAs. Based on eight lncRNAs, the MF-related lncRNA prognostic signature (LPS) with outstanding stratification ability and prognostic prediction capability was constructed. In addition, functional enrichment analysis and immune cell infiltration analysis were performed to explore the possible functions of lncRNAs and their impact on the tumor microenvironment. The pathways related to G2M checkpoint and MYC were activated, and the infiltration ratio of regulatory T cells and M0 and M2 macrophages was higher in the high-risk group. In conclusion, these lncRNAs may affect mitochondria functions, ferroptosis, and immune cell infiltration in HCC through specific pathways, which may provide valuable insight into the progression and therapies of HCC.
Collapse
Affiliation(s)
- Wuzheng Xia
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southem Medical University, Guangzhou, China
- Department of Organ Transplant, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cong Zeng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southem Medical University, Guangzhou, China
- Department of General Practice, Hospital of South China Normal University, Guangzhou, China
| | - Zehao Zheng
- Department of Organ Transplant, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Surger, Shantou University of Medical College, Shantou, China
| | - Chunwang Huang
- Department of Ultrasound, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southem Medical University, Guangzhou, China
| |
Collapse
|
14
|
Aldossary AM, Tawfik EA, Alomary MN, Alsudir SA, Alfahad AJ, Alshehri AA, Almughem FA, Mohammed RY, Alzaydi MM. Recent Advances in Mitochondrial Diseases: from Molecular Insights to Therapeutic Perspectives. Saudi Pharm J 2022; 30:1065-1078. [PMID: 36164575 PMCID: PMC9508646 DOI: 10.1016/j.jsps.2022.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
Mitochondria are double-membraned cytoplasmic organelles that are responsible for the production of energy in eukaryotic cells. The process is completed through oxidative phosphorylation (OXPHOS) by the respiratory chain (RC) in mitochondria. Thousands of mitochondria may be present in each cell, depending on the function of that cell. Primary mitochondria disorder (PMD) is a clinically heterogeneous disease associated with germline mutations in mitochondrial DNA (mtDNA) and/or nuclear DNA (nDNA) genes, and impairs mitochondrial structure and function. Mitochondrial dysfunction can be detected in early childhood and may be severe, progressive and often multi-systemic, involving a wide range of organs. Understanding epigenetic factors and pathways mutations can help pave the way for developing an effective cure. However, the lack of information about the disease (including age of onset, symptoms, clinical phenotype, morbidity and mortality), the limits of current preclinical models and the wide range of phenotypic presentations hamper the development of effective medicines. Although new therapeutic approaches have been introduced with encouraging preclinical and clinical outcomes, there is no definitive cure for PMD. This review highlights recent advances, particularly in children, in terms of etiology, pathophysiology, clinical diagnosis, molecular pathways and epigenetic alterations. Current therapeutic approaches, future advances and proposed new therapeutic plans will also be discussed.
Collapse
|
15
|
Yang Z, Slone J, Huang T. Next-Generation Sequencing to Characterize Mitochondrial Genomic DNA Heteroplasmy. Curr Protoc 2022; 2:e412. [PMID: 35532282 DOI: 10.1002/cpz1.412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitochondria play a very important role in many crucial cellular functions. Each eukaryotic cell contains hundreds of mitochondria with hundreds of mitochondrial genomes. Mutant and wild-type mitochondrial DNA (mtDNA) may co-exist as heteroplasmy and cause human disease. The purpose of the protocols in this article is to simultaneously determine the mtDNA sequence and quantify the heteroplasmy level using parallel sequencing. The protocols include mitochondrial genomic DNA PCR amplification of two full-length products using two distinct sets of PCR primers. The PCR products are mixed at an equimolar ratio, and the samples are then barcoded and sequenced with high-throughput next-generation sequencing technology. This technology is highly sensitive, specific, and accurate in determining mtDNA mutations and the degree/level of heteroplasmy. © 2022 Wiley Periodicals LLC. Basic Protocol 1: PCR amplification of mitochondrial DNA Basic Protocol 2: Analysis of next-generation sequencing of mitochondrial DNA Basic Protocol 3: Mutect2 pipeline for automated sample processing and large-scale data analysis.
Collapse
Affiliation(s)
- Zeyu Yang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Jesse Slone
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Taosheng Huang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
16
|
Wang X, Liu X, He P, Guan K, Yang Y, Lei Y, Cai J, Wang W, Wu T. The Imbalance of Mitochondrial Homeostasis of Peripheral Blood-Derived Macrophages Mediated by MAFLD May Impair the Walking Ability of Elderly Patients with Osteopenia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5210870. [PMID: 35368864 PMCID: PMC8970807 DOI: 10.1155/2022/5210870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
Introduction Many Asian cohort studies have shown that nonalcoholic fatty liver disease (NAFLD), now renamed as metabolic dysfunction-associated fatty liver disease (MAFLD), increases the risk of osteoporosis, yet the effect of MAFLD on elderly patients with osteopenia (OPe) has not been reported. Objective This study aimed to explore the influence of MAFLD on the function of macrophages in patients with OPe. Methods A total of 107 elderly OPe patients with or without MAFLD who visited the Huadong Hospital Affiliated to Fudan University (Shanghai, China) between January 1st, 2021, and September 30th, 2021, were evaluated for an interviewer-assisted questionnaire, as well as clinical and biological assessments. Results Comparing two groups of elderly patients with the same bone mass level, we found that the six-minute walking distance (P = 0.012) and short physical performance battery (SPPB) score (P = 0.0029) of the elderly OPe patients with MAFLD are worse than those in OPe patients without MAFLD. Our results confirmed that the mitochondrial reactive oxygen species (mtROS) in peripheral blood of OPe patients with MAFLD was significantly higher than those without. We also observed the mitochondrial metabolism level of peripheral blood-derived macrophages in the included patients and peripheral blood macrophages in patients with MAFLD with more unbalanced mitochondrial dynamics of macrophages, more weakened mitochondrial respiratory capacity, and greater mitochondrial microstructure damage, when compared with the elderly patients without MAFLD. Conclusions To conclude, our data revealed that MAFLD itself may aggravate the inflammatory state in elderly OPe people due to mitochondrial homeostasis imbalance of peripheral blood macrophages. Damaged monocyte-macrophages might trigger attenuation of the walking ability of OPe patients.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuanqi Liu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Peqing He
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Kangwei Guan
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jianhua Cai
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
17
|
Elsadany M, Elghaish RA, Khalil AS, Ahmed AS, Mansour RH, Badr E, Elserafy M. Transcriptional Analysis of Nuclear-Encoded Mitochondrial Genes in Eight Neurodegenerative Disorders: The Analysis of Seven Diseases in Reference to Friedreich’s Ataxia. Front Genet 2021; 12:749792. [PMID: 34987545 PMCID: PMC8721009 DOI: 10.3389/fgene.2021.749792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are challenging to understand, diagnose, and treat. Revealing the genomic and transcriptomic changes in NDDs contributes greatly to the understanding of the diseases, their causes, and development. Moreover, it enables more precise genetic diagnosis and novel drug target identification that could potentially treat the diseases or at least ease the symptoms. In this study, we analyzed the transcriptional changes of nuclear-encoded mitochondrial (NEM) genes in eight NDDs to specifically address the association of these genes with the diseases. Previous studies show strong links between defects in NEM genes and neurodegeneration, yet connecting specific genes with NDDs is not well studied. Friedreich’s ataxia (FRDA) is an NDD that cannot be treated effectively; therefore, we focused first on FRDA and compared the outcome with seven other NDDs, including Alzheimer’s disease, amyotrophic lateral sclerosis, Creutzfeldt–Jakob disease, frontotemporal dementia, Huntington’s disease, multiple sclerosis, and Parkinson’s disease. First, weighted correlation network analysis was performed on an FRDA RNA-Seq data set, focusing only on NEM genes. We then carried out differential gene expression analysis and pathway enrichment analysis to pinpoint differentially expressed genes that are potentially associated with one or more of the analyzed NDDs. Our findings propose a strong link between NEM genes and NDDs and suggest that our identified candidate genes can be potentially used as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Elsadany
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Reem A. Elghaish
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Aya S. Khalil
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Alaa S. Ahmed
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Rana H. Mansour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- *Correspondence: Eman Badr, ; Menattallah Elserafy,
| | - Menattallah Elserafy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- *Correspondence: Eman Badr, ; Menattallah Elserafy,
| |
Collapse
|
18
|
Lynn J, Park M, Ogunwale C, Acquaah-Mensah GK. A Tale of Two Diseases: Exploring Mechanisms Linking Diabetes Mellitus with Alzheimer's Disease. J Alzheimers Dis 2021; 85:485-501. [PMID: 34842187 DOI: 10.3233/jad-210612] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementias, including the type associated with Alzheimer's disease (AD), are on the rise worldwide. Similarly, type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases globally. Although mechanisms and treatments are well-established for T2DM, there remains much to be discovered. Recent research efforts have further investigated factors involved in the etiology of AD. Previously perceived to be unrelated diseases, commonalities between T2DM and AD have more recently been observed. As a result, AD has been labeled as "type 3 diabetes". In this review, we detail the shared processes that contribute to these two diseases. Insulin resistance, the main component of the pathogenesis of T2DM, is also present in AD, causing impaired brain glucose metabolism, neurodegeneration, and cognitive impairment. Dysregulation of insulin receptors and components of the insulin signaling pathway, including protein kinase B, glycogen synthase kinase 3β, and mammalian target of rapamycin are reported in both diseases. T2DM and AD also show evidence of inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, and amyloid deposition. The impact that changes in neurovascular structure and genetics have on the development of these conditions is also being examined. With the discovery of factors contributing to AD, innovative treatment approaches are being explored. Investigators are evaluating the efficacy of various T2DM medications for possible use in AD, including but not limited to glucagon-like peptide-1 receptor agonists, and peroxisome proliferator-activated receptor-gamma agonists. Furthermore, there are 136 active trials involving 121 therapeutic agents targeting novel AD biomarkers. With these efforts, we are one step closer to alleviating the ravaging impact of AD on our communities.
Collapse
Affiliation(s)
- Jessica Lynn
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | - Mingi Park
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | | | - George K Acquaah-Mensah
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| |
Collapse
|
19
|
Han D, Xu J, Wang H, Wang Z, Yang N, Yang F, Shen Q, Xu S. Non-Interventional and High-Precision Temperature Measurement Biochips for Long-Term Monitoring the Temperature Fluctuations of Individual Cells. BIOSENSORS 2021; 11:454. [PMID: 34821670 PMCID: PMC8615431 DOI: 10.3390/bios11110454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Monitoring the thermal responses of individual cells to external stimuli is essential for studies of cell metabolism, organelle function, and drug screening. Fluorescent temperature probes are usually employed to measure the temperatures of individual cells; however, they have some unavoidable problems, such as, poor stability caused by their sensitivity to the chemical composition of the solution and the limitation in their measurement time due to the short fluorescence lifetime. Here, we demonstrate a stable, non-interventional, and high-precision temperature-measurement chip that can monitor the temperature fluctuations of individual cells subject to external stimuli and over a normal cell life cycle as long as several days. To improve the temperature resolution, we designed temperature sensors made of Pd-Cr thin-film thermocouples, a freestanding Si3N4 platform, and a dual-temperature control system. Our experimental results confirm the feasibility of using this cellular temperature-measurement chip to detect local temperature fluctuations of individual cells that are 0.3-1.5 K higher than the ambient temperature for HeLa cells in different proliferation cycles. In the future, we plan to integrate this chip with other single-cell technologies and apply it to research related to cellular heat-stress response.
Collapse
Affiliation(s)
- Danhong Han
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
- Beijing Research Institute of Mechanical Equipment, Beijing 100854, China
| | - Jingjing Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
- School of Microelectronics, Shandong University, Jinan 250100, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, China
| | - Han Wang
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China;
| | - Zhenhai Wang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
- Beijing Research Institute of Mechanical Equipment, Beijing 100854, China
| | - Nana Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
| | - Fan Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
| | - Qundong Shen
- Department of Chemistry, Nanjing University, Nanjing 210023, China;
| | - Shengyong Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (D.H.); (Z.W.); (N.Y.); (F.Y.)
| |
Collapse
|
20
|
Yang Z, Slone J, Wang X, Zhan J, Huang Y, Namjou B, Kaufman KM, Pauciulo M, Harley JB, Muglia LJ, Chepelev I, Huang T. Validation of low-coverage whole-genome sequencing for mitochondrial DNA variants suggests mitochondrial DNA as a genetic cause of preterm birth. Hum Mutat 2021; 42:1602-1614. [PMID: 34467602 PMCID: PMC9290920 DOI: 10.1002/humu.24279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/17/2021] [Accepted: 08/29/2021] [Indexed: 01/06/2023]
Abstract
Preterm birth (PTB), or birth that occurs earlier than 37 weeks of gestational age, is a major contributor to infant mortality and neonatal hospitalization. Mutations in the mitochondrial genome (mtDNA) have been linked to various rare mitochondrial disorders and may be a contributing factor in PTB given that maternal genetic factors have been strongly linked to PTB. However, to date, no study has found a conclusive connection between a particular mtDNA variant and PTB. Given the high mtDNA copy number per cell, an automated pipeline was developed for detecting mtDNA variants using low‐coverage whole‐genome sequencing (lcWGS) data. The pipeline was first validated against samples of known heteroplasmy, and then applied to 929 samples from a PTB cohort from diverse ethnic backgrounds with an average gestational age of 27.18 weeks (range: 21–30). Our new pipeline successfully identified haplogroups and a large number of mtDNA variants in this large PTB cohort, including 8 samples carrying known pathogenic variants and 47 samples carrying rare mtDNA variants. These results confirm that lcWGS can be utilized to reliably identify mtDNA variants. These mtDNA variants may make a contribution toward preterm birth in a small proportion of live births.
Collapse
Affiliation(s)
- Zeyu Yang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jack Zhan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yongbo Huang
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Michael Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Burroughs Wellcome Fund, Research Triangle Park, North Carolina, USA
| | - Iouri Chepelev
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Azam S, Haque ME, Balakrishnan R, Kim IS, Choi DK. The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Front Cell Dev Biol 2021; 9:683459. [PMID: 34485280 PMCID: PMC8414981 DOI: 10.3389/fcell.2021.683459] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Ageing is an inevitable event in the lifecycle of all organisms, characterized by progressive physiological deterioration and increased vulnerability to death. Ageing has also been described as the primary risk factor of most neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal lobar dementia (FTD). These neurodegenerative diseases occur more prevalently in the aged populations. Few effective treatments have been identified to treat these epidemic neurological crises. Neurodegenerative diseases are associated with enormous socioeconomic and personal costs. Here, the pathogenesis of AD, PD, and other neurodegenerative diseases has been presented, including a summary of their known associations with the biological hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion, and altered intercellular communications. Understanding the central biological mechanisms that underlie ageing is important for identifying novel therapeutic targets for neurodegenerative diseases. Potential therapeutic strategies, including the use of NAD+ precursors, mitophagy inducers, and inhibitors of cellular senescence, has also been discussed.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
| | - Md. Ezazul Haque
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
| | - Rengasamy Balakrishnan
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju-si, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju-si, South Korea
| |
Collapse
|
22
|
Zhang W, Lin L, Xia L, Cai W, Dai W, Zou C, Yin L, Tang D, Xu Y, Dai Y. Multi-omics analyses of human colorectal cancer revealed three mitochondrial genes potentially associated with poor outcomes of patients. J Transl Med 2021; 19:273. [PMID: 34174878 PMCID: PMC8236205 DOI: 10.1186/s12967-021-02939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/13/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The identification of novel functional biomarkers is essential for recognizing high-risk patients, predicting recurrence, and searching for appropriate treatment. However, no prognostic biomarker has been applied for colorectal cancer (CRC) in the clinic. METHODS Integrated with transcriptomic data from public databases, multi-omics examinations were conducted to search prognostic biomarkers for CRC. Moreover, the potential biological functions and regulatory mechanism of these predictive genes were also explored. RESULTS In this study, we revealed that three mitochondrial genes were associated with the poor prognosis of CRC. Integrated analyses of transcriptome and proteome of CRC patients disclosed numerous down-regulated mitochondrial genes at both mRNA and protein levels, suggesting a vital role of mitochondria in carcinogenesis. Combined with the bioinformatics studies of transcriptomic datasets of 538 CRC patients, three mitochondrial prognostic genes were eventually selected out, including HIGD1A, SUCLG2, and SLC25A24. The expression of HIGD1A exhibited a significant reduction in two subtypes of adenoma and six subtypes of CRC, while the down-regulation of SUCLG2 and SLC25A24 showed more advantages in rectal mucinous adenocarcinoma. Moreover, we unveiled that these three genes had common expressions and might collaboratively participate in the synthesis of ribosomes. Our original multi-omics datasets, including DNA methylation, structural variants, chromatin accessibility, and phosphoproteome, further depicted the altered modifications on their potential transcriptional factors. CONCLUSIONS In summary, HIGD1A, SUCLG2, and SLC25A24 might serve as predictive biomarkers for CRC. The biological activities they involved in and their upstream regulators we uncovered would provide a functional context for the further-in-depth mechanism study.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liewen Lin
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Ligang Xia
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, 78721, USA
| | - Chang Zou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Lianghong Yin
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| | - Yong Xu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518028, China.
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| |
Collapse
|
23
|
Bao X, Zhang J, Huang G, Yan J, Xu C, Dou Z, Sun C, Zhang H. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Cell Death Dis 2021; 12:215. [PMID: 33637686 PMCID: PMC7910460 DOI: 10.1038/s41419-021-03505-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1α. In addition, a product of the Warburg effect, lactate, also induces HIF-1α. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.
Collapse
Affiliation(s)
- Xingting Bao
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Guomin Huang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Junfang Yan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Caipeng Xu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Chao Sun
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
| |
Collapse
|
24
|
Targeting mitochondrial dysfunction with small molecules in intervertebral disc aging and degeneration. GeroScience 2021; 43:517-537. [PMID: 33634362 PMCID: PMC8110620 DOI: 10.1007/s11357-021-00341-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
The prevalence of rheumatic and musculoskeletal diseases (RMDs) including osteoarthritis (OA) and low back pain (LBP) in aging societies present significant cost burdens to health and social care systems. Intervertebral disc (IVD) degeneration, which is characterized by disc dehydration, anatomical alterations, and extensive changes in extracellular matrix (ECM) composition, is an important contributor to LBP. IVD cell homeostasis can be disrupted by mitochondrial dysfunction. Mitochondria are the main source of energy supply in IVD cells and a major contributor to the production of reactive oxygen species (ROS). Therefore, mitochondria represent a double-edged sword in IVD cells. Mitochondrial dysfunction results in oxidative stress, cell death, and premature cell senescence, which are all implicated in IVD degeneration. Considering the importance of optimal mitochondrial function for the preservation of IVD cell homeostasis, extensive studies have been done in recent years to evaluate the efficacy of small molecules targeting mitochondrial dysfunction. In this article, we review the pathogenesis of mitochondrial dysfunction, aiming to highlight the role of small molecules and a selected number of biological growth factors that regulate mitochondrial function and maintain IVD cell homeostasis. Furthermore, molecules that target mitochondria and their mechanisms of action and potential for IVD regeneration are identified. Finally, we discuss mitophagy as a key mediator of many cellular events and the small molecules regulating its function.
Collapse
|
25
|
Tahira A, Marques F, Lisboa B, Feltrin A, Barbosa A, de Oliveira KC, de Bragança Pereira CA, Leite R, Grinberg L, Suemoto C, de Lucena Ferretti-Rebustini RE, Pasqualucci CA, Jacob-Filho W, Brentani H, Palha JA. Are the 50's, the transition decade, in choroid plexus aging? GeroScience 2021; 43:225-237. [PMID: 33576945 PMCID: PMC8050122 DOI: 10.1007/s11357-021-00329-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is an important structure for the brain. Besides its major role in the production of cerebrospinal fluid (CSF), it conveys signals originating from the brain, and from the circulatory system, shaping brain function in health and in pathology. Previous studies in rodents have revealed altered transcriptome both during aging and in various diseases of the central nervous system, including Alzheimer's disease. In the present study, a high-throughput sequencing of the CP transcriptome was performed in postmortem samples of clinically healthy individuals aged 50's through 80's. The data shows an age-related profile, with the main changes occurring in the transition from the 50's to the 60's, stabilizing thereafter. Specifically, neuronal and membrane functions distinguish the transcriptome between the 50's and the 60's, while neuronal and axon development and extracellular structure organization differentiate the 50's from the 70's. These findings suggest that changes in the CP transcriptome occur early in the aging process. Future studies will unravel whether these relate with processes occurring in late- onset brain diseases.
Collapse
Affiliation(s)
- Ana Tahira
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bianca Lisboa
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Arthur Feltrin
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Santo André, SP, Brazil
| | - André Barbosa
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil
| | - Kátia Cristina de Oliveira
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Santo André, SP, Brazil
| | | | - Renata Leite
- Biobank for Aging Studies Group, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lea Grinberg
- Biobank for Aging Studies Group, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Claudia Suemoto
- Biobank for Aging Studies Group, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Carlos Augusto Pasqualucci
- Biobank for Aging Studies Group, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Wilson Jacob-Filho
- Biobank for Aging Studies Group, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena Brentani
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Joana Almeida Palha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Clinical Academic Center, Braga, Portugal.
| |
Collapse
|
26
|
Ray A, Jaiswal A, Dutta J, Singh S, Mabalirajan U. A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases. Mitochondrion 2020; 55:111-121. [PMID: 32971294 PMCID: PMC7505072 DOI: 10.1016/j.mito.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
With the increasing appreciation of mitochondria in modulating cellular homeostasis, various disease biology researchers have started exploring the detailed role of mitochondria in multiple diseases beyond neuronal and muscular diseases. In this context, emerging shreds of evidence in lung biology indicated the meticulous role of lung epithelia in provoking a plethora of lung diseases in contrast to earlier beliefs. As lung epithelia are ceaselessly exposed to the environment, they need to have multiple protective mechanisms to maintain the integrity of lung structure and function. As ciliated airway epithelium and type 2 alveolar epithelia require intense energy for executing their key functions like ciliary beating and surfactant production, it is no surprise that defects in mitochondrial function in these cells could perturb lung homeostasis and engage in the pathophysiology of lung diseases. On one hand, intracellular calcium plays the central role in executing key functions of lung epithelia, and on the other hand maintenance of intracellular calcium needs the buffering role of mitochondria. Thus, the regulation of mitochondrial calcium in lung epithelia seems to be critical in lung homeostasis and could be decisive in the pathogenesis of various lung diseases.
Collapse
Affiliation(s)
- Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
27
|
Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. Int J Mol Sci 2020; 21:ijms21175964. [PMID: 32825115 PMCID: PMC7504224 DOI: 10.3390/ijms21175964] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic dysfunctions induced by high fat diet (HFD) consumption are not limited to organs involved in energy metabolism but cause also a chronic low-grade systemic inflammation that affects the whole body including the central nervous system. The brain has been considered for a long time to be protected from systemic inflammation by the blood–brain barrier, but more recent data indicated an association between obesity and neurodegeneration. Moreover, obesity-related consequences, such as insulin and leptin resistance, mitochondrial dysfunction and reactive oxygen species (ROS) production, may anticipate and accelerate the physiological aging processes characterized by systemic inflammation and higher susceptibility to neurological disorders. Here, we discussed the link between obesity-related metabolic dysfunctions and neuroinflammation, with particular attention to molecules regulating the interplay between energetic impairment and altered synaptic plasticity, for instance AMP-activated protein kinase (AMPK) and Brain-derived neurotrophic factor (BDNF). The effects of HFD-induced neuroinflammation on neuronal plasticity may be mediated by altered brain mitochondrial functions. Since mitochondria play a key role in synaptic areas, providing energy to support synaptic plasticity and controlling ROS production, the negative effects of HFD may be more pronounced in synapses. In conclusion, it will be emphasized how HFD-induced metabolic alterations, systemic inflammation, oxidative stress, neuroinflammation and impaired brain plasticity are tightly interconnected processes, implicated in the pathogenesis of neurological diseases.
Collapse
|
28
|
Currais A, Huang L, Petrascheck M, Maher P, Schubert D. A chemical biology approach to identifying molecular pathways associated with aging. GeroScience 2020; 43:353-365. [PMID: 32705410 DOI: 10.1007/s11357-020-00238-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
The understanding of how aging contributes to dementia remains obscure. To address this problem, a chemical biology approach was used employing CAD031, an Alzheimer's disease (AD) drug candidate identified using a discovery platform based upon phenotypic screens that mimic toxicities associated with the aging brain. Since CAD031 has therapeutic efficacy when fed to old symptomatic transgenic AD mice, the chemical biology hypothesis is that it can be used to determine the molecular pathways associated with age-related disease by identifying those that are modified by the compound. Here we show that when CAD031 was fed to rapidly aging SAMP8 mice starting in the last quadrant of their lifespan, it reduced many of the changes in gene, protein, and small molecule expression associated with mitochondrial aging, maintaining mitochondria at the younger molecular phenotype. Network analysis integrating the metabolomics and transcription data followed by mechanistic validation showed that CAD031 targets acetyl-CoA and fatty acid metabolism via the AMPK/ACC1 pathway. Importantly, CAD031 extended the median lifespan of SAMP8 mice by about 30%. These data show that specific alterations in mitochondrial composition and metabolism highly correlate with aging, supporting the use AD drug candidates that limit physiological aging in the brain.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
29
|
Cao Y, Wang J, Tian H, Fu GH. Mitochondrial ROS accumulation inhibiting JAK2/STAT3 pathway is a critical modulator of CYT997-induced autophagy and apoptosis in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:119. [PMID: 32576206 PMCID: PMC7310559 DOI: 10.1186/s13046-020-01621-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Background Gastric cancer (GC) is a common form of malignant cancer in worldwide which has a poor prognosis. Despite recent improvements in the treatment of GC, the prognosis is not yet satisfactory for GC patients. CYT997, a novel microtubule-targeting agent, recently has been identified to be a promising anticancer candidate for the treatment of cancers; however, the effects of CYT997 in GC remain largely unknown. Methods Cell proliferation and apoptosis were detected by CCK8 assay and flow cytometry. The mitochondrial ROS were detected by confocal microscope and flow cytometry. Gastric cancer patient-derived xenograft (PDX) model was used to evaluate its antitumor activity of CYT997 in vivo. Results CYT997 inhibited gastric cancer cell proliferation and induced cell apoptosis and triggered autophagy. CYT997 induced apoptosis through triggering intracellular mitochondrial ROS generation in GC cells. ROS scavengers N-acetylcysteine (NAC) and Mitoquinone (MitoQ) distinctly weakened CYT997-induced cell cycle G2/M arrest and apoptosis in GC cells. Pretreatment with autophagy inhibitor 3-MA promoted the effect of CYT997 on cells apoptosis. Mechanistically, CYT997 performed its function through regulation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in GC cells. In addition, CYT997 inhibited growth of gastric cancer patient-derived xenograft (PDX) tumors. Conclusions CYT997 induces autophagy and apoptosis in gastric cancer by triggering mitochondrial ROS accumulation to silence JAK2/STAT3 pathway. CYT997 might be a potential antitumor drug candidate to treat GC.
Collapse
Affiliation(s)
- Ya Cao
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China
| | - Jinglong Wang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China.
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, China.
| |
Collapse
|